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Quantum
system of 

interest

Liouville-von Neumann equation

Isolated Quantum Systems
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Open Quantum Systems

Quantum
system of 

interest

Environment

New processes encoded in red terms:
Energy shifts / Renormalisation
Dissipation
Decoherence 

Master equation
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Vanishing of off-diagonal elements of
→ no interference
→ “classicalisation”



Open Quantum Systems

Quantum
system of 

interest

Environment

New processes encoded in red terms:
Energy shifts / Renormalisation
Dissipation
Decoherence 

Master equation

Without gravity: Frequently used (e.g. Quantum Optics, QED, Solid State Physics, ...)

With (quantised) gravity as environment: Rather new 
Need some Quantum Gravity Theory as basis 
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Overview of the talk

Part I: Field-
theoretical

master equation

Part II: One-
particle projection

of the master
equation

“A gravitationally induced decoherence model using
Ashtekar variables” (2022); 
MJF, K. Giesel, M. Kobler (CQG)

“Gravitationally induced decoherence of a scalar field:
investigating the one-particle sector and its interplay with
renormalisation” (2024); 
MJF, K. Giesel (arXiv)
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Part III:
Application to

neutrino
oscillations

“Understanding gravitationally induced decoherence parameters in
neutrino oscillations using a microscopic quantum mechanical
model” (2024); 
A. Domi, T. Eberl, MJF, K. Giesel, L. Hennig, U. Katz, R. Kemper, M.
Kobler (JCAP)
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Part I 

Field-theoretical master equation

“A gravitationally induced decoherence model using Ashtekar variables” (2022); 
MJF, K. Giesel, M. Kobler (CQG)



Master equations with gravity
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Classical system

[Anastopoulos, Hu 2013], [Blencowe 2013], [Oniga, Wang 2016], [Lagouvardos, Anastopoulos 2021],
[Fahn, Giesel, Kobler 2022]

Coupling of gravity and matter by GR
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Master equations with gravity

3

Classical system

Quantum system

[Anastopoulos, Hu 2013], [Blencowe 2013], [Oniga, Wang 2016], [Lagouvardos, Anastopoulos 2021],
[Fahn, Giesel, Kobler 2022]

Coupling of gravity and matter by GRLinearisation
 

Fock quantisation
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Master equations with gravity

3

Classical system

Quantum system

[Anastopoulos, Hu 2013], [Blencowe 2013], [Oniga, Wang 2016], [Lagouvardos, Anastopoulos 2021],
[Fahn, Giesel, Kobler 2022]

Coupling of gravity and matter by GRLinearisation
 

Fock quantisation

Trace out environment
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Procedure Part I

Linearised Gravity:
Metric as variable

Classical system

Specific gauge fixing

Quantum system Fock Quantisation

Bosonic matter field

Field-theoretical master equation

[Anastopoulos, Hu 2013],
[Blencowe 2013], 

[Oniga, Wang 2016],
[Lagouvardos,

Anastopoulos 2021]

Linearised Gravity:
Ashtekar variables

(scalar field)
[Fahn, Giesel, Kobler 2022]

Formulation in terms of
relational observables
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Boundary term
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Relational formalism and observables

Method to deal with gauge freedom in physical systems and to formulate dynamics

Basic idea: Describe evolution in terms of other objects; here: geometric clocks

[Rovelli 1991], [Rovelli 1991], [Vytheeswaran 1994], [Rovelli 2002], [Dittrich 2006], [Dittrich, 2007]
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Construct (weakly) gauge invariant observables up to second order in    using the observable
map

with first class constraints                                    , clocks                        

Construct geometrical clocks that fulfill 
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Relational formalism and observables

Method to deal with gauge freedom in physical systems and to formulate dynamics

Basic idea: Describe evolution in terms of other objects; here: geometric clocks

[Rovelli 1991], [Rovelli 1991], [Vytheeswaran 1994], [Rovelli 2002], [Dittrich 2006], [Dittrich, 2007]

Construct (weakly) gauge invariant observables up to second order in    using the observable
map

with first class constraints                                    , clocks                        

Construct geometrical clocks that fulfill 

Use dual map to make reference fields commute mutually, 

Canonical Transformation:

Separation of the phase space into physical and unphysical degrees of freedom
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Field theoretical master equation

Fock quantisation of the physical phase space
(Minkowski background):
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Field theoretical master equation

Fock quantisation of the physical phase space
(Minkowski background):

Projection operator technique
[Nakajima 1958], [Zwanzig 1960], [Prigogine 1962],
[Shibata, Takahashi, Hashitsume 1977], [Chaturvedi,
Shibata 1979]
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Field theoretical master equation

Fock quantisation of the physical phase space
(Minkowski background):

Projection operator technique
[Nakajima 1958], [Zwanzig 1960], [Prigogine 1962],
[Shibata, Takahashi, Hashitsume 1977], [Chaturvedi,
Shibata 1979]

Gravitons thermally
distributed

Challenges:
Structure still very complicated → further approximations required for solution
Connect to experiments → dynamics of a single scalar particle
Extract physics → renormalisation

2nd order in    
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Part II

One-particle projection of the master
equation

“Gravitationally induced decoherence of a scalar field: investigating the one-
particle sector and its interplay with renormalisation” (2024); 

MJF, K. Giesel (arXiv)



Plan for Part II

QFT Renormalisation

One-particle projection

Approximations on the
master equation

Ultra-/non-relativistic
limit

Renormalised (predictive!) one-
particle master equation

7Max Joseph Fahn, Theory Seminar Bologna



Plan for Part II

QFT Renormalisation

One-particle projection

Approximations on the
master equation

Ultra-/non-relativistic
limit

Renormalised (predictive!) one-
particle master equation

With QM/ Without Renormalisation: [Anastopoulos, Hu 2013], [Oniga, Wang 2016], 
[Lagouvardos, Anastopoulos 2021]

Interpretation of divergences? Physical effect of the approximations? 
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QFT Renormalisation

Individual terms of the one-particle master equation can be connected to Feynman
diagrams

Some terms of the master equation exhibit logarithmic UV divergences

[Burrage et al. 2019]
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Individual terms of the one-particle master equation can be connected to Feynman
diagrams
Feynman rules from the initial Hamiltonian (Relational Observables):

UV divergence comes from vacuum self-energy: 

Some terms of the master equation exhibit logarithmic UV divergences

[Burrage et al. 2019]

QFT Renormalisation
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Individual terms of the one-particle master equation can be connected to Feynman
diagrams
Feynman rules from the initial Hamiltonian (Relational Observables):

UV divergence comes from vacuum self-energy: 

Some terms of the master equation exhibit logarithmic UV divergences

Restore covariance (similar to QED in Coulomb gauge)
Renormalise self-energy loop (dimensional regularisation and small artificial graviton
mass to cure IR divergence; on-shell renormalisation scheme)
Effect: Renormalisation removes all vacuum terms from the dissipator

[Burrage et al. 2019]

[Tong QFT script], [Weinberg QFT book]

QFT Renormalisation
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(Further) Approximations

Typical aim: obtain a completely positive master equation

further approximations:

Markov approximation Rotating wave approximation
Idea: Environment forgets rapidly
the influence of the system

Idea: “Coarse graining”: Detectors cannot
measure arbitrarily fast oscillations

Justified for ultra-relativistic particles
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Typical aim: obtain a completely positive master equation

further approximations:

Markov approximation Rotating wave approximation
Idea: Environment forgets rapidly
the influence of the system

Idea: “Coarse graining”: Detectors cannot
measure arbitrarily fast oscillations

Dissipator has Lindblad form, no Lamb-shift left*:

Justified for ultra-relativistic particles

(Further) Approximations
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Specific limits

10

Non-relativistic limit:

Ultra-relativistic limit:

Agrees approx. with [Anastopoulos, Hu 2013]

Agrees approx. with [Lagouvardos, Anastopoulos 2021]

Max Joseph Fahn, Theory Seminar Bologna



Specific limits

Non-relativistic limit:

Ultra-relativistic limit:

Agrees approx. with [Anastopoulos, Hu 2013]

Agrees approx. with [Lagouvardos, Anastopoulos 2021]

      [Assumed approximately             ]

Solution in energy basis assuming discrete energy levels:

As operator equation in 1D:

Max Joseph Fahn, Theory Seminar Bologna 10



Part III

Application to neutrino oscillations

“Understanding gravitationally induced decoherence parameters in neutrino
oscillations using a microscopic quantum mechanical model” (2024); 

A. Domi, T. Eberl, MJF, K. Giesel, L. Hennig, U. Katz, R. Kemper, M. Kobler (JCAP)

https://iopscience.iop.org/journal/1475-7516
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Phenomenological quantum mechanical models

Typical procedure: 
Lindblad equation
Solution (in effective mass basis):

[Lisi, Marrone, Montanino, 2000], [Benatti, Floreanini 2000], [Gago, Santos, Teves , Zukanovich Funchal 2002], [Morgan, Winstanley,
Brunner, Thompson 2006], [Guzzo, Holanda, Oliveira 2016], [Coelho, Mann 2017], [Coloma, Lopez-Pavon, Martinez-Soler,
Nunokawa 2018], [Gomes, Gomes, Peres 2023], ...

Gravitationally induced decoherence manifests as damping of the neutrino oscillations

Phenomenological models
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Phenomenological quantum mechanical models

Typical procedure: 
Lindblad equation
Solution (in effective mass basis):

[Lisi, Marrone, Montanino, 2000], [Benatti, Floreanini 2000], [Gago, Santos, Teves , Zukanovich Funchal 2002], [Morgan, Winstanley,
Brunner, Thompson 2006], [Guzzo, Holanda, Oliveira 2016], [Coelho, Mann 2017], [Coloma, Lopez-Pavon, Martinez-Soler,
Nunokawa 2018], [Gomes, Gomes, Peres 2023], ...

Based on Part I and Part II, can we come up with a microscopic model to resolve these
unknown parameters?

Gravitationally induced decoherence manifests as damping of the neutrino oscillations

Phenomenological models
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Hamiltonian, inspired by [Xu, Blencowe 2022]:

Quantum mechanical toy model
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Hamiltonian, inspired by [Xu, Blencowe 2022]:

Quantum mechanical toy model

Major steps:
Small coupling constant, environment follows Gibbs state
Continuum limit of the environment
Markov approximation
Renormalisation

Part I

Part II
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Hamiltonian, inspired by [Xu, Blencowe 2022]:

Major steps:
Small coupling constant, environment follows Gibbs state
Continuum limit of the environment
Markov approximation
Renormalisation

Solution of the master equation (in effective mass basis): 

(same form as one-particle master equation from Part II in ultra-relativistic limit)

Part I

Part II

Quantum mechanical toy model
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Solution of the master equation: Solution for phenomenological models:

Results:
Expression for phenomenological parameters
Energy dependence fixed
Match to phenomenological models only in vacuum possible 

Comparison to the phenomenological models
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Deviations in the oscillation probabilities in matter for

Solution of the master equation: Solution for phenomenological models:

Results:
Expression for phenomenological parameters
Energy dependence fixed
Match to phenomenological models only in vacuum possible 

(Plot from Paper 3, created by Dr. Alba Domi)

Comparison to the phenomenological models
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Summary



Summary

Part I: Field-
theoretical master

equation

(Quantised linearised) Gravity as environment in Open Quantum Systems
Main model: Scalar field coupled to linearised gravity in Ashtekar variables

Relational formalism: 
Observables
Notion of dynamics
Physical time and length

Projection operator technique
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Summary

Part I: Field-
theoretical master

equation

Part II: One-
particle projection

of the master
equation

(Quantised linearised) Gravity as environment in Open Quantum Systems
Main model: Scalar field coupled to linearised gravity in Ashtekar variables

Relational formalism: 
Observables
Notion of dynamics
Physical time and length

Projection operator technique

One-particle projection
Renormalisation
Markov and Rotating wave approximations and their physical effects
Application to non- and ultra-relativistic scalar particles

Part III: Application
to neutrino
oscillations

QM toy model: 
Renormalisation and Markov approximation
Resolution of the decoherence parameters in the phenomenological models;
match only in vacuum
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Outlook I

Similar analysis for different matter systems (matter gauge degrees, different quantisation
and renormalisation, ...)

         [Fahn, Giesel, Kemper, soon]

Different gravitational constituent/background (cosmological, black hole, ...)
Different quantisation of gravity

         [Giesel, Kobler 2022]
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Outlook I

Similar analysis for different matter systems (matter gauge degrees, different quantisation
and renormalisation, ...)

         [Fahn, Giesel, Kemper, soon]

Different gravitational constituent/background (cosmological, black hole, ...)
Different quantisation of gravity

         [Giesel, Kobler 2022]

Analysis of the validity of Markov and Rotating Wave approximation

Toy model → favourable energy ranges and dependencies for phenomenological models
Modification of the phenomenological models in matter
Sensitivity analyses

Max Joseph Fahn, Theory Seminar Bologna 16



Thank you for your attention!
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