
WebThings
An introduction. . .

F. Viola1

1ARCES
University of Bologna

Feb. 2017

F. Viola (University) WebThings Feb. 2017 1 / 34



1 Introduction

2 The Web Thing Model
The Web Thing Model and WoT
Web Things
MUST
SHOULD
MAY

3 OUR Web Thing
The Model
Properties
Actions
How to read the code

4 Conclusion

F. Viola (University) WebThings Feb. 2017 2 / 34



Introduction

Outline

1 Introduction

2 The Web Thing Model
The Web Thing Model and WoT
Web Things
MUST
SHOULD
MAY

3 OUR Web Thing
The Model
Properties
Actions
How to read the code

4 Conclusion

F. Viola (University) WebThings Feb. 2017 3 / 34



Introduction

The Web of Things

The Internet of Things (IoT) suffers from a lack of interoperability across
platforms. The aim of Web of Things initiative is to bring harmony in the
fragmented market of the Internet of Things.

F. Viola (University) WebThings Feb. 2017 4 / 34



Introduction

Before we begin. . .

In this presentation the Web Thing Model will be our Bible.

Produced mainly by EVRYTHING, this is a cookbook for integrating Things to
the Web.

F. Viola (University) WebThings Feb. 2017 5 / 34



The Web Thing Model

Outline

1 Introduction

2 The Web Thing Model
The Web Thing Model and WoT
Web Things
MUST
SHOULD
MAY

3 OUR Web Thing
The Model
Properties
Actions
How to read the code

4 Conclusion

F. Viola (University) WebThings Feb. 2017 6 / 34



The Web Thing Model The Web Thing Model and WoT

The Web Thing Model and the W3C

How the Web Thing Model relates to the W3C?

The Web Thing Model was only the beginning of the Web of Things work at
W3C. The relationship with the current WoT IG work is easy: the Integration
Patterns of the Web Thing Model are similar to what the WoT IG Architecture
Document references.

Similarly, the Thing Description of the WoT IG takes a very similar approach and
terminology to the Web Thing Model.

F. Viola (University) WebThings Feb. 2017 7 / 34



The Web Thing Model The Web Thing Model and WoT

The Web Thing Model and the W3C

How the Web Thing Model relates to the W3C?

However, there are also differences: the Web Thing Model focuses solely on
readily Internet (TCP/IP, UDP) and browsers compatible protocols (WebSocket,
HTTP, HTTP/2) and relies on translators for other protocols.

The WoT IG Architecture Document extends this and proposes the notion of
Protocols Bindings. A Protocol Binding is a way to map an existing IoT protocol
to the Thing Description and its interaction patterns.

F. Viola (University) WebThings Feb. 2017 8 / 34



The Web Thing Model The Web Thing Model and WoT

The Web Thing Model and the W3C

So, do we need the Web Thing Model?

The Web Thing Model is a first step in the world of Web of Things. Our second
step will be the analysis of the WoT IG’s Thing Description.

F. Viola (University) WebThings Feb. 2017 9 / 34



The Web Thing Model Web Things

What is a WebThing?

A Web Thing is a digital representation of a physical object accessible via a
RESTful web API.

. . . so let’s review the main concepts of REST.

F. Viola (University) WebThings Feb. 2017 10 / 34



The Web Thing Model Web Things

REST in Peace

Do you remember the previous lesson about REST?

With an element (e.g. http://example.com/car14), HTTP verbs allows to:

retrieve the representation (GET)

update the element (PUT)

create the element (POST)

delete the element (DELETE)

With a collection (e.g. http://example.com/cars), HTTP verbs allows to:

retrieve the list of elements (GET)

update the entire collection (PUT)

create a new element in the collection (POST)

delete the entire collection (DELETE)

F. Viola (University) WebThings Feb. 2017 11 / 34



The Web Thing Model Web Things

REST in Peace

Do you remember the previous lesson about REST?

With an element (e.g. http://example.com/car14), HTTP verbs allows to:

retrieve the representation (GET)

update the element (PUT)

create the element (POST)

delete the element (DELETE)

With a collection (e.g. http://example.com/cars), HTTP verbs allows to:

retrieve the list of elements (GET)

update the entire collection (PUT)

create a new element in the collection (POST)

delete the entire collection (DELETE)

F. Viola (University) WebThings Feb. 2017 11 / 34



The Web Thing Model Web Things

The Web Thing Model

The data model of a Web Thing is composed by the following resources:

Things: this resource contains all the web Things that are proxied by this
web Thing;

Model: a set of metadata that defines various aspects about it such as its
name, description, or configurations;

Properties: properties represent the internal state of a web Thing. Clients
can subscribe to properties to receive a notification message when specific
conditions are met; for example, the value of one or more properties changed;

Actions: an action is a function offered by a web Thing.

F. Viola (University) WebThings Feb. 2017 12 / 34



The Web Thing Model Web Things

The Web Thing Model

F. Viola (University) WebThings Feb. 2017 13 / 34



The Web Thing Model MUST

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MUST:

at least be an HTTP/1.1 server

have a root resource accessible via an HTTP URL

support GET, POST, PUT and DELETE HTTP verbs

implement HTTP status codes 200, 400, 500

support JSON as default representation

support GET on its root URL

F. Viola (University) WebThings Feb. 2017 14 / 34



The Web Thing Model MUST

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MUST:

at least be an HTTP/1.1 server

have a root resource accessible via an HTTP URL

support GET, POST, PUT and DELETE HTTP verbs

implement HTTP status codes 200, 400, 500

support JSON as default representation

support GET on its root URL

F. Viola (University) WebThings Feb. 2017 14 / 34



The Web Thing Model MUST

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MUST:

at least be an HTTP/1.1 server

have a root resource accessible via an HTTP URL

support GET, POST, PUT and DELETE HTTP verbs

implement HTTP status codes 200, 400, 500

support JSON as default representation

support GET on its root URL

F. Viola (University) WebThings Feb. 2017 14 / 34



The Web Thing Model MUST

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MUST:

at least be an HTTP/1.1 server

have a root resource accessible via an HTTP URL

support GET, POST, PUT and DELETE HTTP verbs

implement HTTP status codes 200, 400, 500

support JSON as default representation

support GET on its root URL

F. Viola (University) WebThings Feb. 2017 14 / 34



The Web Thing Model MUST

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MUST:

at least be an HTTP/1.1 server

have a root resource accessible via an HTTP URL

support GET, POST, PUT and DELETE HTTP verbs

implement HTTP status codes 200, 400, 500

support JSON as default representation

support GET on its root URL

F. Viola (University) WebThings Feb. 2017 14 / 34



The Web Thing Model MUST

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MUST:

at least be an HTTP/1.1 server

have a root resource accessible via an HTTP URL

support GET, POST, PUT and DELETE HTTP verbs

implement HTTP status codes 200, 400, 500

support JSON as default representation

support GET on its root URL

F. Viola (University) WebThings Feb. 2017 14 / 34



The Web Thing Model MUST

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MUST:

at least be an HTTP/1.1 server

have a root resource accessible via an HTTP URL

support GET, POST, PUT and DELETE HTTP verbs

implement HTTP status codes 200, 400, 500

support JSON as default representation

support GET on its root URL

F. Viola (University) WebThings Feb. 2017 14 / 34



The Web Thing Model MUST

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MUST:

at least be an HTTP/1.1 server

have a root resource accessible via an HTTP URL

support GET, POST, PUT and DELETE HTTP verbs

implement HTTP status codes 200, 400, 500

support JSON as default representation

support GET on its root URL

F. Viola (University) WebThings Feb. 2017 14 / 34



The Web Thing Model SHOULD

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing SHOULD:

use secure HTTP connections (HTTPS)

implement the WebSocket Protocol

support the Web Things model (!!!)

return a 204 for all write operations (NO CONTENT)

provide a default human-readable documentation

F. Viola (University) WebThings Feb. 2017 15 / 34



The Web Thing Model SHOULD

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing SHOULD:

use secure HTTP connections (HTTPS)

implement the WebSocket Protocol

support the Web Things model (!!!)

return a 204 for all write operations (NO CONTENT)

provide a default human-readable documentation

F. Viola (University) WebThings Feb. 2017 15 / 34



The Web Thing Model SHOULD

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing SHOULD:

use secure HTTP connections (HTTPS)

implement the WebSocket Protocol

support the Web Things model (!!!)

return a 204 for all write operations (NO CONTENT)

provide a default human-readable documentation

F. Viola (University) WebThings Feb. 2017 15 / 34



The Web Thing Model SHOULD

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing SHOULD:

use secure HTTP connections (HTTPS)

implement the WebSocket Protocol

support the Web Things model (!!!)

return a 204 for all write operations (NO CONTENT)

provide a default human-readable documentation

F. Viola (University) WebThings Feb. 2017 15 / 34



The Web Thing Model SHOULD

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing SHOULD:

use secure HTTP connections (HTTPS)

implement the WebSocket Protocol

support the Web Things model (!!!)

return a 204 for all write operations (NO CONTENT)

provide a default human-readable documentation

F. Viola (University) WebThings Feb. 2017 15 / 34



The Web Thing Model SHOULD

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing SHOULD:

use secure HTTP connections (HTTPS)

implement the WebSocket Protocol

support the Web Things model (!!!)

return a 204 for all write operations (NO CONTENT)

provide a default human-readable documentation

F. Viola (University) WebThings Feb. 2017 15 / 34



The Web Thing Model SHOULD

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing SHOULD:

use secure HTTP connections (HTTPS)

implement the WebSocket Protocol

support the Web Things model (!!!)

return a 204 for all write operations (NO CONTENT)

provide a default human-readable documentation

F. Viola (University) WebThings Feb. 2017 15 / 34



The Web Thing Model MAY

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MAY:

support the HTTP OPTIONS verb for each of its resources

provide additional representation mechanisms (RDF, XML, JSON-LD)

offer a HTML-based user interface

provide precise information about the intended meaning of individual parts of
the model

F. Viola (University) WebThings Feb. 2017 16 / 34



The Web Thing Model MAY

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MAY:

support the HTTP OPTIONS verb for each of its resources

provide additional representation mechanisms (RDF, XML, JSON-LD)

offer a HTML-based user interface

provide precise information about the intended meaning of individual parts of
the model

F. Viola (University) WebThings Feb. 2017 16 / 34



The Web Thing Model MAY

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MAY:

support the HTTP OPTIONS verb for each of its resources

provide additional representation mechanisms (RDF, XML, JSON-LD)

offer a HTML-based user interface

provide precise information about the intended meaning of individual parts of
the model

F. Viola (University) WebThings Feb. 2017 16 / 34



The Web Thing Model MAY

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MAY:

support the HTTP OPTIONS verb for each of its resources

provide additional representation mechanisms (RDF, XML, JSON-LD)

offer a HTML-based user interface

provide precise information about the intended meaning of individual parts of
the model

F. Viola (University) WebThings Feb. 2017 16 / 34



The Web Thing Model MAY

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MAY:

support the HTTP OPTIONS verb for each of its resources

provide additional representation mechanisms (RDF, XML, JSON-LD)

offer a HTML-based user interface

provide precise information about the intended meaning of individual parts of
the model

F. Viola (University) WebThings Feb. 2017 16 / 34



The Web Thing Model MAY

The Web Thing Model

The requirements to build a Web Thing are classified in three levels: MUST,
SHOULD and MAY.

A Web Thing MAY:

support the HTTP OPTIONS verb for each of its resources

provide additional representation mechanisms (RDF, XML, JSON-LD)

offer a HTML-based user interface

provide precise information about the intended meaning of individual parts of
the model

F. Viola (University) WebThings Feb. 2017 16 / 34



OUR Web Thing

Outline

1 Introduction

2 The Web Thing Model
The Web Thing Model and WoT
Web Things
MUST
SHOULD
MAY

3 OUR Web Thing
The Model
Properties
Actions
How to read the code

4 Conclusion

F. Viola (University) WebThings Feb. 2017 17 / 34



OUR Web Thing

OUR Web Thing

In the rest of the presentation we will build our Web Thing following the Web
Thing Model.

Our Web Thing is a simple temperature sensor that can be rebooted with a
specific command.

So we can identify a property (i.e. the temperature) and an action (i.e. reboot).
So let’s see how I implemented the Web Thing!

F. Viola (University) WebThings Feb. 2017 18 / 34



OUR Web Thing

The Web Thing Model

A Web Thing MUST at least be an HTTP/1.1 server:

I used Flask, one of the most powerful Python modules for building a Web server.

F. Viola (University) WebThings Feb. 2017 19 / 34



OUR Web Thing

The Web Thing Model

A Web Thing MUST have a root resource accessible via an HTTP URL:

Since the Web Thing runs on http://mml.arces.unibo.it:10996, this is also
the URI of the root.

F. Viola (University) WebThings Feb. 2017 20 / 34



OUR Web Thing

The Web Thing Model

A Web Thing MUST support GET, POST, PUT and DELETE HTTP verbs

{wt}/model GET provides the model

{wt}/actions GET provides a list of the actions

{wt}/actions/action POST requests the execution of the action

{wt}/actions/action/id GET returns the execution status of the action with
code id

{wt}/properties GET provides a list of the properties

{wt}/properties/prop GET provides the value of the property

{wt}/properties/prop PUT sets the value of the property

. . .

F. Viola (University) WebThings Feb. 2017 21 / 34



OUR Web Thing

The Web Thing Model

A Web Thing MUST implement HTTP status codes 200, 400, 500.

This task is achieved. For every successfull request 20* is returned. A client-side
error results in a 40* error, while a server-side error gives a 50* status code.

F. Viola (University) WebThings Feb. 2017 22 / 34



OUR Web Thing

The Web Thing Model

A Web Thing MUST support JSON as default representation.

A simple test allows to verify that we support JSON as the default representation.
This is possible thanks to the jsonify function provided by Flask.

F. Viola (University) WebThings Feb. 2017 23 / 34



OUR Web Thing

The Web Thing Model

A Web Thing MUST support GET on its root URL.

As previously said, http://mml.arces.unibo.it:10996 represents the root
resource. My Python Flask application supports accessing the resource with the
GET verb.

F. Viola (University) WebThings Feb. 2017 24 / 34



OUR Web Thing The Model

The Model

As we said before, the model of our Web Thing is reachable at:

http://mml.arces.unibo.it:10996/model with GET

With cURL:

$ curl http://mml.arces.unibo.it:10996/model

F. Viola (University) WebThings Feb. 2017 25 / 34



OUR Web Thing Properties

Properties

A list of the properties can be obtained with:

http://mml.arces.unibo.it:10996/properties with GET

With cURL:

$ curl http://mml.arces.unibo.it:10996/properties

F. Viola (University) WebThings Feb. 2017 26 / 34



OUR Web Thing Properties

Properties

Values of a property can be obtained with:

http://mml.arces.unibo.it:10996/properties/temperature (GET)

With cURL:

$ curl http://mml.arces.unibo.it:10996/properties/temperature

F. Viola (University) WebThings Feb. 2017 27 / 34



OUR Web Thing Properties

Properties

A value can be set with:

http://mml.arces.unibo.it:10996/properties/temperature (PUT)

With cURL:

$ curl http://mml.arces.unibo.it:10996/properties/temperature \

-X PUT -H "Content-Type: application/json" \

--data ’{"temperature":24}’

F. Viola (University) WebThings Feb. 2017 28 / 34



OUR Web Thing Actions

Actions

A list of the actions can be obtained with:

http://mml.arces.unibo.it:10996/actions with GET

With cURL:

$ curl http://mml.arces.unibo.it:10996/actions

F. Viola (University) WebThings Feb. 2017 29 / 34



OUR Web Thing Actions

Actions

An action can be invoked with:

http://mml.arces.unibo.it:10996/actions/reboot (POST)

With cURL:

$ curl http://mml.arces.unibo.it:10996/actions/reboot -X POST

F. Viola (University) WebThings Feb. 2017 30 / 34



OUR Web Thing Actions

Actions

The result of an action can be verified with:

http://mml.arces.unibo.it:10996/actions/reboot/<ID> (GET)

With cURL:

$ curl http://mml.arces.unibo.it:10996/actions/reboot/<ID>

F. Viola (University) WebThings Feb. 2017 31 / 34



OUR Web Thing How to read the code

The code is hosted on a git repository on BitBucket (SEPA/WebThing).

The program to execute with python3 is wt.py.

The class that compose my Web Thing are:

WebThing – the main class that compose the Web Thing

WebThingProperty – the class to implement a property

WebThingAction – the class that implement an action

WebThingPropertyList – the class to handle a list of properties

WebThingActionList – the class to handle a list of actions

F. Viola (University) WebThings Feb. 2017 32 / 34



OUR Web Thing How to read the code

The code is hosted on a git repository on BitBucket (SEPA/WebThing).

The program to execute with python3 is wt.py.

The class that compose my Web Thing are:

WebThing – the main class that compose the Web Thing

WebThingProperty – the class to implement a property

WebThingAction – the class that implement an action

WebThingPropertyList – the class to handle a list of properties

WebThingActionList – the class to handle a list of actions

F. Viola (University) WebThings Feb. 2017 32 / 34



OUR Web Thing How to read the code

The code is hosted on a git repository on BitBucket (SEPA/WebThing).

The program to execute with python3 is wt.py.

The class that compose my Web Thing are:

WebThing – the main class that compose the Web Thing

WebThingProperty – the class to implement a property

WebThingAction – the class that implement an action

WebThingPropertyList – the class to handle a list of properties

WebThingActionList – the class to handle a list of actions

F. Viola (University) WebThings Feb. 2017 32 / 34



OUR Web Thing How to read the code

The code is hosted on a git repository on BitBucket (SEPA/WebThing).

The program to execute with python3 is wt.py.

The class that compose my Web Thing are:

WebThing – the main class that compose the Web Thing

WebThingProperty – the class to implement a property

WebThingAction – the class that implement an action

WebThingPropertyList – the class to handle a list of properties

WebThingActionList – the class to handle a list of actions

F. Viola (University) WebThings Feb. 2017 32 / 34



OUR Web Thing How to read the code

The code is hosted on a git repository on BitBucket (SEPA/WebThing).

The program to execute with python3 is wt.py.

The class that compose my Web Thing are:

WebThing – the main class that compose the Web Thing

WebThingProperty – the class to implement a property

WebThingAction – the class that implement an action

WebThingPropertyList – the class to handle a list of properties

WebThingActionList – the class to handle a list of actions

F. Viola (University) WebThings Feb. 2017 32 / 34



OUR Web Thing How to read the code

The code is hosted on a git repository on BitBucket (SEPA/WebThing).

The program to execute with python3 is wt.py.

The class that compose my Web Thing are:

WebThing – the main class that compose the Web Thing

WebThingProperty – the class to implement a property

WebThingAction – the class that implement an action

WebThingPropertyList – the class to handle a list of properties

WebThingActionList – the class to handle a list of actions

F. Viola (University) WebThings Feb. 2017 32 / 34



Conclusion

Outline

1 Introduction

2 The Web Thing Model
The Web Thing Model and WoT
Web Things
MUST
SHOULD
MAY

3 OUR Web Thing
The Model
Properties
Actions
How to read the code

4 Conclusion

F. Viola (University) WebThings Feb. 2017 33 / 34



Conclusion

Conclusion

Thank you for the attention!

This presentation is released with license:
Creative Commons 3.0 - BY,NC,SA

The source code of my Web Thing is released with license:
GNU GPL v3

F. Viola (University) WebThings Feb. 2017 34 / 34


	Introduction
	The Web Thing Model
	The Web Thing Model and WoT
	Web Things
	MUST
	SHOULD
	MAY

	OUR Web Thing
	The Model
	Properties
	Actions
	How to read the code

	Conclusion

