PUBLICATIONS

A New Geographic Information System (GIS) Tool for Hydrogen Value Chain Planning Optimization: Application to Italian Highways

Autori: Guzzini, A.; Brunaccini, G.; Aloisio, D.; Pellegrini, M.; Saccani, C.; Sergi, F.

Optimizing the hydrogen value chain is essential to ensure hydrogen market uptake in replacing traditional fossil fuel energy and to achieve energy system decarbonization in the next years. The design of new plants and infrastructures will be the first step. However, wrong decisions would result in temporal, economic losses and, in the worst case, failures. Because huge investments are expected, decision makers have to be assisted for its success. Because no tools are available for the optimum design and geographical location of power to gas (P2G) and power to hydrogen (P2H) plants, the geographic information system (GIS) and mathematical optimization approaches were combined into a new tool developed by CNR-ITAE and the University of Bologna in the SuperP2G project, aiming to support the interested stakeholders in the investigation and selection of the optimum size, location, and operations of P2H and P2G industrial plants while minimizing the levelized cost of hydrogen (LCOH). In the present study, the tool has been applied to hydrogen mobility, specifically to investigate the conversion of the existing refuelling stations on Italian highways to hydrogen refuelling stations (HRSs). Middle-term (2030) and long-term (2050) scenarios were investigated. In 2030, a potential demand of between 7000 and 10,000 tons/year was estimated in Italy, increasing to between 32,600 and 72,500 tons/year in 2050. The optimum P2H plant configuration to supply the HRS was calculated in different scenarios. Despite the optimization, even if the levelized cost of hydrogen (LCOH) reduces from 7.0–7.5 €/kg in 2030 to 5.6–6.2 €/kg in 2050, the results demonstrate that the replacement of the traditional fuels, i.e., gasoline, diesel, and liquefied petroleum gases (LPGs), will be disadvantaged without incentives or any other economic supporting schemes.

Collegamento all'articolohttps://www.mdpi.com/2071-1050/15/3/2080

A Preliminary Assessment of the Potential of Low Percentage Green Hydrogen Blending in the Italian Natural Gas Network

Autori: Pellegrini, M.; Guzzini, A.; Saccani, C.

The growing rate of electricity generation from renewables is leading to new operational and management issues on the power grid because the electricity generated exceeds local requirements and the transportation or storage capacities are inadequate. An interesting option that is under investigation by several years is the opportunity to use the renewable electricity surplus to power electrolyzers that split water into its component parts, with the hydrogen being directly injected into natural gas pipelines for both storage and transportation. This innovative approach merges together the concepts of (i) renewable power-to-hydrogen (P2H) and of (ii) hydrogen blending into natural gas networks. The combination of renewable P2H and hydrogen blending into natural gas networks has a huge potential in terms of environmental and social benefits, but it is still facing several barriers that are technological, economic, legislative. In the framework of the new hydrogen strategy for a climate-neutral Europe, Member States should design a roadmap moving towards a hydrogen ecosystem by 2050. The blending of “green hydrogen”, that is hydrogen produced by renewable sources, in the natural gas network at a limited percentage is a key element to enable hydrogen production in a preliminary and transitional phase. Therefore, it is urgent to evaluate at the same time (i) the potential of green hydrogen blending at low percentage (up to 10%) and (ii) the maximum P2H capacity compatible with low percentage blending. The paper aims to preliminary assess the green hydrogen blending potential into the Italian natural gas network as a tool for policy makers, grid and networks managers and energy planners.

Collegamento all'articolohttps://www.mdpi.com/1996-1073/13/21/5570

Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy

Autori: Saccani, C.; Pellegrini, M.; Guzzini, A.

New technological solutions are required to control the impact of the increasing presence of renewable energy sources connected to the electric grid that are characterized by unpredictable production (i.e., wind and solar energy). Energy storage is becoming essential to stabilize the grid when a mismatch between production and demand occurs. Among the available solutions, Power to Hydrogen (P2H) is one of the most attractive options. However, despite the potential, many barriers currently hinder P2H market development. The literature reports general barriers and strategies to overcome them, but a specific analysis is fundamental to identifying how these barriers concretely arise in national and regional frameworks, since tailored solutions are needed to foster the development of P2H local market. The paper aims to identify and to analyze the existing barriers for P2H market uptake in Italy. The paper shows how several technical, regulatory and economic issues are still unsolved, resulting in a source of uncertainty for P2H investment. The paper also suggests possible approaches and solutions to address the Italian barriers and to support politics and decision-makers in the definition and implementation of the national hydrogen strategy.

Collegamento all'articolohttps://www.mdpi.com/1996-1073/13/18/4835