"Recent years have witnessed a rapid rise in the development of deterministic and non-deterministic models to estimate human impacts on the environment. An important failing of these models is the difficulty that most people have understanding the results generated by them, the implications to their way of life and also that of future generations. Within the field, the measurement of greenhouse gas emissions (GHG) is one such result. The research described in this paper evaluates the potential of Bayesian Network (BN) models for the task of managing GHG emissions in the British agricultural sector. Case study farms typifying the British agricultural sector were inputted into both, the BN model and CALM, a Carbon accounting tool used by the Country Land and Business Association (CLA) in the UK for the same purpose. Preliminary results show that the BN model provides a better understanding of how the tasks carried out on a farm impact the environment through the generation of GHG emissions. This understanding is achieved by translating the emissions information into their cost in monetary terms using the Shadow Price of Carbon (SPC), something that is not possible using the CALM tool. In this manner, the farming sector should be more inclined to deploy measures for reducing its impact. At the same time, the output of the analysis can be used to generate a business plan that will not have a negative effect on a farm’s capital income."
"Precision Livestock Farming (PLF) is a concept that allows real-time monitoring of animals, by equipping them with sensors that surge livestock-related data to be further utilized by farmers. PLF comes with many benefits and ensures maximum use of farm resources, thus, enabling control of health status of animals, while potentially mitigating Greenhouse Gas (GHG) emissions. Due to the complexity of the decision making processes in the livestock industries, data-driven decision support systems based on not only real-time data but also expert knowledge, help farmers to take actions in support of animal health and better product yield. These decision support systems are typically based on machine learning, statistical analysis, and modeling and simulation tools. Combining expert knowledge with data obtained from sensors minimizes the risk of making poor decisions and helps to assess the impact of different strategies before applying them in reality. In this paper, we highlight the role of data-driven decision support tools in PLF, and provide an extensive overview and categorization of the different data-driven approaches with respect to the relevant livestock farming goals. We, furthermore, discuss the challenges associated with reduction of GHG emissions using PLF."