Structure-property relationships for charge transport in organic semiconductors

Understanding the interplay between intramolecular and intermolecular contributions to the charge carrier propagation in organic semiconductors may guide the design of more efficient architectures.                

We investigate the properties of condensed phases formed by aggregates of organic chromophores resulting in crystals or amorphous structures. These materials are at the frontier of modern applications in photonics and electronics.

Structural effects on charge transport properties are investigated in the framework of the nonadiabatic hopping mechanism. The attention is focussed on the determination of intra- and inter- molecular parameters governing the efficiency of charge transport. Charge transfer rate constants are computed within the Marcus-Levich-Jortner formalism including a single effective mode treated quantum mechanically and are injected in a kinetic Monte Carlo scheme to propagate the charge carrier in the crystal and to estimate charge mobilities at room temperature with and without the influence of an electric field.

The role of low frequency crystal vibrations in modulating inter-molecular parameters is of special relevance. Thermally induced dynamical effects are investigated by means of an integrated computational approach including molecular dynamics simulations accompanied by quantum-chemical evaluation of electronic couplings, and the lattice vibrations responsible for fluctuations are identified.

One final objective is to predict the hole or electron mobility of different organic structures and their potential for the fabrication of electronic devices. In this sense the efficiency of processes at the interface between electrodes and organic materials along with the role played by intra molecular properties on these processes is another objective of this research activity.

References

  1. S. Di Motta, E. Di Donato, F. Negri, G. Orlandi, D. Fazzi, C. Castiglioni, “Resistive molecular memories: influence of molecular parameters on the electrical bistability”, J. Am. Chem. Soc., 131, (2009), 6591-6598
  2. E. Di Donato, R. P. Fornari, S. Di Motta, Y. Li, Z. Wang, F. Negri, “n-Type Charge Transport and Mobility of Fluorinated Perylene Bisimide Semiconductors”,  J. Phys. Chem. B, 114, (2010) 5327-5334.
  3. S. Di Motta, M. Siracusa, F. Negri, "Structural and Thermal Effects on the Charge Transport of Core-Twisted Chlorinated Perylene Bisimide Semiconductors",  J. Phys. Chem. C, 115, (2011) 20754–20764.
  4. Y. Wang, S. Di Motta, F. Negri, R. Friedlein, “Effect of Oxygen on the electronic structure of Highly-Crystalline Picene Films”, J. Am. Chem. Soc., 133, (2011) 10054-10057.
  5. S. Canola, F. Negri, "Anisotropy of the n-type charge transport and thermal effects in crystals of a fluoro-alkylated naphthalene diimide: a computational investigation", Phys. Chem. Chem. Phys., 16, (2014) 21550-21558. DOI: 10.1039/c4cp03231d. http://dx.doi.org/10.1039/c4cp03231d
  6. S. Canola, F. Negri, "Role of the HOMO-1 Orbital on the p-Type Charge Transport of the Fused-Ring Thienoacene DBTDT", J. Phys. Chem. C, 119, (2015) 11499-11505. DOI: 10.1021/acs.jpcc.5b02713. http://dx.doi.org/10.1021/acs.jpcc.5b02713
  7. S. Canola, C. Pecoraro, F. Negri, "Dimer and Cluster Approach for the Evaluation of Electronic Couplings Governing Charge Transport: Application to two Pentacene Polymorphs", Chem. Phys., 478, (2016), 130-138. DOI 10.1016/j.chemphys.2016.04.004.
  8. S. Canola, C. Pecoraro, F. Negri, "Modelling p-type charge transport in thienoacene analogues of pentacene", Theor. Chem. Acc.,135, (2016), 33. DOI 10.1007/s00214-015-1757-9
  9. C. Cappuccino, S. Canola, G. Montanari, S. Gabriel Lopez, S. Toffanin, M. Melucci, F. Negri, L. Maini "One molecule, four colors, discovering the polymorphs of a thieno(bis)imide ended oligomer" Cryst. Growth Des., 19, (2019), 2594-2603  DOI: 10.1021/acs.cgd.8b01712
  10. S. Canola, C. Graham, A. J. Pérez-Jiménez, J.C. Sancho-García, F. Negri "Charge transport parameters for carbon based nanohoops and donor-acceptor derivatives", Phys. Chem. Chem. Phys. 21 (2019), 2057-2068  DOI: 10.1039/C8CP06727A
  11. D. Fazzi, S. Fabiano, T.-P. Ruoko, K. Meerholz, F. Negri, "Polarons in π-conjugated ladder-type polymers: a broken symmetry density functional description.", J. Mat. Chem. C., 7, (2019), 12876-12885 DOI: 10.1039/C9TC03283E
  12. P. Mayorga Burrezo, W. Zeng, M. Moos, M. Holzapfel, S. Canola, F. Negri, C. Rovira, J. Veciana, H. Phan, J. Wu, C. Lambert, J. Casado,"Perylene pi Bridges that Equally Delocalize Anions and Cations: Quinoidal and Aromatic Contents in the Right Proportion",  Angew. Chem. Int. Ed., 58, (2019), 14467-14471, DOI:10.1002/anie.201905657