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Introduction

Goal: solve
Opntp(X) = m*(X).

vER) = e S(Q) ()
e S~~~
Angular part Radial ODE

We then reduce to

(2 + V(r))y(r)=0

We'll take a more mathematical detour on the class of ODEs appearing
in this context, and then come back to black holes.



This is part of a program started by [Aminov-Grassi-Hatsuda]: use

e gauge theory [Bianchi, Di Russo, Fucito, Morales, Russo, Sudano, ...]
o CFT + AGT Here!

e integrability [Fioravanti, Gregori, ...]

methods to solve for black hole perturbations!



We'll consider
(92 + V(2)) ¥(2) = 0.
When V/(z) is rational and

#

V(z) ~ m

the ODE is called Fuchsian and z; is a regular singular point.

Explicit solutions of Fuchsian ODE are rare, so one considers local
solutions (Frobenius series)

PY(2)=Cr Y i (z—z) " +C_ Y e (z—z)* .



The Frobenius series centered at z ~ z; only converges up to the next
singular point.

Im(z)

Re(z)




In order to study global properties of the solution of the ODE, we
need to analytically continue the series out of their domain of convergence.

Im(z)




Consider the local solution
(z) = e(z) = 2 Y e 2"
Close to 1 we need to consider a different expansion:
Yi(z) = A(1—201+Zt+ +B(1—z”1*2t 1-2)
all the information on the analytic continuation is contained in A and B.

They are the connection coefficients of the ODE, and parametrize most
of the complexity of the problem.



Example: 3 reg. singularities (WLOG at 0,1,00). At z~ 0
7/1(2) = Z#i(l - Z)#2F1(ai7 bi; Ci7z) )

2F1(ai’bi;ci’z)_z(aztc):£)(’i,’i!)nzna (X)nzi

A, B for the hypergeometrics have been found by Gauss

Ic)f(c—a—b)

; =—————*,F ; b+1—c1—
2F1(a,b,c,z) I'(c—a)l'(c—b)z 1(a,b,a+ + C, Z)+
| S G —
A
MNc)f(a+b—c LA
—l-()l_((a)l_(b))(l—z)c b,Fi(c—a,c—bl+c—a—b1-2)
G —

B



Adding a 4th singularity greatly complicates the problem.

4 >> 3: we can only fix 3 points on a sphere at (0,1, 00). The 4th (1)
appears as a new modulus!

The Fuchsian ODE with 4 reg. singularities is solved by Heun functions.

Heun connection coefficients can’t be computed with classical methods
(e.g. integral representations) that work for the > f;.

The following discussions will be devoted to the computation of these
connection coefficients with a modern tool: Liouville CFT.



Wavy perturbation of a BH:

k\/

Black hole

, Ar—1+2iMweiwr (1 + O(r‘l))—i—
= (r—r) X, calr —m)" = o
+Br172leeflwr (1 + O(rfl))

rp and r = oo appear as singularities of a Heun equation.

Relevant physical data are encoded in A, B.

10



Liouville CFT & the Heun connection problem

Irregular states and confluences

Applications to black holes

e Conclusions & further directions
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Liouville CFT & the Heun
connection problem



Notation:

c=146Q*, Q=b+=, b>0, A=-"——02, aciR

Liouville CFT is characterized by [Teschner, .. .]

e continuous and diagonal (i.e. scalar) spectrum

e structure constants meromorphic in the Liouville momenta «.

Tb(Q + 20[)

<AQ|A5> = Ga(s(a - ﬁ) = Tb(20¢)

6(a - B)

I(bx)

To(x+ b) = Ta_ b0

bl_szTb(X) o
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3 point functions are given by ([DO][ZZ] formula)
(A1|V2(1)|Az) = Cios
and OPE reads

V0V 0) = [ €2, Vo)A (14 O(e. )

This allows us to compute any correlator

(oo V(1) Ve()| o) = /da Conao(FD) 2575 (A [ VA(1) (1 + O(1, 1)) | Aa)

/da 2 2o Canoopa| tATAE R0 (Z cnle, )t”)
n

Conformal Block: §(aeo,1,x0,¢,0,t)

2
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A crucial property of CFT correlators is crossing symmetry:

(Aoo|VA(1) Ve(£)|Ag) = (Aso| Vi(1)Ve(t) |Ao)
OPE OPE

that is
[ 0 CorayCoona B0 000, =
= /da Cgral Caooaoa |§(aoc,07a1,t7 Q, L= t)|2

The LHS is a series in t ~ 0, while the RHS in t — 1 ~ 0.

It is a nontrivial constraint on the analytic continuation of conformal
blocks.
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Conformal blocks §(veo,1, 0,1, v, t) share some similarities with
Frobenius series:

Im(t)

Re(t)
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Crossing symmetry relates §(voo,1, 00 1, @, t) and F(aoo 0, @16, ¢, 1 — £):
we only miss the ODE!

Im(t)
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Liouville spectrum can be continued to contain degenerate dimensions

a2,1¢iR

Conformal families with degenerate dimensions contain null states:

IX) = (b72L%; + L2) |Az1) st (x|x)=0.

|x) is a primary orthogonal to all states:

Vl 21 V2 22 @

b2L2, + L) -
(

L, act as diff. operators: diff. eqn.

[BPZ]) for (Vi(z1)...¢21(2)...)!
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Since x(z) is a second level descendant, BPZ is a 2nd order PDE

<a§ + f(2,2)0, + V(z,z;0,) )<...> =0.

i

(z—2z)

~ 5 as z~vz;
In principle the PDE has n variables.
CFT Ward identities: n— n—3

Example: degenerate 4 pt function

(Dol Vi(1)¢2,1(2)| o) = Y (DOZZ.) x |27 Eb%0,Fy (.., 2)

=




Let us study the crossing relation
(Aol VA(1) $2,1(2)|Ao) = (Aco| VA(1)2,1(2) [Ao) -
OPE OPE

that is

Qoo 10+ (1

C @< ’ Z§ia02’:1(...,2)
— —

+[]

N.AzFl(...,172)4’62"_1(...,172)

— 14
- z Caooaﬂalj: Cazyloq
+

2
(1-z) TR (...,1-2)

Crossing symmetry tells us that
(DOZZ) — (A, B)

Can we play this game with more complicated correlators?
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V(z,t) = (A |V1(1) Vi(t)92,1(2)|Ao) -

It satisfies

P24 b’A; pr A1+ 0+ A+ 20, + Doy + Do — A N
2 (z—1)? z(z—1)
B2A, b2td, b2 b2 Ao

B = e _282+z2>w(z’t)_0'

Orange terms make it into a PDE, but in the limit
b— 0, bOz,' = a;

b2 td W (z, t) = t0:b* (Doo| VA (1) Vi(t)| Do) x F(2).

z-independent constant u
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To evaluate t0;(...) we expand in conformal blocks:
u = lim b? (T (oo 1, t,0, 1‘))71 t0:8 (Qloo,1, (tt,0, O t)
b—0
As b— 0, ¢ — 00, and F(t) ~ exp (b72F(t)), so
1 o, 5
u = to:F(t) = —gtata-a +O(t).

is finite and appears as a new parameters of the equation: the accessory
parameter.

As b — 0 the BPZ turns into an ODE with 4 reg. singularities at
(0,1, 00, t) and parameters (ag, a1, ar, doo, U): the Heun equation.
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Now we can play the same game we played for the >F;:

(Do Vi()Na, Vi(t) 921(2)|A0) = (Aoo|Vi(1)Ma,, Vi(t)$2,1(2) [Ao) -

OPE OPE

This gives
03 -
Sjj: 9 t
E=2
0 (£2)
Plugging an Ansatz

© (, Z\ _ 4~ t—2z (1) t—2z
50 (8,7) = 45! (t, : )+B% (t, . )

we can solve for the Heun connection coefficients from 0 to t!

C Qo+
‘loc‘lla ataoj: Q2,100
2

f— ati
O‘oof’éla aoati az 100t
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In the convenient notation

8(90) = Z M@@/(O — t)s(gi)
0'=+1
I(—02a,)T (1 + 20ap)

M (T 20— 02+ o) T (1 + 620 — 02— 2)

The Heun equation only depended on (ag, a1, at, a0, u), no al But recall

that

1
u:fz+af+agfa2+(9(t)

To really compute Myg we need to invert the [Matone] relation

u= Zc,,(a,-, at" — a= Z kn(aj, u)t"

n

23



Since u =3, c,t", we are assuming t < 1

It

24



Note that this can't happen for 3 points!
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To continue from t — 1 we need to pass through the region

(Ao |VA(1) Na, ¢2,1(2) Vi(t)|Ao)
OPE

Orange Moo, Teal M) Blue: S(et) = Z(,:iye,zi M@UMU.B/SS,')
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In the teal region

(Doo|VA(1) Na, 62,1(2) Vi(t)| Ag) ~ z2%2
OPE

a(u) ~ monodromy around 2 points

27



Irregular states and confluences




Irregular states and confluences

Fuchsian ODEs admit confluent limits where reg. singularities collide to
produce irregular ones.

Rank 0: ~ (z — z) 2
confluence

Rank 1: ~ (z — z)™*
l reduction

Rank 3: ~ (z—z)73
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In CFT singularities are generated by primary states, so confluent limits
can be rephrased in CFT language [GT], e.g.

2 2 2 B 2
A_a<u2+n) , At_a(un> e

Rank 1 irreg. state: {(u1, A| o lim, o0 t2e =2 (A|Vi(t) .

The resulting state is characterized by

N2
(1, NLo = NoASp, A (s NIL—x = pN(p, A (AL = 7T</~L7/\| :

Nonvanishing L_5 action produces a rank 1 singularity at oo.
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The b — 0 limit of

(s AN, Vi(1)$2.1(2)] Do)

solves a ODE with 2 reg. singularities at 0,1 and a rank 1 singularity at
oo: the confluent Heun equation.

(DOZZ) S=NE™, (4 B)
The collision limit allows us to compute irregular DOZZ factors.
The accessory parameter now reads
u = lim b% ({1, AlMa, Vo(1)|80)) ™ AGh (11, AN, VA(1)| Bo) =

i]‘ 2

|imb_>0 bA
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By considering the reduction limit

: A2
lim </J’7 _@| = <A2|7

H—>00
we can generate the rank % state

/\2
<A2‘L0 = /\28/\?<A2‘ ) <A2|L—1 = 2
A?| excites a rank % (i.e. z73) singularity at oo,
2
(N*|Va(1)$2,1(2)] Do)

solves the reduced confluent Heun equation, and again

(DOZZ) Crossing sym. (A,B)

(N

31



Performing successive confluences and reductions we can solve connection
problems for Heun functions involving rank 0, 1 and % singularities
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Remark: we computed connection coefficients in terms of classical blocks
. D) —1
u= tl)lm b* (F (o015 @0, @ 1)) t0:F (oo,1, Qir0, v t) = tOLF(1).

—0

AGT duality:

SuU(2
3(0400,1, at.0, O, t) = ZNZ(Q) a1+ Qo, 0 = g, t, €1, €
N—— — S~~~

my,my m3,my 1,62

Thanks to localization, Zﬁ,U:(? admits explicit combinatorial formulas!

This representation goes through the confluent diagrams since

confluent limits ~ holomorphic decouplings .
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Applications to black holes




Applications to black holes

Black hole perturbations in satisfy a separable wave eq.
Osntp(X) = m*)(X) .

P(X) = emPTwt  5,(6,aw) Y(r)
Spheroidal harmonics ~ Confluent Heun function
To apply our method we compare the Heun eq. for ¢(r) with the BPZ
eq. to get a dictionary

— mQ
u=—-X+8Mw? — % + 2Mw?(ry —r_), ag= LT 2iMw
47TTH
— mQ
a = —i%, ms = 2iMw, L= —2iw(ry —r_)
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Singularities are at the horizons (r_, ry.) (reg.) and oo (rank 1)

/\—W
k\/

Black hole

, Ar71+2iMweiwr (1 + 0(/’71))#»
Y=(r—ry) " 3, calr —ry)"

+Br1—2iMwe—iwr (1 + O(I’_l))

=&

L=2=mstoae=5—30mF(U[ (1 — 20a) T (—20a) [ (1 + 2a;)
F(3+a—ocat+a)l(3+a1—ca—a)l(2—0a—ms)’

A p—
o==%

B=A((L, ms)— (—L,—m3)) .
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The dictionary sets u = u(gravity) but a appears in A, B: inverting

1 Lms(a3 — a2 + u) 5
= VI—du- O(L2) =
e )
1 2amw
= 14 an— 2
SV1+ A 1+4)\+(’)(w)

e QNMs: B(w,) =0
e graybody factor: o = —4imat| 4|—2

e Love numbers, angular eigenvalue, phase shift ...
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Phase shift: B/A

opfBza=m)  1retx

2wl F(A—a+ms) 14 emacoslmlm=a)

cos(m(mz+a))

eZie(Iog(\2e\)71/2)

Perturbative results in GMw were known using the Mano-Suzuki-Takasugi
method (e.g. [Saketh, Zhou, lvanov]), so what's new?

Besides efficiency, an insight into the nonperturbative structure of the
phase shift: e.g.

symmetries of F = a(agy) ~ v(agy) depends polynomially on agy
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Let us consider now perturbations of a 5d AdS Schwarzschild black hole.

Oenyp(X) = A(A — 4)p(X) .
Y(E) = et Yim(0,9) w

——
Spherical harmonics  Heun function

Again we compare BPZ Heun with gravity Heun to get a dictionary

22
u_7€(£+2)+2(2r++1)+r3rA(A 4)+ 5 L _A-2
- (1+r+) b 1 — 2 b
\/r2+1 2
ap=2_ am:ﬂ#y =0, t= f+2
2 1+2r2 2 1+2r2 1+2r2
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At r = oo we have a gravitational wall, accordingly

$ = (r—r) 7% Y ealr—ry)" = AP 1HO(r )+ Br A (1+0(rY)

n

The main object of interest in this case is

B(w,?)

Cr(w: 8 = 2w )

According to AdS/CFT, this ratio computes the retarded correlator

i0(1){[Oa(r, %), 0a(0, %)]) 5 o /dwe*"th(eH)w

; sin6 Cr(w,£).

in the boundary theory.
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We find

[(—2a1) T (1+2a,)r(—2a)r(1—2a)
[I.r ( +atfaj:ao)r(ffafalztaoo)
+(a— —a),

A= e~ 20:F 1

B :A(al — —31).

where now 140
a(u) =~ +O()
As p/f < 1 [Karlsson-Kulaxizi-Ng-Parnachev-Tadic-Fitzpatrick-Huang-

Li-Dodelson-Zhiboedov, ..]

M(—2a) 1. T (3 —a+a +ax)
Fr2a) J[I.T(3-a-a+ax)

Gr(w, ) ~ GE*"(w, £) =

40



Poles of Gg (i.e. A(wp,?) =0) are QNM of the black holes and
resonances of the 2 pt functions.

Efan+al+aoo:fn

This equation is algebraic and can be solved to very high orders

algorithmically

w,,:A+€+2nf%(A2+A(6nf1)+6n(n71))+...

Similarly one can compute residues (i.e. holographic structure constants),
and consider different expansions.
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Conclusions & further directions




Conclusions & further directions

We computed Heun connection coefficients in terms of semiclassical

conformal blocks.

They inherit convergence properties of conformal blocks, and are in this

sense exact.
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Conclusions & further directions

e Fuchsian ODE with more/higher order singularities.

e CFT approach is still perturbative in nature: connections to
integrability? [Fioravanti-Gregori]

e Non generic choice of parameters (log and polynomial solutions)

e Different gravitational backgrounds (e.g. [Bianchi-Morales-Di
Russo-Sudano], [Giusto-Cl-Russo])
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Thanks for the attention!
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