Publications

  1. An optimal sensor placement scheme for wind flow and pressure field monitoring, Gao, H., Liu, J., Lin, P. , Hu, G. Patruno, L., Xiao, Y. Tse, T.K., Tse, K.T., Kwok, K.C.S., Building and Environment, 2023, 244, 110803
  2. Codes and standards on computational wind engineering for structural design: State of art and recent trends, Bruno, L.,  Coste, N.,  Mannini, C., Mariotti, A., Patruno, L. Schito, P. Vairo, G. Wind and Structures, An International Journal,, 37(2),  133–151, 2023.
  3. Preliminary Flutter Stability Assessment of the Double-Deck George Washington Bridge, Russo, S., Piana, G., Patruno, L., Carpinteri, A., Applied Sciences (Switzerland), 13(11), 6389, 2023.
  4. A pressure–velocity jump approach for the CFD modelling of permeable surfaces. Xu, M., Patruno, L., & de Miranda, S., Journal of Wind Engineering and Industrial Aerodynamics233, 105317, 2023.
  5. Early stages wind load assessment using Computational Fluid Dynamics: The new Bologna Stadium roof. Xing, J., Patruno, L., de Miranda, S., Pinardi, S., Majowiecki, M., & Ubertini, F., In Structures (Vol. 47, pp. 1912-1926). Elsevier, 2023.
  6. Simulation of porous cladding using LES and URANS: a 5:1 rectangular cylinder. Xu, M., Patruno, L., ., Lo, Y. L. & de Miranda, S., Wind and Structures35, 67-81, 2022.
  7. Improved state augmentation method for buffeting analysis of structures subjected to non-stationary wind. Lei, S., Cui, W., Patruno, L., de Miranda, S., Zhao, L., & Ge, Y., Probabilistic Engineering Mechanics, 69, 103309, 2022.
  8. Wind loads prediction using LES: Inflow generation, accuracy and cost assessment for the case of Torre Gioia 22, Xing, J., Patruno, L., Pozzuoli, C., Pedro, G., de Miranda, S. and Ubertini, F, Engineering Structures, 262, 114292, 2022.
  9. Low-fidelity simulations in Computational Wind Engineering: shortcomings of 2D RANS in fully separated flows, Bertani, G., Patruno, L., Aguera, F.G., Wind and Structures, An International Journal, 34(6), 499–510, 2022.
  10. Simulation strategies for wind shields and porous barriers for bridge deck optimization. Xu, M., Patruno, L., Lo, Y. L., & de Miranda, S. In Structures, 40, 824-839, 2022.
  11. On the numerical simulation of perforated bluff-bodies: a CFD study on a hollow porous 5: 1 rectangular cylinder. Xu, M., Patruno, L., Lo, Y. L., de Miranda, S., & Ubertini, F., Wind and Structures34, 1-14, 2022.
  12. Aerodynamic admittance of a 6:1 rectangular cylinder: A computational study on the role of turbulence intensity and integral length scale. Weilin Li, Luca Patruno, Huawei Niu, Stefano de Miranda, Xugang Hua, Journal of Wind Engineering and Industrial Aerodynamics, 218, 104738, 2021.
  13. Large-eddy simulation of wind-driven flame in the atmospheric boundary layer, R.H. Ong, L. Patruno, Y. He, E. Efthekarian, Y. Zhao, G. Hu, K.C.S. Kwok, International Journal of Thermal Sciences, 107032, 2021.
  14. Identification of complex admittance functions using 2D-URANS models: inflow generation and validation on rectangular cylinders. W. Li, L. Patruno, H. Niu, S. de Miranda, X. Hua, Journal of wind engineering & industrial aerodynamics, 208, 104435, 2021.
  15. On the use of the pressure jump approach for the simulation of separated external flows around porous structures: A forward facing step. X. Mao, L. Patruno, Y.L. Lo, S. de Miranda, Journal of wind engineering & industrial aerodynamics, 207, 104377, 2020.
  16. Numerical simulation of wind-induced mean and peak pressures around a low-rise structure. R.H. Ong, L. Patruno, D. Yeo, Y. He, K.C.S. Kwok. Engineering Structures, 214, 110583, 2020.
  17. Unsteady inflow conditions: A variationally based solution to the insurgence of pressure fluctuations. L. Patruno, S. de Miranda. Comp Meth App Mech Eng, 363, 112894, 2020.
  18. Synthetic generation of the atmospheric boundary layer for wind loading assessment using spectral methods. M. Bervida, L. Patruno, S. Stanic, S. de Miranda. Journal of wind engineering & industrial aerodynamics, 196, 104040, 2020.
  19. Towards LES as a design tool: Wind loads assessment on a high-rise building. M. Ricci, L. Patruno, I. Kalkman, S. de Miranda, B. Blocken. Journal of wind engineering & industrial aerodynamics, 180, 1-18, 2018.
  20. A systematic approach to the generation of synthetic turbulence using spectral methods. L. Patruno, M. Ricci. Comp Meth App Mech Eng, 340, 881-904, 2018.
  21. Buffeting analysis: a numerical study on the extraction of equivalent static wind loads. L. Patruno, M. Ricci, S. de Miranda. Meccanica, https://doi.org/10.1007/s11012-017-0748-4, 2017.
  22. Equivalent Static Wind Loads: recent developments and analysis of a suspended roof. L. Patruno, M. Ricci, S. de Miranda, F. Ubertini. Engineering Structures, 148, 1–10, 2017.
  23. Flow field around a 5:1 rectangular cylinder using LES:influence of inflow turbulence conditions, spanwise domain size and their interaction. L. Patruno, M. Ricci, S. de Miranda, F. Ubertini. Computers and Fluids, 149, 181-193, 2017.
  24. Wind loads and structural response: benchmarking LES on a low-rise building. M. Ricci, L. Patruno, S. de Miranda. Engineering Structures, 144, 26–42, 2017.
  25. On the generation of synthetic divergence-free homogeneous anisotropic turbulence. L. Patruno, M. Ricci. Comp Meth App Mech Eng, 315, 396-417, 2017.
  26. An efficient approach to the determination of Equivalent Static Wind Loads. L. Patruno, M. Ricci, S. de Miranda, F. Ubertini. Journal of Fluids and Structures, 68, 1-14, 2017.
  27. Effects of Low Incoming Turbulence on the Flow around a 5:1 Rectangular Cylinder at Non-Null-Attack Angle. M. Ricci, L. Patruno, S. de Miranda, F. Ubertini. Mathematical Problems in Engineering, Volume 2016, Article ID 2302340,http://dx.doi.org/10.1155/2016/2302340.
  28. Numerical simulation of a 5:1 rectangular cylinder at non-null angle of attack. L. Patruno, M. Ricci, S. de Miranda, F. Ubertini. Journal of Wind Engineering and Industrial Aerodynamics, 151, 146–157, 2016.
  29. An efficient approach to the evaluation of wind effects on structures based on recorded pressure fields. L. Patruno, M. Ricci, S. de Miranda, F. Ubertini. Engineering Structures, 124, 207–220, 2016.
  30. Numerical study of a twin box bridge deck with increasing gap ratio by using RANS and LES approaches. S. de Miranda, L. Patruno, M. Ricci, F. Ubertini. Engineering Structures, 99, 546–558, 2015.
  31. Accuracy of numerically evaluated flutter derivatives of bridge deck sections using RANS: Effects on the flutter onset velocity. L. Patruno. Engineering Structures, 89, 46-65, 2015.
  32. On the identification of flutter derivatives of bridge decks via RANS turbulence models: Benchmarking on rectangular prisms. S. de Miranda, L. Patruno, F. Ubertini, G.Vairo. Engineering Structures, 76, 359–370, 2014.
  33. Indicial functions and flutter derivatives: a generalized approach to the motionrelated wind loads. S. de Miranda, L. Patruno, F. Ubertini, G.Vairo. Journal of Fluids and Structures, 42, 466-487, 2013.
  34. On the evaluation of bridge deck flutter derivatives using RANS turbulence models. F. Brusiani, S. de Miranda, L. Patruno, F. Ubertini, P. Vaona. Journal of Wind Engineering & Industrial Aerodynamics, 119, 39-47, 2013.