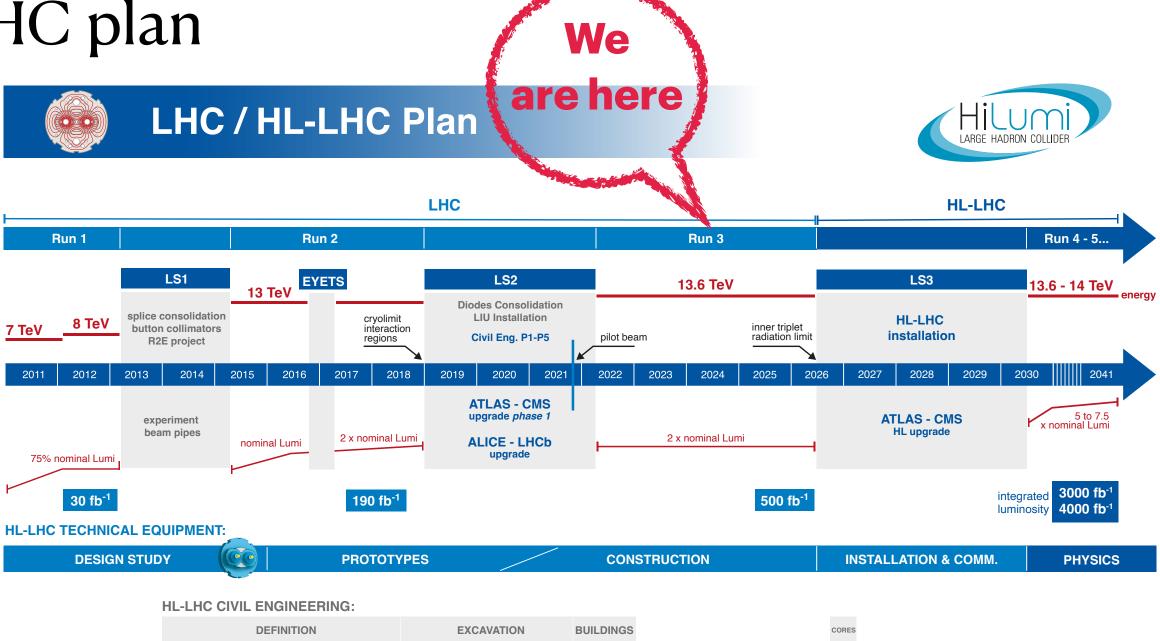
Progress on two-loop integrals for top-pair production plus a W boson

Mattia Pozzoli

In collaboration with M. Becchetti, D. Canko, V. Chestnov, T. Peraro and S. Zoia

Motivation

• High luminosity LHC plan



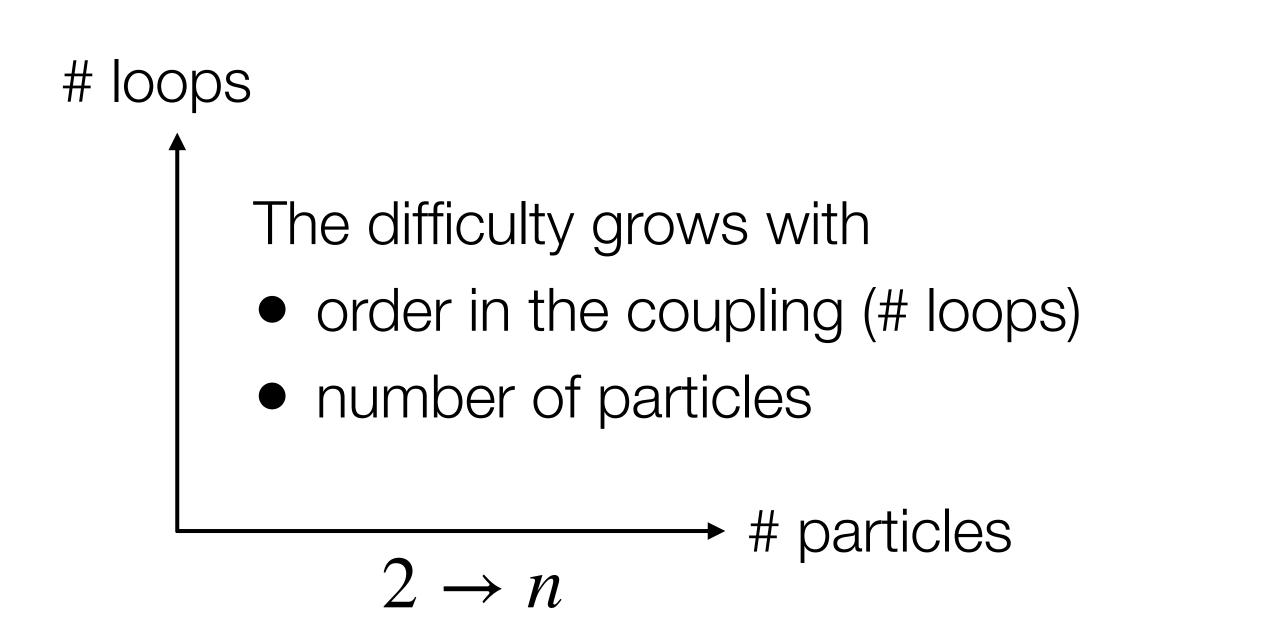
- ullet Experimental precision for HL-LHC of $\mathcal{O}(1\%)$ for many observables
- Theoretical predictions at higher orders are required to match experimental precision. Typically: at least NNLO QCD

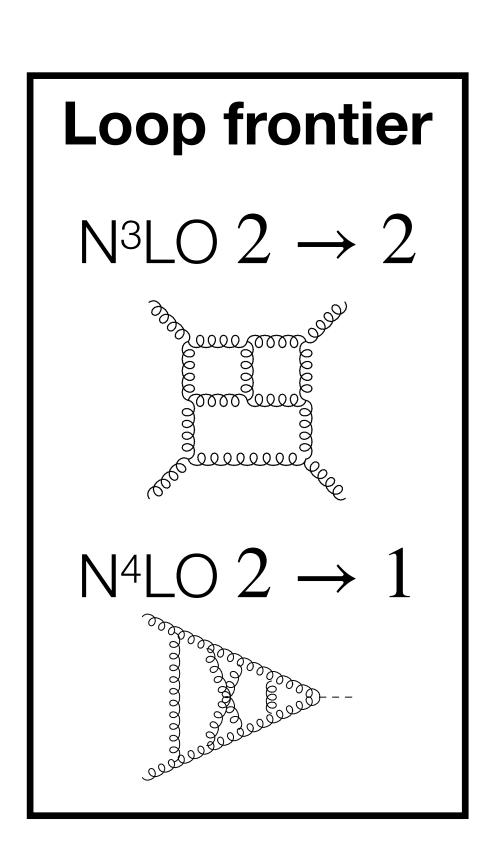
$$d\sigma = d\sigma^{LO} + \alpha_S d\sigma^{NLO} + \alpha_S^2 d\sigma^{NNLO} + \dots$$

$$\approx 10 - 30\% \approx 1 - 10\%$$

$$d\sigma = d\sigma^{LO} + \alpha_S d\sigma^{NLO} + \alpha_S^2 d\sigma^{NNLO} + \dots$$

$$\approx 10 - 30\% \approx 1 - 10\%$$





$$d\sigma = d\sigma^{LO} + \alpha_S d\sigma^{NLO} + \alpha_S^2 d\sigma^{NNLO} + \dots$$

$$\approx 10 - 30\% \approx 1 - 10\%$$

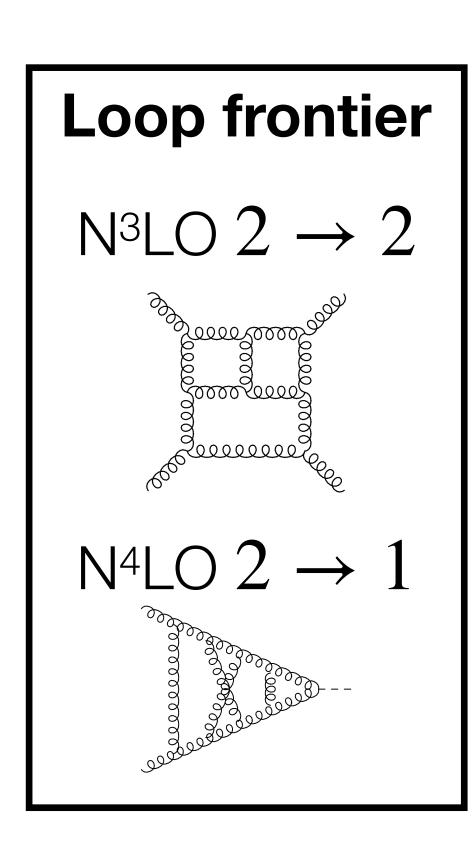
loops

The difficulty grows with

order in the coupling (# loops)

number of particles

particles



$$d\sigma = d\sigma^{LO} + \alpha_S d\sigma^{NLO} + \alpha_S^2 d\sigma^{NNLO} + \dots$$

$$\approx 10 - 30\% \approx 1 - 10\%$$

loops

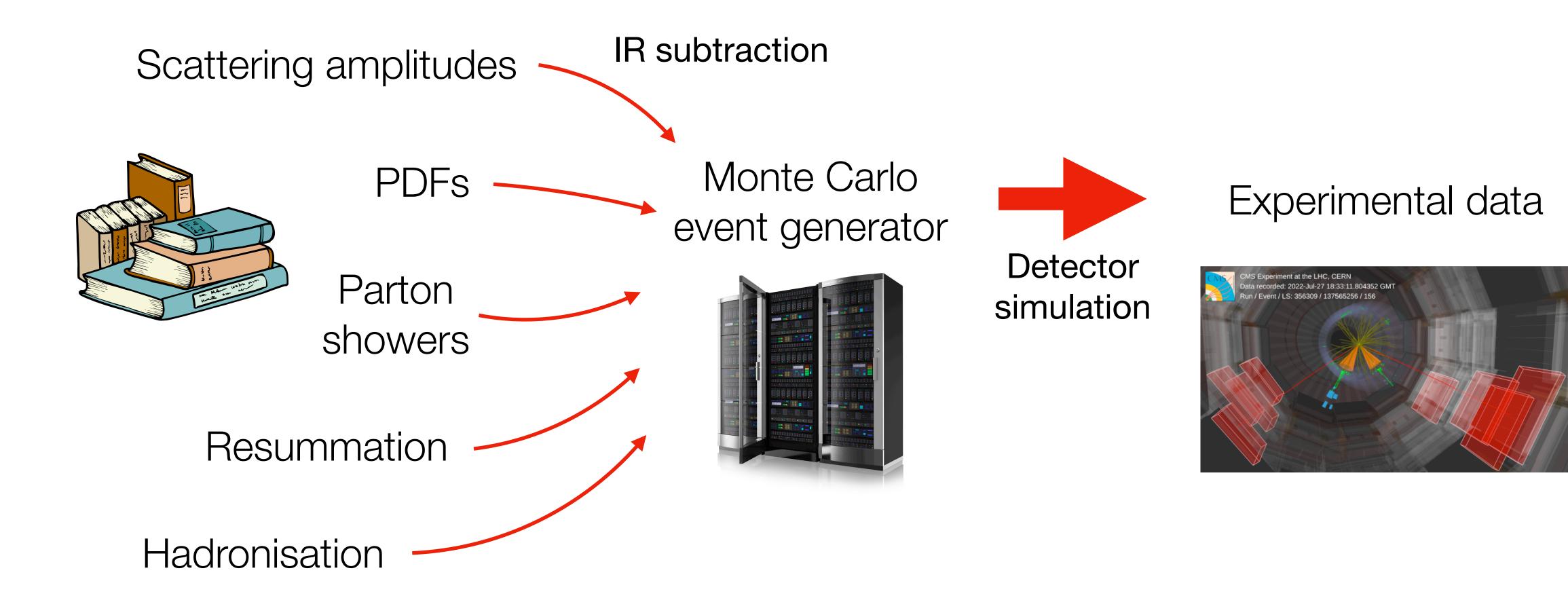
The difficulty grows with

order in the coupling (# loops)

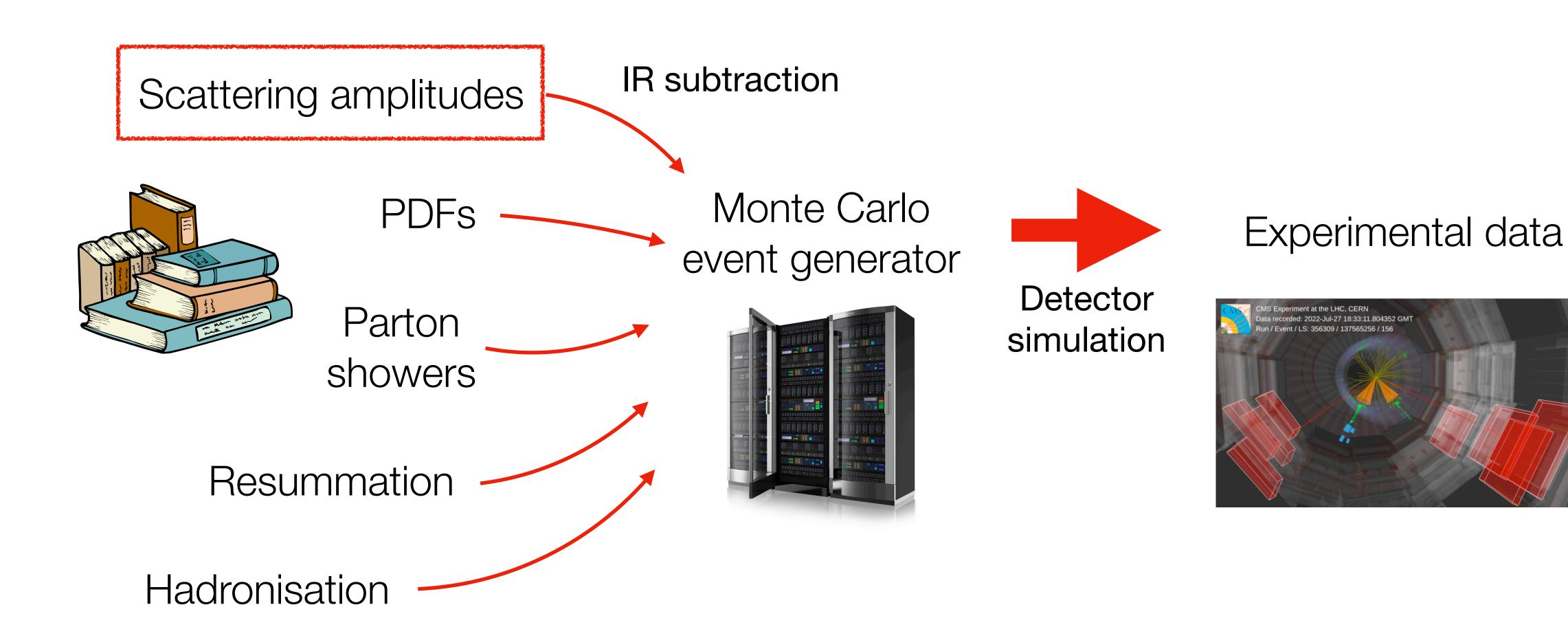
number of particles $2 \rightarrow n$

Multiplicity frontier NNLO $2 \rightarrow 3$

Ingredients for theoretical predictions



Ingredients for theoretical predictions



Main bottleneck: 2-loop 5-point scattering amplitudes

Cross sections for $h_1h_2 \longrightarrow f$:

$$d\sigma_{h_1h_2\to f} = \sum_{i,j=q,\bar{q},g} \int \int dx_1 dx_2 \, \mathcal{F}_{i/h_1}(x_1,\mu^2) \mathcal{F}_{j/h_2}(x_2,\mu^2) (d\hat{\sigma}_{ij\to f}(\vec{s},\mu^2))$$

Partonic cross section:

$$\mathrm{d}\hat{\sigma}_{ij\to f} \backsim \int \mathrm{d}\Phi(|\mathcal{A}|^2)$$

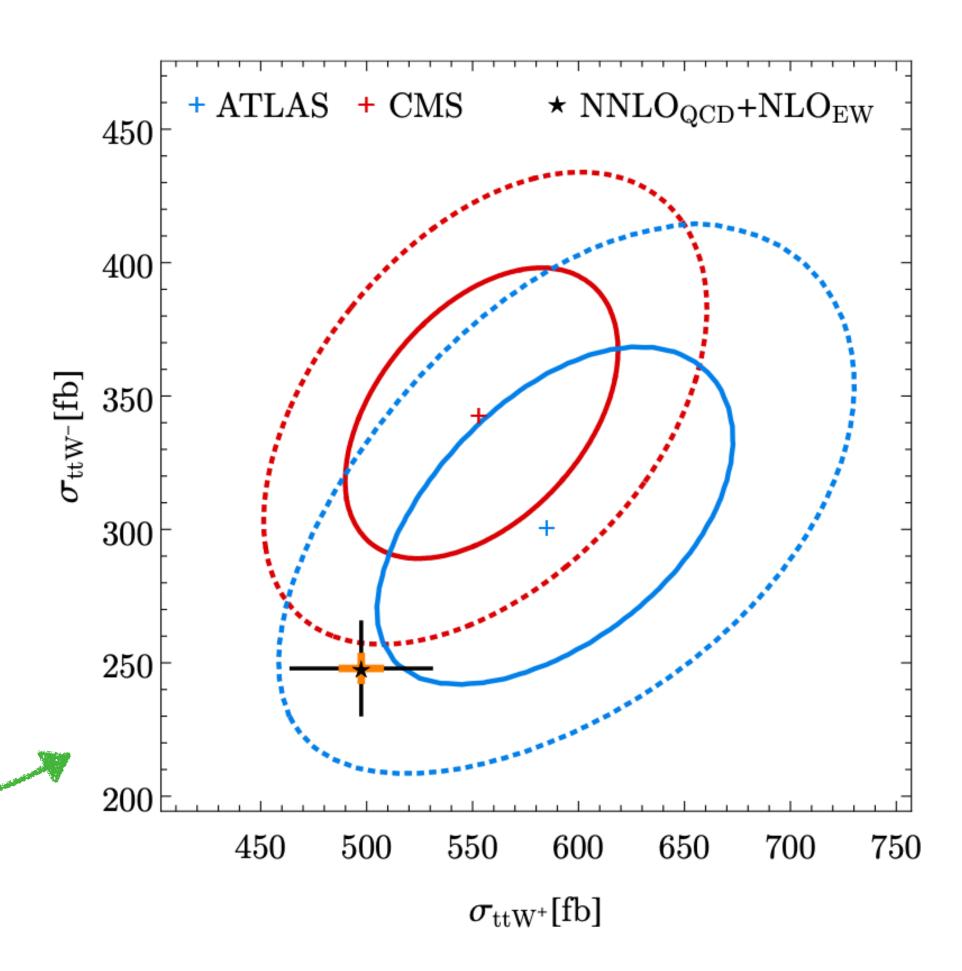
Amplitude:

$$\mathscr{A} \sim \sum_{i} F_{i}(\vec{s}; \varepsilon) (G_{i}(\vec{s}; \varepsilon))$$

Feynman Integrals

Motivation

- $t\bar{t}W$ production is relevant for BSM searches and constitutes a significant background for $t\bar{t}H$ and $t\bar{t}t\bar{t}$ production in Standard Model
- Theoretical predictions systematically underestimate measured rates [ATLAS 2024 and CMS 2023]. Currently within uncertainties, but experimental precision is set to increase
- NNLO: 2-loop amplitude approximated with soft-W and massification [Buonocore et al. 2023]
- Exact 2-loop amplitude is needed to remove uncertainty of approximation



What's the challenge?

- Complexity originates from:
 - Massive internal propagators
 - Five external legs, two different external scales
- Analytic complexity
 - Functions beyond the polylogarithmic case
- Algebraic complexity
 - State of the art calculations: usually localised in the amplitude part of the calculation
 - Here: large expressions already in the differential equations for the integrals

Status of related calculations

- \odot $t\bar{t}$: complete NNLO QCD corrections [Czakon et al. 2012, 2013 and 2016; Catani et al. 2019 and 2020]
- $t\bar{t}j$: NLO QCD corrections up to $\mathcal{O}(\varepsilon^2)$ [Badger et al. 2022], two-loop integrals in the leading colour approximation [Badger et al. 2023 and 2024; Becchetti et al. 2025] and numerical evaluation of the amplitude [Badger et al. 2024]
- $t\bar{t}H$: NLO QCD corrections up to $\mathcal{O}(\varepsilon^2)$ [Buccioni et al. 2024]. Numerical results for a set of two-loop Feynman integrals [Febres Cordero et al. 2024] and two-loop N_f part of the quark-initiated scattering amplitudes [Agarwal et al. 2024]
- \odot $t\bar{t}Z$: NLO QCD corrections [Lazopoulos et al. 2008, Kardos et al. 2012], NLO QCD and EW corrections [Frixione et al. 2015]

Kinematics

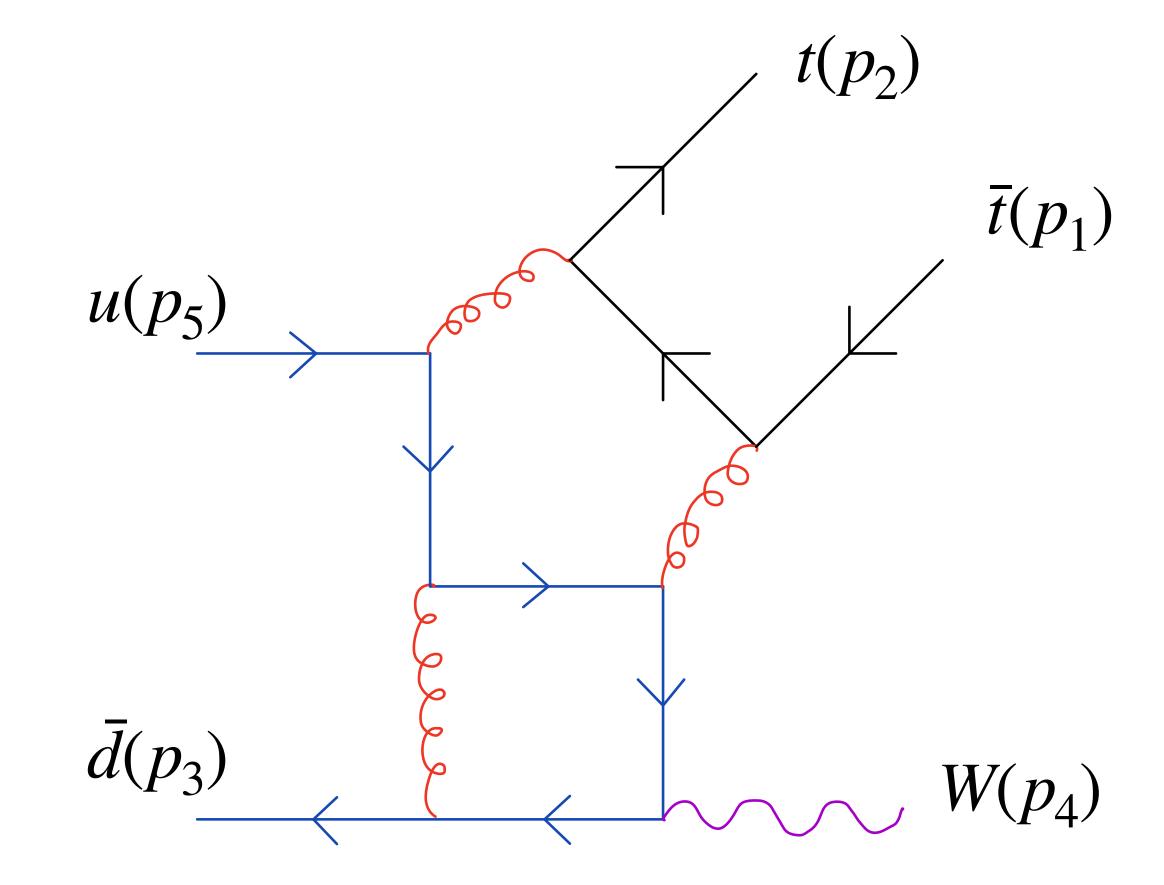
$$\bar{t}(p_1) + t(p_2) + \bar{d}(p_3) + W(p_4) + u(p_5) \longrightarrow 0$$

• Momentum conservation:

$$p_1 + p_2 + p_3 + p_4 + p_5 = 0$$

- 7 Invariants:

$$\vec{x} := \{s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_t^2, m_w^2\}$$
, with $s_{ij} = (p_i + p_j)^2$



Integral families

$$G_{a_1,...,a_{11}} = \int d^d k_1 d^d k_2 \frac{1}{D_1^{a_1} \cdots D_{11}^{a_{11}}}, \qquad (a_1, ..., a_{11}) \in \mathbb{Z}^{11}$$

Propagators of Feynman integrals

- Sectors: same non-negative exponents
- Top sector: maximum number of non-negative exponents
- Amplitude calculations: express $k_i \cdot p_j$ and $k_i \cdot k_j$ in terms of propagators
 - ⇒ Beyond one-loop we need irreducible scalar products (ISPs). Here: 3 ISPs

Integral families: example

$$G_{a_1,...,a_{11}} = \int d^d k_1 d^d k_2 \frac{1}{D_1^{a_1} \cdots D_{11}^{a_{11}}}, \qquad (a_1,...,a_{11}) \in \mathbb{Z}^{11}$$

$$D_1 = k_1^2 - m_t^2, \quad D_2 = (k_1 - p_2)^2$$

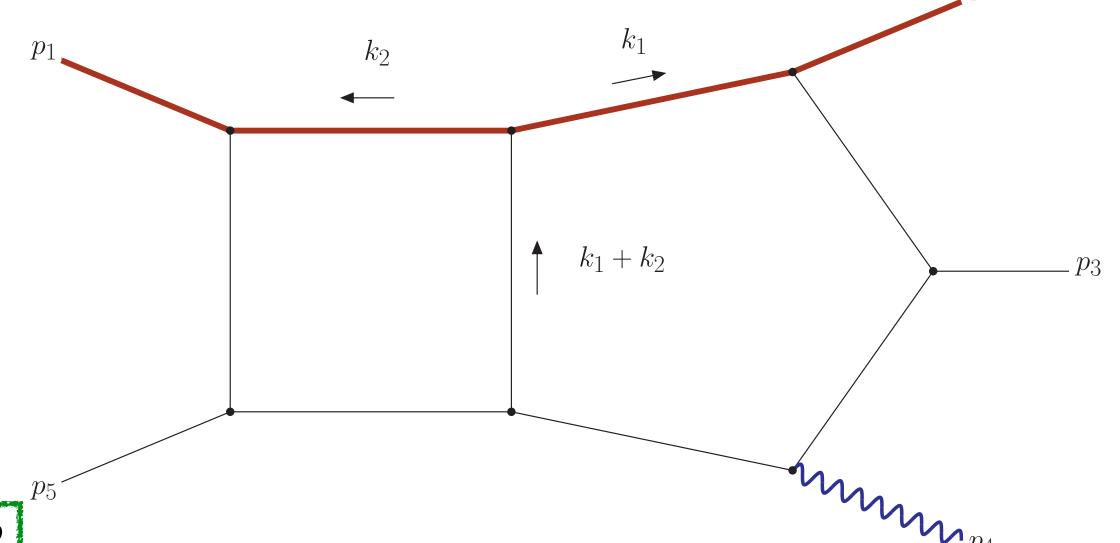
$$D_3 = (k_1 - p_{23})^2, \quad D_4 = (k_1 - p_{234})^2$$

$$D_5 = k_2^2 - m_t^2, \quad D_6 = (k_2 - p_1)^2$$

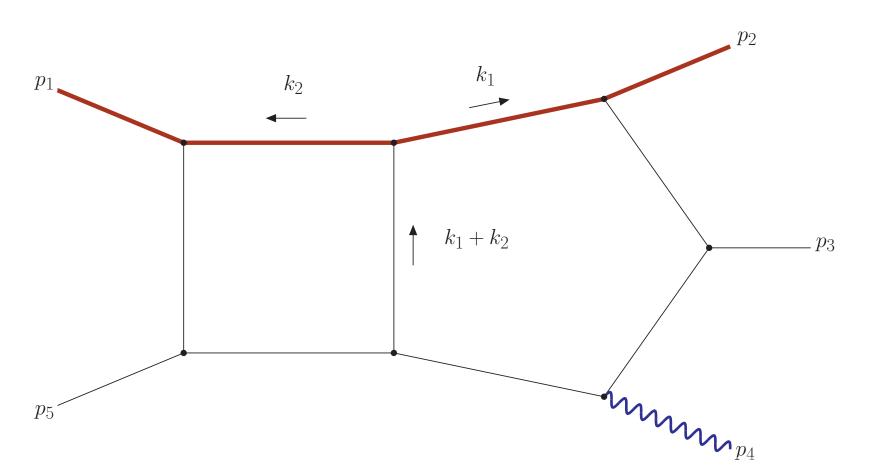
$$D_7 = (k_2 + p_{234})^2, \quad D_8 = (k_1 + k_2)^2$$

$$D_9 = (k_1 + p_1)^2 - m_t^2, \quad D_{10} = (k_2 + p_2)^2 - m_t^2$$

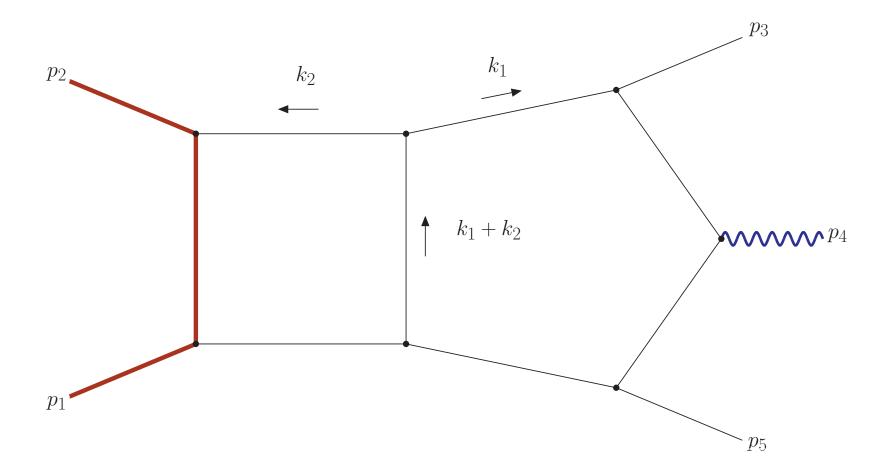
 $D_{11} = (k_2 + p_{23})^2 - m_t^2$
ISPs



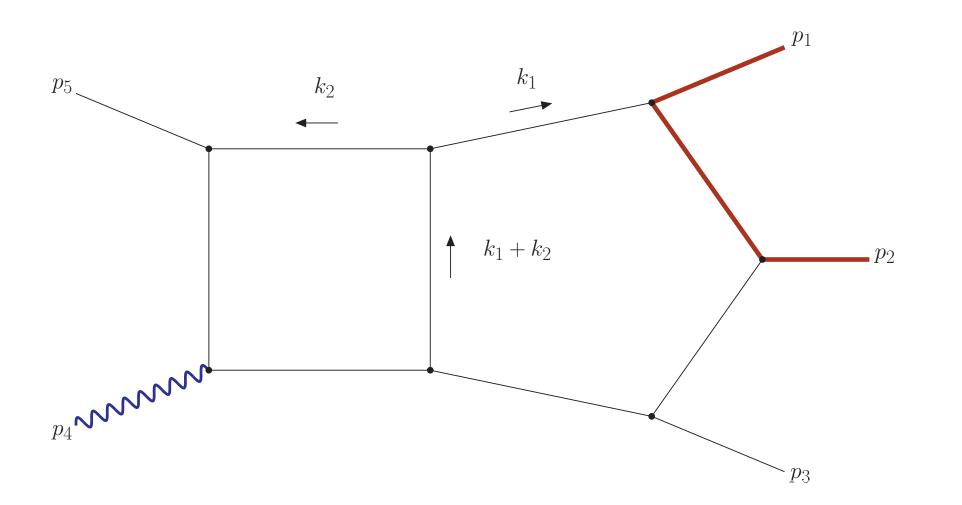
ttWintegral families



Family F_1 : 141 MIs



Family F_3 : 131 MIs



IBPs and reduction to Master Integrals

• Feynman integrals satisfy linear relations: integration by part identities (IBPs) [Chetyrkin, Tkachov '81]

$$0 = \int d^{d}k_{1} d^{d}k_{2} \frac{\partial}{\partial k_{l}^{\mu}} \frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{11}^{a_{11}}}, \quad v^{\mu} \in \{k_{j}^{\mu}, p_{j}^{\mu}\}$$

Reduction to master integrals

$$\sum_{\vec{a}_k} c_{\vec{a}_k}(\vec{x}; \varepsilon) G_{\vec{a}_k}(\vec{x}; \varepsilon) = 0 \Longrightarrow G_{\vec{a}}(\vec{x}; \varepsilon) = \sum_j c_{\vec{a},j}(\vec{x}; \varepsilon) I_j(\vec{x}; \varepsilon)$$

- Laporta algorithm: IBPs generated for some seeding [Laporta 2000]
- Finite Fields techniques [von Manteuffel, Schabinger 2014; Peraro 2016] to tackle algebraic complexity
- NeatIBP [Wu et al. 2023] and FiniteFlow [Peraro 2019] to generate and solve an optimised system of IBPs

Master Integrals (MIs) $\vec{I}(\vec{x})$

Finite field revolution

[von Manteuffel, Schabinger 2014; Peraro 2016]

- © Evaluate rational functions at numerical rational points $(\{p\}, \epsilon)$ modulo prime number \longrightarrow finite field/modular arithmetic
- Perform all intermediate rational operations numerically
- Reconstruct the analytic expression of the final result from multiple numerical evaluations

Mathematica/C++ framework FiniteFlow [Peraro 2019]

```
In[1]:= << FiniteFlow`;</pre>
In[2]:= prime = FFPrimeNo[1]
Out[2]= 9 223 372 036 854 775 643
In[3]:= c1 = FFRatMod[3 / 4, prime]
     c2 = FFRatMod[-7, prime]
Out[3]= 6 917 529 027 641 081 733
Out[4]= 9 223 372 036 854 775 636
In[5]:= FFRatRec[c1 * c2, prime]
```

Method of differential equations

[Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000]

Using IBPs we can construct linear differential equations (DEs) for the MIs

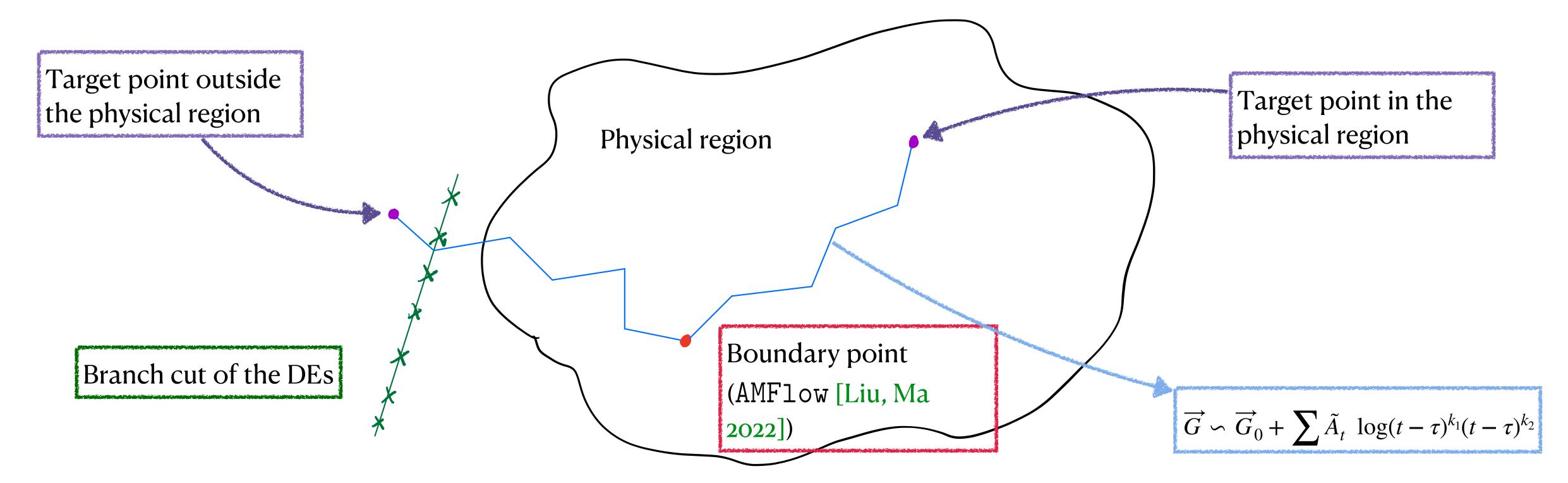
$$\forall \ \xi \in \vec{x}: \quad \partial_{\xi} I_{i}(\vec{x}; \varepsilon) = \sum_{\vec{a}} c_{i, \vec{a}}(\vec{x}; \varepsilon) G_{\vec{a}}(\vec{x}; \varepsilon)$$

$$\Longrightarrow \partial_{\xi} \vec{I}(\vec{x}; \varepsilon) = B_{\xi}(\vec{x}; \varepsilon) \cdot \vec{I}(\vec{x}; \varepsilon)$$
IBP reduction

- Many strategies to solve the differential equation. Our choice: semi-numerical approach using DiffExp [Hidding 2020]
 - Suitable for very general problems
 - The implementation supports only rational functions and simple square roots

Semi-numerical evaluation

© Generalised series expansion method [Moriello 2019]: approximate the solution in terms of logs along the integration path



• Work in the physical region: no analytic continuation needed!

What is a good choice of basis of MIs?

- The basis of MIs is not unique. A good choice of basis can greatly simplify the DEs
- [Henn 2014]: DEs in canonical form (no general algorithm)

$$d\vec{I}(\vec{x};\varepsilon) = \varepsilon d\tilde{A}(\vec{x}) \vec{I}(\vec{x};\varepsilon)$$

one-forms with at most simple poles

• In the best understood cases the one-forms are logarithmic

$$d\tilde{A}(\vec{x}) = \sum_{i} a_{i} d \log(W_{i}(\vec{x}))$$
Letters

- ε dependence factorises: solution at each order depends only on previous order
- Full control over linear relations through iterated integrals representation of the solution \Longrightarrow Construction of a minimal basis of special functions, which simplifies the representation of the amplitude
- Well-established techniques to handle the solution of the DEs

How do we construct a canonical basis?

Dlog-integrands and leading singularities

 Conjecture: integrals with a loop-integrand with at most simple poles and a constant leading singularity are good MIs

$$p^{2} \qquad \qquad d \log(z+c) = \frac{dz}{z+c}$$

$$= \int \frac{d\alpha_{1} \wedge d\alpha_{2}}{p^{2}(\alpha_{1}\alpha_{2}-z)[(1+\alpha_{1})(1+\alpha_{2})-z]}$$

$$= \int \frac{d\alpha_{1}}{p^{2}(\alpha_{1}^{2}+\alpha_{1}+z)} \left[d \log(\alpha_{1}\alpha_{2}-z) - d \log(1+\alpha_{1}+\alpha_{2}+\alpha_{1}\alpha_{2}-z)\right]$$
Leading singularity (LS)
$$= \frac{1}{p^{2}\sqrt{1-4z}} \int d \log(\ldots) \wedge d \log(\ldots)$$

$$d \log(z+c) = \frac{dz}{z+c}$$

$$= \frac{1}{p^{2}\sqrt{1-4z}} \int d \log(\alpha_{1}\alpha_{2}-z) - d \log(1+\alpha_{1}+\alpha_{2}+\alpha_{1}\alpha_{2}-z)$$

Commonly: rational functions and simple square roots

Beyond the dlog-case: elliptic integrals

 During the computation of the leading singularity, we can also bump into an elliptic curve

$$\int \frac{dz}{\sqrt{\mathcal{P}_4(z)}} \wedge d\log(...), \qquad \mathcal{P}_4(z) = (z - a_1)(z - a_2)(z - a_3)(z - a_4)$$

• The leading singularity contains elliptic functions

$$\int \frac{\mathrm{d}z}{\sqrt{\mathcal{P}_{\Delta}(z)}} \propto K(\ldots)$$

Elliptic integral of the first kind

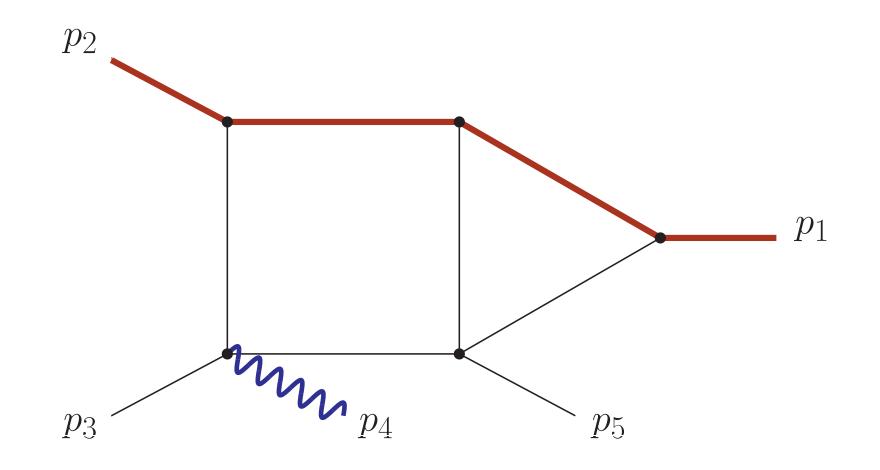
- Transcendental functions are needed to put the differential equation in canonical form
 - Progress on general strategy in recent years (see e.g. [Görges et al. 2023])
 - Still no general method to efficiently evaluate these functions

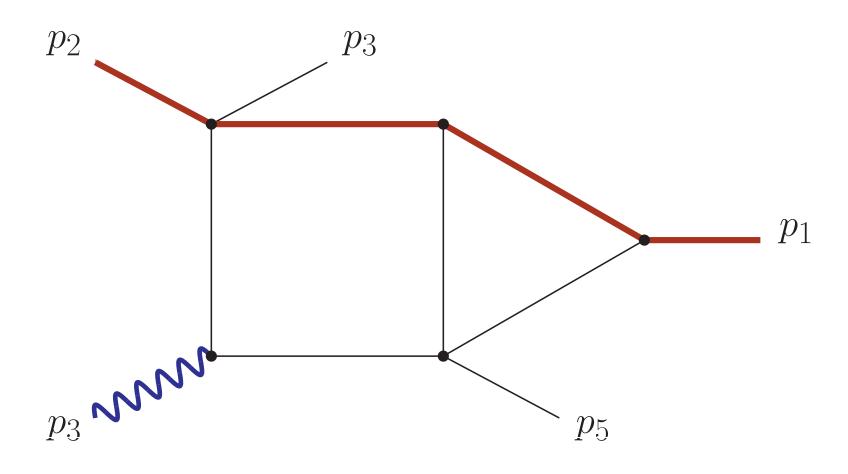
The "simple" $t\bar{t}W$ elliptic curves

- Comparable with known elliptic curves (e.g. [Badger et al. 2024])
- ◆ 4-point kinematics ⇒ depend on less than 7
 variables
- 3 MIs for each sector
- Elliptic curve of the form

$$\mathcal{P}_4(z) = (z - m_t^2)(z - 3m_t^2)\mathcal{P}_2(z)$$

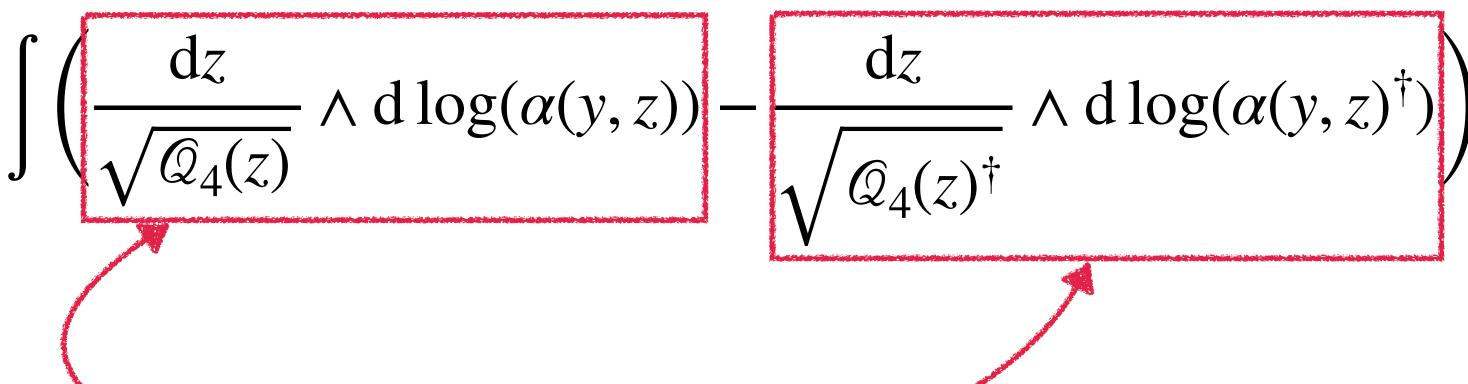
• The curves are disctinct, as we checked by computing the j-invariant





The "monster" $t\bar{t}W$ elliptic curve

- First ever study of an elliptic curve for a 5-point kinematics ⇒ dependence on all 7 invariants
- 7 MIs in the sector
- Computation of LS leads to



 p_2 p_3 p_4 p_5

Same j-invariant ⇒ same elliptic curve

$$f^{\dagger} \equiv f|_{r_1 \to -r_1}, \quad r_1 = \sqrt{G(p_1, p_2, p_3, p_4)}$$

Algebraic complexity of the monster curve

- \bigcirc $\mathcal{Q}_4(z)$ has degree 4 in z and degree 14 in \vec{x} , involves r_1 and 2787 terms
- ullet Discriminant of the elliptic curve contains a degree 14 polynomial in \vec{x}
 - 2547 terms
 - File size is 94 KB
 - Appears in the denominators of the DEs \Longrightarrow one of the singularities of the solution
- \odot ε -factorised DEs challenging even with known techniques

How we deal with elliptics

Aims: obtain a good basis compatible with DiffExp

- lacktriangle Simple arepsilon-dependence
 - No ε -poles in the differential equation
 - Maximum degree as low as possible (2 in this case)
- Elliptic MIs finite
 - Poles of the amplitude dictated by tree-level and 1-loop: no elliptic functions
 - Allows to apply the method of [Badger et al. 2025] to construct a basis of special functions up to the finite part

Apparent trade-off between the above criteria and the algebraic complexity:

We allow for a spurious degree-9 polynomial in the denominators

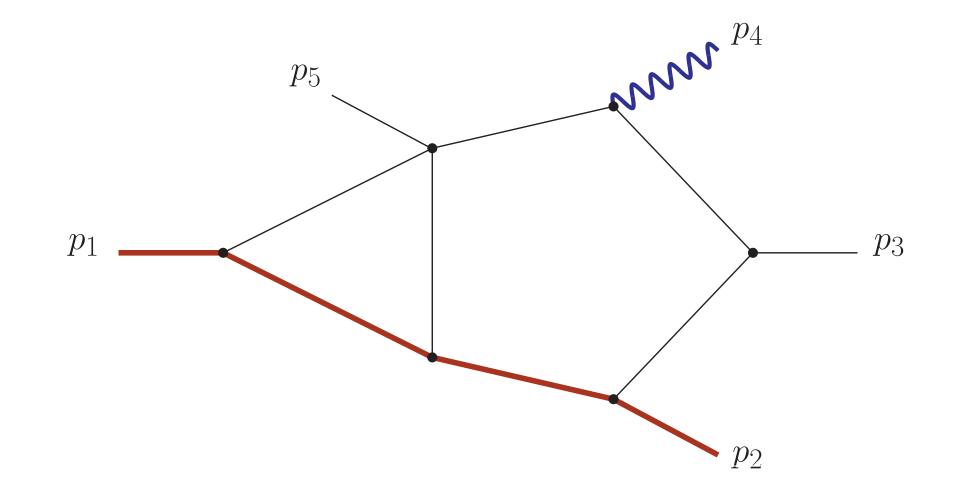
Beyond (?) the dlog-case: nested square roots

Tor $t\bar{t}H$ [Febres Cordero et al. 2024] and $t\bar{t}j$ [Badger et al. 2024] leading singularities involving nested square roots were observed. This is the case also here

$$NR_{\pm} = \sqrt{q_1(\vec{x}) \pm q_2(\vec{x})r_1}, \quad r_1 = \sqrt{G(p_1, p_2, p_3, p_4)}$$

$$NR_{+} \xrightarrow{r_1 \to -r_1} NR_{-}$$

- Nested square roots are not supported by DiffExp
- \odot Due to the elliptics, the differential equation will not be ε -factorised anyway
- \Longrightarrow keep the differential equation linear in ε



Final representation of the differential equation

- We selected a basis
 - ε factorised as much as possible
 - Linear in ε for the nested square root sectors and at most quadratic in the elliptic sectors
 - Elliptic integrals finite
- Write connection matrix in terms of independent one-forms

$$\mathrm{d}\vec{I}(\vec{x};\varepsilon) = \mathrm{d}A^{(F)}(\vec{x};\varepsilon) \cdot \vec{I}(\vec{x};\varepsilon), \qquad \mathrm{d}A^{(F)}(\vec{x};\varepsilon) = \sum_{k=0}^{2} \varepsilon^{k} \Big[\sum_{\alpha} c_{k\alpha}^{(F)} \mathrm{d}\log(W_{\alpha}(\vec{x})) + \sum_{\beta} d_{k\beta}^{(F)} \omega_{\beta}(\vec{x}) \Big]$$

Some numbers...

	Nested square root sectors	"Simple" elliptic sectors	Monster elliptic sector	# square roots	# letters	# one-forms	Dimension one-forms file
Family 1	Yes	2	No	8	101	119	6.7 MB
Family 2	No	1	Yes	11	122	84	311 MB
Family 3	No	1	Yes	12	137	96	316.5 MB

Numerical checks

DiffExp implementation with in-house path-parametrisation

• Checked against AMFlow at 10 physical phase-space points, to 25 digits accuracy

• We verified that we can integrate between any of these 10 points with DiffExp

Summary and Outlook

- \odot Basis and differential equation for all the integral families relevant for $t\bar{t}W$ production at 2-loop at leading color
- Addressed complications arising from nested square roots and elliptic integrals
- Semi-numerical solution using DiffExp
- Next steps
 - 1. 2-loop amplitude
 - 2. ε -factorised differential equation

Summary and Outlook

- \odot Basis and differential equation for all the integral families relevant for $t\bar{t}W$ production at 2-loop at leading color
- Addressed complications arising from nested square roots and elliptic integrals
- Semi-numerical solution using DiffExp
- Next steps
 - 1. 2-loop amplitude
 - 2. ε -factorised differential equation

Backup slides

Definitions for elliptic curves

Cross ratio

$$\lambda = \frac{(a_1 - a_4)(a_2 - a_3)}{(a_1 - a_3)(a_2 - a_4)}$$

Elliptic integral of the first kind

$$K(\lambda) = \int_0^1 \frac{dt}{\sqrt{(1 - t^2)(1 - \lambda t^2)}}$$

Periods of the elliptic curve

$$\omega_1 = 2c_4 \int_{a_2}^{a_3} \frac{dz}{y} = 2K(\lambda), \quad \omega_2 = 2c_4 \int_{a_1}^{a_2} \frac{dz}{y} = 2iK(1 - \lambda),$$
with $c_4 = \frac{1}{2} \sqrt{(a_1 - a_3)(a_2 - a_4)}$

J-invariant

$$j = 256 \frac{(1 - \lambda(1 - \lambda))^3}{\lambda^2 (1 - \lambda)^2}$$