

Developing sustainable urban/vertical farms: Insights from life cycle-based methods

Michael Martin Senior Researcher-IVL Swedish Environmental Research Institute Researcher- KTH Royal Institute of Technology

Vertical/Urban Farming

- Growing in layers to increase productive area
- Hydroponic/Aeroponic/Aquaponic systems
- Different Sizes/Configurations:
 - Plant Factories
 - Modular/Hyper-Local Systems
- Typically with LEDs as lighting source
- With/Without Soil
- Typically producing leafy greens and herbs
 - Can be expanded and integrated with other products
 - Gen 1-Gen 2 and Aquaponic, etc.

The Expectations and Discourse Employed...

- Often focused on *sustainability*
- Self-sufficient urban areas
- Reduced transportation and water consumption
- Improved yields per area
- Resource-efficient methods
- Shorter supply chains
- Large potential for expansion
- Recently, packaging in focus...

This often leads to criticism of their systems...

Applying Life Cycle-Based Methods (LCA)

- Where-do the impacts/benefits occur?
- **How**-can we reduce/improve these?
- What-available materials, utilities, systems and technologies can be used?
- Who-can support the transition?

Use and Misuse of Life Cycle Perspective

- Some claims may be unsubstantiated
- <u>Comparative Assertions</u> to other crops, systems, services
- Staying Objective/Transparent through Life Cycle-Based Methods
- Large number of critics
- Important to add Validity/Legitimacy
- Rapidly expanding subject of inquiry, new methods, data and indicators being developed

What do we know about their sustainability?

Few articles available

- Tend to focus on potential
- Few case studies
- Divergent system scopes worldwide/context dependent
- Few companies with transparent data/information
 - Not wanting to be the 'first'
- Many carbon assessments, but few tackle other indicators
 - (e.g. Socio-Economic benefits, Economic performance)

Challenges from an LCA perspective

- Emerging/Evolving systems which constantly improve and progress
 - Attributional (Snap-shot) or Prospective (Future)?
 - Changes in Systems/Data Availability (Optimization/AI)
- Energy Demand
 - LEDs and Ventilation
 - Timing (Photoperiod, Emissions Profile for Mix)
 - Attributional or Consequential Modeling
- Functional Unit of the Systems
 - Plants (potted (pots), harvested (kg)), Annual Production?
 - Nutrition, Quality ?

Challenges from an LCA perspective (Continued)

- Market and Distribution
 - Logistics/Fuel
- Packaging
 - Material Choice (Properties, Shelf-Life, Quality)
 - End-of-Life Treatment (Packaging, Growing media)
- Avoiding Comparative Assertions
 - Comparing to conventional farms
 - Requires Standards/methods to make claims/assertions
- LCI data for these systems
 - Limited availability of food/agriculture related inputs
- Expanding the discourse/rhetoric used
- Include other indicators to show the value for local food systems and markets and economic viability

Environmental Performance Improvements

- Optimization of Energy Use
- 'Greener' Electricity
- Choice of Pots (Material)
- Growing Media/Fertilizers
- Transportation/Logistics

 Connecting to urban/peri-urban infrastructure/systems

Urban Symbiosis: Urban Vertical Farming

- Employing urban residual streams in urban farming systems
- Unused/residual space
- Urban compost, recycled paper and brewing spent grains as growing medium
- Urban food waste-biogas-biofertilizers
- Mushroom Production, etc.
- Reduced waste handling
- Integration with building/energy systems
- Resilient food systems
- Intra-regional/urban symbiosis
 - Employ Building Level and Urban Symbiosis

Most companies worked with have replaced conventional growing media, taken more considerations for circular nutrient solutions, and making progress toward reducing energy demand

Environmental sustainability: Only one piece of the puzzle

Conclusions

• Sustainability is a process

- Developing systems and potential
- Context dependent
- Transparent/sound assessments
- Link to urban/peri-urban systems
 - Residual-urban materials
 - Urban infrastructure and energy systems

• Have fun and be creative!

Some interesting reading/viewing material:

- Chance, E., Ashton, W., Pereira, J., Mulrow, J., Norberto, J., Derrible, S. and Guilbert, S. (2018), The Plant—An experiment in urban food sustainability. Environ. Prog. Sustainable Energy, 37: 82-90. <u>https://doi.org/10.1002/ep.12712</u>
- Martin, M. and Harris, S. (2018). Prospecting the sustainability implications of an emerging industrial symbiosis network. Resources, Conservation & Recycling 138, pages 246–256. <u>https://doi.org/10.1016/j.resconrec.2018.07.026</u>

 Martin, M. Are vertical farms sustainable? ISHS Vertical Farm Talks: <u>https://vimeo.com/555790269</u>

Thank You

michael.martin@ivl.se