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OUTLINE

INTRODUCTION
• Scars, Eigenstate thermalization hypothesis (ETH) and violations thereof.
• Hydrodynamics, Gibbs ensembles and transport.

OPEN QUANTUM SYSTEM WITH A “SCAR”
• Paradigmatic model with two stationary states: the infinite temperature state (typical), and an 

additional one (exceptional, ”scar”).
• Spectral properties of the Lindbladian (finite gap).

MEMBRANE PICTURE
• Bipartition protocol: dynamics arising after “joining” the two stationary states. 
• Fluctuating interface that follows a driven Brownian motion



INTRODUCTION



QUANTUM SCARS

• Quantum scars: (weak) violations of ergodicity. First studied in ‘’single-body systems’’   
(Quantum Biliards).

… Analogous mechanism in quantum many-body systems??

Heller, Eric J. (1984). Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of 
Periodic Orbits. PRL, 53(16) (1984).

Rare periodic (non-ergodic orbits) Rare non-ergodic eigenfunctions
?



EIGENSTATE THERMALIZATION HYPOTHESIS (ETH)

How do close systems relax toward equilibrium?

“Generic” local Hamiltonian 𝐻 = σ𝑥 ℎ(𝑥). Local observable 𝑂.

𝜓0 𝑂 𝑡 𝜓0 → 𝑂 stationary =
Tr e−𝛽𝐻𝑂

Tr e−𝛽𝐻
?

How is it possible? 
Possible Problems (at finite size): Revivals??! Many eigenvectors of 𝐻, thus many stationary states..?!

𝐸𝑗 𝑂 𝐸𝑗 ≃ 𝑂 𝐸/𝑉

Microcanonical (≃ thermal) 
expectation value

ETH postulates

Mark Srednicki, The approach to thermal equilibrium in
quantized chaotic systems, Journal of Physics A: Mathematical and General 32, 1163 (1999).

… In particular: Thermal states Tr e−𝛽𝐻… are the only stationary states

𝑂(𝑡)



HYDRODYNAMICS

Benjamin Doyon, Lecture notes on Generalised Hydrodynamics [SciPost
Phys. Lect. Notes 18 (2020)]

𝑥

𝑡

∼ 𝑒−𝛽𝐻

∼ 𝑒−𝛽 𝑥,𝑡 𝐻

(𝑥, 𝑡)

Postulate of hydrodynamics: «Local temperature» completely
describe local properties! 

Predictive for integrable systems
O. A. Castro-Alvaredo et. Al., Emergent hydrodynamics in
integrable quantum systems out of equilibrium, Phys. Rev. X 6, 041065 (2016).

B. Bertini et al., Transport in out-of-equilibrium XXZ
chains: Exact profiles of charges and currents, Phys. Rev. Lett. 117, 207201 (2016).

… Anything else???

∼ 𝑒−𝛽
′𝐻



VIOLATION OF ETH

From: Bernien et al., “Probing many-body dynamics on a 51-atom quantum simulator,” 
Nature 551, 579–584 (2017).

Experiments Numerical simulations (constrained models)

𝐻 = σ𝑗 𝑃𝑗𝑋𝑗+1𝑃𝑗+2 …

F.M. Surace et al., Lattice gauge theories and string dynamics in Rydberg atom 

quantum simulators,  Phys. Rev. X 10, 021041 (2020)

𝑡

𝑥



VIOLATION OF ETH
• “Other extensive conserved quantities” (beside H)  {𝑄𝑎 = σ𝑞𝑎(𝑥)} 𝑄𝑎 , 𝐻 = 0. Generalized Gibbs 

ensembles Tr e− σ 𝛽𝑎𝑄𝑎 …  are stationary. “Typical scenario” in the presence of global symmetries or 

integrability.

• Many-body localized (MBL) phases: conserved (quasi) local operator 𝑞𝑎(𝑥)… Sensibility to initial 
condition and absence of transport. Conjectured for quantum disordered systems.

… Anything else???
Additional stationary states BEYOND usual conservation laws

• Quantum many-body scars: Some “rare” eigenstates violate 
ETH. [motivated by H. Bernien et al., Nature 551, (2017)] 

From: Turner et al. “Quantum scarred eigenstates in a Rydberg atom chain: 
entanglement, breakdown of
thermalization, and stability to perturbations”. PRB 98, 155134 (2018) 

…Attempt for a “general theory”:
S. Moudgalya et al., Quantum Many-Body Scars and Hilbert Space 
Fragmentation: A Review of Exact Results. Rep. Prog. Phys. 85 
086501 (2022)



OPEN QUANTUM SYSTEM 
WITH A “SCAR”



OPEN QUANTUM SYSTEM
WITH SCARS

Lindblad evolution

𝐻 = 𝐽σ𝑗 𝜎𝑗
+𝜎𝑗+1

− + 𝜎𝑗
−𝜎𝑗+1

+ + 𝑔σ𝑗 1 − 𝜎𝑗
𝑧 𝜎𝑗+1

𝑥 + (𝑗 𝑗 + 1)

𝐿𝑗 = 𝛾𝜎𝑗
𝑧Dissipator: Decoherence, it tries to “kills” coeherences in the 𝑧 basis.

Hopping term: it conserves magnetization 𝑆𝑧 East-West term: it breaks 𝑆𝑧 conservation, preserving | ↑ ⋯ ↑⟩ as
stationary state.

Environment

Nicola Pancotti, Giacomo Giudice, J. Ignacio Cirac, Juan P. Garrahan, and Mari Carmen Bañuls, “Quantum East model: 
Localization, nonthermal eigenstates, and slow dynamics”, Phys. Rev. X 10, 021051 (2020)

Saverio Bocini and Maurizio Fagotti, “Growing Schrödinger’s cat states by local unitary time evolution of product 
states” Phys. Rev. Res. 6, 033108 (2024).



OPEN QUANTUM SYSTEM
WITH SCARS: STATIONARY STATES

Infinite temperature state: ∼ Tr …  : «Typical» stationary state, as a consequence of 𝐿𝑗 = 𝐿𝑗
†

All spins up ⟨↑↑ | … | ↑↑⟩ : «Exceptional» stationary state, coming from ‘kinetical constraints’.

ℒ 𝜌 = 0 

Double degeneracy

Spectral gapSpectrum ℒ 𝑂 = 𝜆 𝑂 



OPEN QUANTUM SYSTEM: SYMMETRIES AND 
CONSERVATION LAW

• Extensive conserved quantities in open systems:  {𝑄𝑎 = σ𝑞𝑎(𝑥)} 𝑄𝑎 , 𝐻 = 0 and 𝐿𝑗 , 𝑄𝑎 = 0.

Absent here!! (unless 𝑔 = 0).

• ℒ 𝑄𝑎 = 0, ℒ 𝑄𝑎
2 = 0, … Large degeneracy (∼ 𝐿) in the kernel of ℒ.

• Tr e− σ 𝛽𝑎(𝑥,𝑡)𝑄𝑎 … typical ‘local stationary states’ in the presence of conserved quantities: 

analogous to closed system under the ‘hydrodynamic scenario’

…In THAT case one expects ‘’usual Hydrodynamics’’ to hold



BIPARTITION PROTOCOL:

?
∼ Tr[… ] ⟨↑↑ |… | ↑↑⟩ 

(𝑥, 𝑡)

𝑃(𝑥, 𝑡)⟨↑↑ | … ↑↑ + 1 − 𝑃 𝑥, 𝑡
𝑇𝑟 …

𝑇𝑟[1]

Local statistical mixture

What happens here??

MEMBRANE PICTURE
• An fluctuating interface separates

the two stationary states.
• The «scar» is progressively ‘eaten’ 

at finite velocity.
• The interface distribution broadens

diffusively (as for the driven
random walk).



BIPARTITION PROTOCOL:
NUMERICAL CHECKS

𝑣 (velocity) 𝐷 (diffusion constant): fitting parameters. 
They depends non-trivially on the microscopic couplings.



RELAXATION TIME
AND SPECTRAL GAP

Spectral gap → finite relaxation time 
?

Naïve (MISLEADING) argument:

𝜌 𝑡 = 𝑒ℒ𝑡 𝜌 = 𝜌 𝑡 = ∞ + ෍

𝑛≠0

𝑒−𝜖𝑛𝑡𝐴𝑛 , |𝜖𝑛| ≥ Δ
?
→ 𝜌 𝑡 relaxes to the stationary state for 𝑡 > Δ−1

NO

∼ 𝐿

∼ 𝑒𝐿

𝑂 𝑡 − 𝑂 𝑡 = ∞ ≤ 𝑒−Δ𝑡 ෍

𝑛≠0

|𝑇𝑟 𝐴𝑛𝑂 |

Reason:

Useless for large systems!!!

See also: Takashi Mori and Tatsuhiko Shirai, “Resolving a discrepancy between Liouvillian gap and relaxation time 
in boundary-dissipated quantum many-body systems,” PRL. 125, 230604 (2020).



MICROSCOPIC ORIGIN OF THE 
MEMBRANE PICTURE



MICROSCOPIC ORIGIN OF THE MEMBRANE 
PICTURE

1. The dissipation kills the coeherences… Perturbative treatmente for large 

dissipation rate
𝛾

𝐽
,
𝛾

𝑔
≫ 1. Effective classical stochastic model  (Markov chain) 

arising from 2° order perturbation theory. [Phys. Rev. Lett. 111, 150403 (2013)] 

2. Identify a «solvable point»: same general physics, the membrane picture arises
from the calculation (and 𝑣, 𝐷 can be predicted).

3. Arguments toward the ‘universality’ of our results.



MARKOV CHAIN

ℒ0 𝜌 = −𝛾෍

𝑗

𝜌 − 𝜎𝑗
𝑧𝜌𝜎𝑗

𝑧

At 0 order

− eigenvalues of ℒ0

2𝛾

2𝛾

↑↑↑ ⟨↑↑↑ |, ↑↑↓ ⟨↑↑↓ |, ↑↓↓ ⟨↑↓↓ |

↑↑↑ ⟨↑↑↓ |, ↑↑↓ ⟨↑↑↑ |, ↑↓↓ ⟨↑↑↓ |

«Unperturbed stationary states»: diagonal matrices

Washed out on fast time-scales ∼ 𝛾−1



MARKOV CHAIN

2𝛾

2𝛾

At 2nd order

Mixing between diagonal matrix elements: coming from ‘virtual transitions’

𝜌 𝑡 =෍

𝝈

𝑝𝝈 𝑡 |𝝈) = 𝑒−𝑊𝑡 𝜌 0

𝑊 = −
𝐽2

4𝛾
෍

𝑗

𝜎𝑗
𝑥𝜎𝑗+1

𝑥 + 𝜎𝑗
𝑦
𝜎𝑗+1
𝑦

+ 𝜎𝑗
𝑧𝜎𝑗+1

𝑧 − 1 +

2𝑔2

𝛾
෍

𝑗

1 − 𝜎𝑗
𝑥 1 − 𝜎𝑗+1

𝑧 + 1 − 𝜎𝑗
𝑧 1 − 𝜎𝑗+1

𝑥 + (1 − 𝜎𝑗
𝑧)(1 − 𝜎𝑗+1

𝑥 )(1 − 𝜎𝑗+2
𝑧 )

…Predictive at large γ, but difficult to «solve»



MARKOV CHAIN

𝑊 = −
𝐽2

4𝛾
෍

𝑗

𝜎𝑗
𝑥𝜎𝑗+1

𝑥 + 𝜎𝑗
𝑦
𝜎𝑗+1
𝑦

+ 𝜎𝑗
𝑧𝜎𝑗+1

𝑧 − 1 +

2𝑔2

𝛾
෍

𝑗

1 − 𝜎𝑗
𝑥 1 − 𝜎𝑗+1

𝑧 + 1 − 𝜎𝑗
𝑧 1 − 𝜎𝑗+1

𝑥 + (1 − 𝜎𝑗
𝑧)(1 − 𝜎𝑗+1

𝑥 )(1 − 𝜎𝑗+2
𝑧 )

+ Fine tuning:  
𝐽2

4𝛾
=

2𝑔2

𝛾
=

1

6

Interface (mixed) state at position 𝑥

𝑊 𝑥 = 𝑥 −
2

3
𝑥 + 1 −

1

3
|𝑥 − 1)

It reduces to a ‘single-particle problem’: Random walk with a drift…
It gives EXACTLY the membrane picture!



DOMAIN WALLS

… So far, the membrane picture is derived for a very specific point and under some 
approximations…

WHY DOES IT ACTUALLY WORK?

Important features:

• «Slow modes» given by domain-wall states interpolating the two stationary states.

• At the solvable point, the shape of the domain wall is simple ∼ σ𝑥 𝑒
𝑖𝑘𝑥|𝑥). Slightly

away from it, one expects ∼ σ𝑥 𝑒
𝑖𝑘𝑥 ••• ⊗ 𝑂⊗ | ↑↑↑)

∼ 𝑂(1) ‘length of the interpolating region’

𝑥



…Same mechanism found for the entanglement dynamics of chaotic systems: 
«discrete» structure of stationary states in the replica models.

T. Zhou and A. Nahum, Entanglement Membrane in Chaotic Many-Body 
Systems, PRX 10, 031066 (2020).

S. Vardhan, and S. Moudgalya, Entanglement dynamics from universal low-lying
modes [arXiv:2407.16763] (2024)

DOMAIN WALLS

…Analogous to «kinks» when Spontaneous Symmetry Breaking (SSB) occurs

[From: PRB 102, 024437 (2020)]



CONCLUSIONS
• Perspective on «scars in open systems» as exceptional stationary states.

• Interface diffusion: Physical mechanism for large-scale dynamics (in the presence of a gapped
Lindbladian, and few stationary states).

OPEN PROBLEMS

• What happens when multiple scars (and/or Gibbs ensembles) are present?? Interplay between transport
of conserved charges and fluctuating interfaces??

• Notion of scars in the presence of non-hermitian dissipators (𝐿𝑗 ≠ 𝐿𝑗
†) ???: E.g. «lossy systems» ℒ 𝜌 =

σ𝑗 𝜎𝑗
+𝜌𝜎𝑗

− −
1

2
{𝜎𝑗

−𝜎𝑗
+, 𝜌} . | ↑ ⋯ ↑⟩ is the ONLY stationary state…



THANKS!
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