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Gravity is perturbatively non-renormalizable at two-loops.



Weinberg’s conjecture: There exists a nonperturbative dynamical mechanism which renders physical
scattering amplitudes finite and computable at energy scales exceeding the Planck scale: a nontrivial UV

fixed pOiﬂt. [Weinberg (1979)]

Usually technically investigated via the Functional Renormalization Group

Dynamical Triangulations

Perturbation theory
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|
lition

ctive action

the quantum fluctuations in the path integral

can be integrated out progressively

[Wilson (1971), Kadanoff (1966)]

Callan-Symanzik equation

only the finitely many beta functions that are

related to the relevant couplings are considered

[Callan (1970), Symanzik (1970)]

Functional RGE

scale-dependent version of the eftective action,

the Effective Average Action

[Wetterich (1991)
Reuter and Wetterich (1994)]



Alternative
manipulation of the
path integral ful

°|m

Generating functional

Weld] =tog [ Déexp (5161 - 85,00+ [ aerw)ita)

Smooth cutoff
A 1

ASd) = 5 [ A% (o) Ru(-D)(a)

RG kernel: , ».
mass-like IR Ri(p®) =~

regulator

Legendre transform

~

olement the underlying RG idea already at the level of the EAA,

y independently of the bare action.

for p? < k?
for p? > k?

Effective Average Action

~

Lkl = /dd% Jilol(x)o(x) + Wil Jkl¢l] — Tkld] = I'i|@] — ASk[¢] = /ddx J(x)p(x) + Wi|o] — ASk[9]

Perturbation theory
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1 (2) 1 _ >

IR uv kOpL' |@] = 5 1r _(Fk + Ri) ~ kOx Ry 3

i o

2 _ 2 2 _ ©
pr=0 K Pr=" e UV- and IR finite e
,liﬂ% g =1 kli_{fgo Iy =5 *Fully nonperturbative or exact o

Asymptotic Safety via FRG: A given trajectory has an acceptable UV limit, if and only if its
endpoint in the UV is given by the nontrivial fixed point of the RG flow.
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We will use Ti[¢] as a constructive object to define our QFT.

Ansatz: Ti[¢] = i U (k)P;[¢]



Fixed point 5" (ux) =0

: the scaling exponent (interacting, UV FP): at
agrees with the canonical mass least one of the scaling exponents differs
dimension (generally ul = 0) from the canonical mass dimension (!} # 0)

-
&
Linearization & i i (o i i _ i g
stability matrix kOu' (k) = ZB j(u' (k) —uy), B j(ux) = 055" (u) [
J 5
I 01 rft)
. . | (ko
Scaling exponents u' (k) = ul + XI: C;V} (?>
Anomalous dimension ZA. Bim (u) AL = —0,8, = —(d; + 1;)8; They encode physical information
; HUEImMA T m P P T)% ahout the universality class of the
m

system and its scaling (observable)

The 0; s are universal. behavior.

[Wilson (1971), Wegner (1974)]
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[Reuter 1996, Reuter-Saueressig and Percacci’s book]

'rlh; gl = 167 G (k) /d4a: vV —g (R(g) — 2A(k)) gauge fixing + ghosts

g -
— T \ .4%
qoas L e \ B , - 5
— g(k) = G(k)k kOkgr = Bg(g, \) 3
e = == g =
/ e —~— I/ A(k) | 8
%' )/ Ak) = —5 l kO = Bx(g, \)
/Z Type Ila < 2
0.25 | (Q
. Type Illa 0y = A = 0
Tz =0 / ¢ g B A [ 59 (9*7 )\*) =0 Gaussian fixed point
l Br(gs, As) =0 ge >0, Ae>0

Non-Gaussian fixed point
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Tr[Ry.(3) + T2 (h, )]~

In order to evaluate the traces in a
way,
we can use

Background field method

Juv — §,ul/ =+ h,uz/
_|_

Heat kernel




Based on Schwinger proper time representation

P =B

— 2 ~ itCl—te
e 1 . L
0

Traces rewritten by the spectral theorem (involving both minimal and non-minimal operators)

>
o o 3
Ok (1) = / dt On(t) H,, H, = ¢'D i
oo IS
I
Heat kernel on general Hy(x,y) = [An|t]] =42 380 OR=d] ¢20 0@0) (g, ) i
manifold:
e €i7r/4sgn(t)(2—d) . ZR
lon: — — Rt + - ..
Expansion: r|H (D)) (2277 ( + R+ >

[DeWitt (1965), Benedetti Groh, Machado, Saueressig 1012.3081 (2010), Groh, Saueressig, Zanusso 1112.4856 (2011), Christensen (1976), Fulling’s
book (1989), Moretti (1999), Decanini, Folacci (2006), Parker, Toms' book (2009)]

[RF, Thiemann (2024)]
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Choose a (different)
truncation

Compute the fixed point’s
UV critical hypersurtace

Project the RG equation
on the truncated space

Determine the critical

Compute the
resulting flow

exponents and subspace -

of relevant directions

No

|

Truncation reliable
(test by analysis of scheme (in-)
dependence of universal
quantities, etc.)?

Search for fixed points

Yes [ St()p}

Perturbation theory
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How to extract physical information from the RG?

in gravity things get

more complicated

What about the gauge & Are our operators related
parametrization to diffeomorphism
dependence? invariant observables?
Exploit perturbation theory Relational formalism <
i o
to go on she\\aﬂ,\ of Va“?' "
P xal* s ¥

WS



Gauge & parametrization dependence:
On-shell perturbation theory



Disclaimer

| will talk about Einstein gravity.
However, this approach can also be applied to different theories.



Motivation [Falls, RF (2022) 2411.00938 [hep-th]]

Perturbative renormalization Non-perturbative renormalization

Dimensional regularization, proper time, ... Asymptotic Safety - Functional Renormalization Group

Gravity is perturbative non-renormalizable UV-completion via an interacting fixed point

Effective action contains
unphysical information:
Field parametrization - gauge dependence

E.g. dimensional regularizationind =2 + ¢
The tixed point of order lies beyond
perturbation theory.

Perturbation theory

1. Effective action is off-shell

On-shell effective action:
no unphysical dependencies

2. Regulator breaks symmetry
(diffeomorpshism invariance)

On-shell effective action results tested in Extract physical information from the flow of
precision measurements in QCD. the effective action is a arduous task.
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Motivation

Perturbative renormalization Non-perturbative renormalization

Non-perturbative

Perturbative non-

renormalizable Q ‘l ‘l 0 renormalizable

Affected by non-
physical information

Contains only
physical information

New subtraction scheme + essential renormalization group




Idea

Use perturbative methods to investigate asymptotic safety

E.g. dimensional regularization with non-minimal subtraction scheme

E.g. proper time regularization

Do a fully functional approximation to keep invariants to all orders:
non-minimal subtraction scheme.

RG improvement of one-loop eftective action “looks like” non-perurbative RG

Essential RG: RG scheme to keep unphysical dependencies under control




1. One-loop effective action

) . . 1 . Faddeev-Popov
For Einstein gravity: r==5 5Tlr log [K‘l(S(Q) Sé?))} — Tr|QFp] ghost's term

) T \_ gauge fixing: e.qg.

Hessian background covariant
harmonic gauge

o [t (£ e

DeWitt metric

>
y \_Euler topological term 9
Vacuum energy ind =4 L*;
O
In this first analysis: investigation of the parametrization dependence [Gies, Knorr, Lippoldt 1507.08859] 3
— 1 P — po — 2 2 S_)
Juv — Guv + h,uy + 5 (Tlh,uphy =+ Tth,uV + 7-3g,uuhp0h + 7-4g,ul/h ) + O(h )
Background field method: SR (1, y) = i
| Ohyuw (2)0hpx(y)

Use the EoM for §: dependence on the parametrization should disappear.
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2. Dimensional regularization

[Weinberg, Niedermaier, Benedetti, Falls, Jack & Jones, Christensten & Duff, Kawai, Kluth 2409.09252, ...]

preserves gauge
simmetry

New subtraction scheme: keep (power law) divergences that appear alsoind. =0, 2, 4

Idea: in gravity we should keep track of two dimensionalities. I, Ligrelei)
Zanusso, Vacca, Del

One gets regularized, one is dynamical d = g}, (components of the field) porro, Sauro]

Perturbation theory

Expand the trace up to second order in curvature, exploiting the EOM

d) az(d) 4 as(d) 4-
/ x\@( T TR o GpR

" (d
Z{ iud_4€> + finite terms

1. We do not need to introduce counter-terms outside the Einstein-Hilbert action.

2. The vacuum energy is only renormalised due to the singular term in d = 0 dimensions.
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2. Dimensional regularization
Non-minimal subtraction scheme

de—d _q

. . . . dSS
Compute traces using proper time techniques and evaluate UV singular part /O

Keep d = gj distinct from d,, in order not to identity the components of the metric with the

regularization parameter. >
)]
1 S
(4m)i2 " (dm)ier? 8
9
_ 1
The heat kernel ao(d) =5(d —3)d
coefficients then become ) 1 1
az(d) = 12 (d® — 3d — 36)
i (d) 1 d*+19d* — 566d + 1200
a —
’ (47)2 120(d — 2)

y 1 1

d) = d?> — 33d + 540
a4 (d) (47)2 360 +540) ,

Relational observables




2. Dimensional regularization
Essential renormalization group 50 0

Renormalization scheme which restricts the analysis to the running of the essential couplings >

Couplings which contribute to the scaling of physical observables such as scattering cross sections
(scaling exponents)

Inessential couplings associated with redundant operators
— fixed by renormalization conditions achieved by a field reparameterisation along the RG flow.

G —0

Perturbation theory

Minimal essential scheme: fix inessential couplings to values at Gaussian fixed point (perturbative)

For the free theory q — /ddx NG (p_k )
ST
(tlat space, GFP)

Soo = — [ a'z Ygao@)™
ct — x\/ga'()(d)d

ap 1 Renormalization

- — —An ] — — — d — 3 . .
Bp dp + 8mao ( ) condition
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2. Dimensional regularization
Essential renormalization group

Essential coupling (dimensionless - invariant under rescaling of metric)

P T
=G —
" (47‘(’(d — 3)) . 7
using ren. condition

-
1 (d — 3)(d(d(d + 19) — 566) + 1200)n? 3
= (d — 2 —((d —3)d — 36)n° 4 o
By = (d = 2)n+ Z((d—3) )7 30(d —2) :
O
. | " 0By I
Fixed point and critical exponent (d = 4): 7= = 0.16, 0 = o = 2.296 3
T=T]x S_J

! 0.002
0.25 ’ n
, 9
0.20- | 0
i -0.002" fg
0.15 -0 OO4H ?
0.10 ] S
| -0.006 —
0.05 | -
-0.008 2
25 o
'




This was dim. reg.

Can we implement this into a flow equation?



3. Proper time regularization

. . A T arbitrary scale,
One-loop effective action =S+ Trlog K 1S /M2 +0(R?) . take M — oo
l evaluate the trace via proper-time parametrization
IR and UV regulated B s 162 2 2 >
an regulate Cpar =S — 5 \ds—Tr (exp(—sK S') —exp(—sM )) + O(h*) . 0
effective action M Sﬁc =
_cut -
o l take k-derivative S
g
Flow equation KOkl = h Tr exp(—K 18P k=2) + O(h?) 5
replace classical action and the metric by the effective
l action and an RG-improved DeWitt metric
One-loop RG-improvement: ko, I', = Tr exp(—K,gll“,f) [Pk ™*)
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3. Proper time regularization
Essential renormalization group

Add an extra term: allow the field variable coupling to the source to tlow with k

When deriving the effective action, do the Legendre transform:

~Tuld] _ / dye—SKIH(dulsl—9)- 252 ]
: S
Introduce the RG kernel: Up[d] := (kOpdr[X]) E
0
Generalized perturbative essential flow equation -

0 —1p(2) —2

kOkL'k|¢] = —Wi[o] - @Fk[(/ﬁ] Tr exp(—K, T [¢] £77)

—C
absorb off-shell term j proportional to the EoM

into the kernel

Only the essential couplings run.
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3. Proper time regularization
MES @ order curvature squared

Consider again Einstein-Hilbert trunctation — remove curvature squared terms by field redefinitions

(kak T /dd:v\/g\lfw/5 : > I'="r e_K_l(P(2)+Sé;?))k_2 — 2'Ir B_QFP[¢]R_2
Juv

RG kernel: linear combination  VY9%,l9] = v9uv + YRRGuv + YRicei Ry
of operators up to desired
truncation order

Perturbation theory

oI’ L \/§ P Uv \/§ 12% 1 Hv
EOM S 2 877 167G R =5 kg

MES: flat space and Y., =0 — RG condition same as before (up to a constant)

Absorb curvature squaredterms by | ¢ e for kdiCa
SOlVIﬂg 'I:Or YR> YRicci

ﬁ — 1 — — —
i 2(d 3) Solve for gy

wn
©
0
O
c
Q
wn
0
O
IS
Our non-minimal variant of dimensional regularization coincides with proper 0
(O
o
o

time regularization, at least within the early time heat kernel expansion.




3. Proper time regularization
MES @ order curvature squared

Let us use it as a tool to
analyze parametrization f

\/

1

Perturbation theory

Expand the essential beta function:

-1 1—d/2552 (d — 3)(1200 + d(—566 + d(d + 19)))(4m)*~¢

Ba = (d—=2)G + 5(=36 + (d — 3)d)(47) 30(d=2) G + O(G*)
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No dependence on the 7's up to this order.




4. All curvature order on a max. symmetric background

Going to higher orders in curvature, one can lift the dependence on the parameterisation at
higher order in G.

Expansion up to O(R?) —  No dependence on the parametrization up to O(G?)
Expansion up to O(R?) —  No dependence on the parametrization up to O(G%)

Expansion up to O(RY)  — No dependence on the parametrization up to O(GM*1)

b
—
o)
0
e
-+
C
O
=
g
0
-
D)
4+
—
Q
al

WHY?

n EOM terms linear in R and G p, on RHS 1 iﬁ
Resolving terms/ddw\@}ggé\f—l requires going R up to OGN g
On the LHS we have /ddw\/ﬁﬁé/é2 J g




4. All curvature order on a max. symmetric background

Technical details:

e Heat kernel expansion on a d-sphere [Kluth, Litim 1910.00543]

e Spectral sum on a d-sphere or d-hyperboloid e Evaluation of non-commuting traces
RG kernel: V¥, =v(R)gu =
s
I
Fixed point and the critical O(RM) 0 S
exponent converges rapidly R 5
R? 2.296 )
R3 2.312 5
R* 2.312 2
R® 2.311 O
R 2.311 %




Diffeomorphism invariance:
relational observables



Problem of defining observables in gravity

Construct a physical coordinate frame
e.g. by adding matter fields

S.1.

f diff hi
pertorm a diffeomorphism

transform the tensor |« transformation transform the physical frame
R(z) — ¢ * R(x) X = o H(X)

composed transformation leaves

™~ the tensor invariant —
R(X)— ¢* R(¢~ (X)) = R(X)

Perturbation theory

XA (z) = &"
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Lessons from the canonical theory

The notion of absolute time and GR is a totally constrained theory with
space has to be corrected. vanishing canonical Hamiltonian.

't is the time parameter defined by the Hamiltonian which

-

corresponds to the notion of time of a physical observer. O

e

. . . L 0

a By using techniques of group theory: find 9 Definition of observables that encode 3
out orthonormal basis of Hilbert space and relations between dynamical fields. o

define fundamental quantum observables
of area and volume operators.

Analysis of the spectra shows that For deparameterizable models construct a
spacetime at microscopic scale is discrete. full set of gauge invariant observables.
[Dittrich, Rovelli, Thiemann,...]
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0 Physical gauge fixing

via material reference frame

~ reduced phase space quantisation
phase space path integral or coherent state path integral

[RF, Thiemann (2024) 2404.18224 [hep-th],
RF, Han, Liu (2025) 2502.07696 [gr-gc]]

=

9 Relational observables as composite operators O

Three options: after standard gauge-tixing include matter (physical reference frame) S
in the EAA £

o

[Falls, RF (2021) 2112.02118 [hep-th]]

e Relational effective action

build in the EA the quantum reference frame and gauge fix on the
frame
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[WIP with Philipp Hohn & Luca Marchetti]




What about Lorentzian?

Integrating out dofs Timelike-spacelike: no distinguished ordering ot the modes with a

standard canonical status is given.

State dependence - Observer dependence

Problem set 1 Obtain RG trajectories on a theory space which is constituted of

functionals that are constructed on Lorentzian metrics.

One can work out a Lorentzian heat kernel proper time regularization.
Price to pay: complex-valued flow.

One can work out a Lorentzian flow in AQFT (Hadamard propagator).

Problem set 2 Analyze the flows of hyperbolic kinetic operators, typically of the

d'Alembertian in the background of the running metrics.



1. Physical gauge fixing

Introduce a matter system to fix the gauge:

deparametrize at the classical level.

E.g. four scalar fields or Gaussian dust

[RF, Thiemann (2024) 2404.18224 [hep-th],
RF, Han, Liu (2025) 2502.07696 [gr-gc]]

Write down the “physical” Hamiltonian and quantize it.

On those states construct the path integral.

Perturbation theory
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2. Relational observables as composite operators

Construct observables usually requires information about operators

which usually are not taken into account in a truncated EAA.

In order to obtain information COm pOSite Compute its correlation functions

regarding an arbitrary operator one can t by taking functional derivatives with ’g>>;

couple it to an external source. O pe ators respect to the source. IS

3

5

Flow of the 1 [/ 1 -1 ' .
Composite /dd$5 kO, O = _iTr (F](c ) + Rk;) (/ d%x 6@,22)> (F,(f) + Rk;) kOL Ry

operator _ _ ’

[Pagani, Reuter (2016)] . — ) >

A @)

ODr—og = <O> Té’

2




2. Relational observables as composite operators

[Falls, RF (2021) 2112.02118 [hep-th]]

Relational rel. __ 4~ rel.
V= 1/d L
Effective Average g / re(@)ly (@)
Action:
Flow of the rel. 1 _ (2) —1 rel.(2) (2) —1 |
relational kak’rk — —§Tr (Fk T Rk) (Fk ) (Fk T Rk) kOL Rk

observables:

Perturbation theory

A natural Derivative expansion: This means that the frame fields only
expansion for

observables? involve a finite number of derivatives.

relational relational relational
volume Ricci scalar inverse metric
. rel. 4 ~ D/ A ANLD [ A
Example: prel. _ / 1% (ao(k) + ar(WR(@) + a1 ()5307 (3))

_ / d*zé (ao(k) + an(k)R + a1 (k)3;9™ (9, X7)(9,X7))
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2. Relational observables as composite operators

1 1
i i i [y = [ d'zy/—g R —2A(k)) + 50aBg"" 0,0" 0, 0"
Find the fixed points k / T\/—g (167TGN(:Z€)( (k)) + 50AB9" O™ Ovyp > +-
EAA
Identify the relational . A
b i
observables =X

PHYSICAL REFERENCE SYSTEM

Compute the flow . . ) o Qo
of the observables I = /d XT € (Oéo(k) T OéR(k)R+ al(k)ég,;g“ ((%X“)((%X ))

RELATIONAL EAA

Matter content 0o Or 01
: : . SM (type II) -4 1-5.97643 |-7.92358
Scaling dimension SM (type I 4|-5.97467| -7.8177
at the fixed point (type 1) Bl M i
SM + SF (type II) -4 1-5.97505(-7.80603
RESULT SM + 3 v (type II) -4 1-5.98015|-7.78084
-4 -6 -8

Perturbation theory
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3. QRF and relational effective action

Perform the gauge fixing on the QRF but on the quantum level.

E.g. 4 scalar fields + harmonicity condition:
perturbative equivalent as Feynman harmonic gauge fixing

Perturbation theory

Stay tuned.
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Conclusions & Outlook

In view of recent successes of application of RG rechniques to gravity: how to extract physical info?

What about the gauge &
parametrization
dependence?

Exploit perturbation theory
to go on-shell

Are our operators related
to diffeomorphism
invariant observables?

Relational formalism

ToDo Analyze also gauge-dependence
Test scheme in other theories - add matter

Go two loop in proper time?

ToDo Derive an explicit relational effective action
What about universality?

What about state dependence?




