
1

VORO2MESH Manual

Version 1.7

A MESH generator for the IFD Method

S. Bonduà, V. Bortolotti, C. Cormio, E.M. Vasini

DICAM – University of Bologna

2

Summary
1 Introduction ... 3

2 TOUGH2 & VORO++ ... 3

3 VORO2MESH .. 3

4 Input data files ... 5

4.1 Walls .. 6

5 Output files .. 7

6 Examples .. 8

6.1 Example 1: radial mesh in a rectangular domain .. 8

6.2 Example 2: radial mesh with different rocktype for boundary blocks. ... 8

6.3 Example 3: Radial grid with cutting planes.. 8

6.4 Example 4: A semi-telescopic grids ... 9

6.5 Example 5: A semi-telescopic grid with cutting planes ... 9

7 VORO2MESH – tools .. 9

7.1 FitSurfaces() ... 12

7.1.1 Drive nodes .. 13

7.1.2 Inside points .. 13

7.1.3 Examples .. 15

8 References ... 16

9 Appendix A – Parameter File voro.par .. 17

10 Appendix B – input points file format ... 18

11 Appendix C – List of Surfaces ... 19

12 Appendix D – Gridded surface file format ... 20

13 Appendix E – Tough2Viewer.dat file format ... 21

14 Appendix F – Statistic.log file format ... 22

15 Appendix F – Complete list of VORO2MESH input keywords. .. 23

3

1 Introduction
In the numerical modelling approach, the space domain and time are discretized. Depending on the scheme

adopted, the discretization have some requirements/constraints.

For the Integral Finite Difference (IFD) method, it is requested that the conjunction line between two

connected centroids is orthogonal to the interface separating the volume between two adjacent blocks. In

the case of structured grid (Berry et al., 2014; Cormio et al., 2012), the orthogonal condition constraint is

always implicitly satisfied.

The orthogonal condition play a fundamental role during the generation of the grid. Unstructured grid are

natural candidate to take full advantages of the IFD method scheme, but are not easy to handle. The Voronoi

approach is a robust method of discretization, ensuring the orthonormal constraint.

With the Voronoi method, given any set of points (even in a regular path), a discretization of the space can

be always obtained, resulting in a grid that satisfy the orthogonal constraint. Several algorithms was

developed for the 2D case and implemented in open source codes. A few algorithms are implemented for

the 3D case and it is worth to mention Qhull (Barber et al. 1996), TetGen (Hang Si, 2015), and voro++ (Rycroft,

2009).

2 TOUGH2 & VORO++
TOUGH2 (Pruess et al., 1999) is a widely used numerical simulator for geothermal reservoir engineering,

nuclear waste disposal, environmental assessment and remediation, underground gas storage and

hydrology. It is a free and open source software (distributed by the Lawrence Berkeley National Laboratory)

structured in in FORTRAN modules. Using dedicated modules for the management of thermodynamics and

thermophysics properties (called Equation of State, EOS) TOUGH2 is very flexible and can be easily adapted

to specific simulation requirements. It uses IFDM and therefore can manage one, two and three dimensional

structured and unstructured spatial discretization.

In particular, TOUGH2 require block information about volume and connection with adjacent cells interface

area. So, given set of points in the 3D space, that represent the blocks nodes, we can generate the 3D Voronoi

tessellation and then calculate all the values to fill the ELEME and CONNE data (ref. TOUGH2 manual).

Regarding the full 3D Voronoi tessellation computation, a few algorithms have been developed by the

scientific community, lioke Qhull (Barber et al. 1996), TetGen (Hang Si, 2015) and voro++ (Rycroft, 2009).

Our approach adopt the voro++ libraries that distributed under a modified BSD license, that makes it free for

any purpose.

3 VORO2MESH
The VORO2MESH is a software developed at DICAM (University of Bologna) able to calculate a 3D Voronoi

tessellation of a set of points, generating a ready to use MESH file for TOUGH2. The mesh file of TOUGH2

contains the ELEME and CONNE information as specify in the TOUGH2user’s manual. Several options for the

grid generation are available. The VORO2MESH computation parameters and options must be stored in a file

called voro.par. In particular, voro.par must contain all the parameters for the discretization. In Table 1 is

shown the voro.par structure and keywords description. Everything that follows the comment symbol is “!”is

ignored by the parser. For a complete list of the available keywords, see Appendix F – Complete list of

VORO2MESH input keywords.

!VORO2MESH parameter file

4

x_max=+1726500.0000 !x max
x_min=+1701500.0000 !x min
y_max=+4759500.000 !y min
y_min=+4732500.000 !y max
z_max=2000.0 ! z max
z_min=-6000.0 ! z min
toler=1.001 ! all connection with area<toler will be skipped from CONNE
toler_dist2=1.0E-06 !minimum square distance between two points. If d(p1,p2)<toler_dist2 the program
will terminate.
read_rocktype=1 !0=no,1=yes;
auto_nxnynz=1 !0=manual;1=auto. Parameter for compute the voronoi tessellation
print_vtkXML_file=1 !0=no;1=yes; The voronoi geometry will be exported to a VTK file in a vtu format
(see Paraview documentation);
n_x=10 ! number of domain subdivision for voronoi computation
n_y=10 ! number of domain subdivision for voronoi computation
n_z=1 ! number of domain subdivision for voronoi computation
r_max=2.0 !
wall_type=1 !1: regular box;2=cylinder
add_walls=0 !0:no; 1:yes. If yes, a file called "wallslist.dat" must be present. Inside, a list of ABCD have to
be present, that are parameter of the equation Ax+By+Cz+D>0 (the cutting wall)
tolerance_walls=0.1 !parameter for evaluate inside points if(ax+by+cz-d>tolerance_walls) then ok.
min_distance_from_walls=10.0 !if dist(point,walls(i))<min_distance_from_walls the node is skipped
fit_surface=3 !0:no fit; 1=execute fit ;2:fitsuface2;3:fitsurface3. if fit_surface=3, a file list called surface
list must be present.
n_layers=5 !
refine_mesh=1 !if(refine_mesh=1)norefinement;if refinemesh>1, each square is then divided in
refine_mesh^2 elements. Not implemented.
coarse_mesh=1 !if(coarse_mesh=1)no coarsening;if coarse_mesh>1, a square is then taken skipping
coarse_mesh elements. Note that refinemesh=2 and coarse_mesh=2 give the same number of elements,
but generate different meshes. Not implemented.
vertical=2 !0: the point belongs to the segment;1:the line is vertical centered;2: the line is vertical, the
node have z as multiple of 2*offset(semi regular grid).use with
variable_n_layers=1 !0=no; 1=for each xy, calculate n_layer=int(distance/offset);
offset=50.0 !if offset<0.0 then offset=min(dx,dy)
blocks_thick=70.0 !general value for blocks height;if blocks_thick <0 then blocks_thick=offset.
cut_model_top_bottom=1 !0=no; 1=yes; Node outbound from the top/bottom surface are used to
compute voronoi tessellation but are skipped from the MESH file.
assign_infinite_volume_to_boundary=0 !0=no;1=yes.
create_incon=0 !:0=no; 1=yes
read_por_perm_tables=0 ! 0=no; 1=yes
format_por_perm_tables=1 ! 1=x,y,z,por,k,[ky],[kz]; 2=gridded files(one file for each values). 2=NOT
IMPLEMENTED.
number_of_points_por_perm=1 !number of points used to calculate por and perm. Actually use 1 or 4
ONLY.
dist_mode_por_perm=0 ! 0=2D; 1=3D;
max_dist_por_perm=850.0 !
create_gener=0 !:0:no; 1=yes; 2=use mask.dat
min_2d_dist=850.0 ! when creating GENER, if we have two block with d(P1,P2)<min_2d_dist, only the
lower block is taken...(feature for ENI project)
assign_roktype_to_gener=0 ! 0 no; >0 rocktype=assign_rocktype_to_gener
divide_control_inside_points=1 !0=no;1=yes;

5

por_perm_upscaling=1 !1=mean;2=series and parallel calculation (use 2 only with
number_of_points_por_perm=4)
exclude_out_pts=1 !0=no;1=yes; points not inside the domain will not print in "in.dat.ready". During
reading, outside points are skipped in any case.
two_digit=1 !0=use 3 digit exponent(example 1.403E+003);1=use two digit exponent (example:
1.4031E+03)
blocks_thick=50.0 !general value for blocks height
debug_mode=0 !0=no;1=yes
write_tough2viewer_dat=1 !0:no; 1:yes
block_names_format=0 !default=0;=0,standard A3I[len_char_eleme_name-3];=1 use
I[len_char_eleme_name]
len_char_eleme_name=5 !default 5; must be 5<=len_char_eleme_name<=9
len_char_volume=10 !
len_char_eleme_surface=10 !
len_char_coordinates=10 !
len_char_d1d2=10 !
len_char_surface=10 !
len_char_cosine=10 !
CVT=0 !If CVT=1, the internal points are moved to have CVT
CVT_max_iter=50 !maximum number of iterations
k_s=0.0 !
k_cvt=0.01 !
HLBFGS_FLAG=0 !
end=end

Table 1 – the voro.par file structure and keywords description.

4 Input data files
The VORO2MESH input is at least composed of two files: the parameters and the data files. The former

contains (voro.par, see table 1 for an example), as requested by the voro++ library, geometric parameters

about the 3D domain size, domain cutting planes, and directives about the seed points to be used. The latter

file can be of two types. The first one, named voro.par, contains just the list of the nodes (see table 2): id (a

unique key); (x, y, z, coordinates); rock type (optional, for rock type assignment. This option is activated

setting the keyword read_rocktype=1). Note that if the rock type is set to a negative value, then the node

will be used during the tessellation computation, but the corresponding block will not be included in the

MESH file and also will not visualized by the viewer. Each outbound point (external to the domain defined by

the cutting planes) is skipped from further calculation

The second type (SurfaceFiles.dat) contains the list of the names of the surface files used to discretize the

domain as defined in the parameters file. In addition, a supplementary file containing the ordered list (from

top to bottom) of the necessary geological boundary surfaces could be present. Surface files must be stored,

in the format specified in Errore. L'origine riferimento non è stata trovata., in the same folder from which

the input files are loaded. Optionally the domain can be cut with planes expressed in the implicit form

Ax+By+Cz+D=0, and the list of planes parameters A, B, C, D must be present in a specific file named

WallList.dat file.

Header – in.dat file format
0 72.594696 927.405334 -279.704498 1
1 27.405306 972.594666 -202.790009 2
2 164.947006 925.829895 -234.842972 1
3 135.052994 974.170105 -152.565567 2
4 250.021210 924.671692 -218.623108 1

6

5 249.978790 975.328308 -132.403046 2
6 335.082825 925.825134 -234.762024 1
7 364.917175 974.174866 -152.468536 2
…
(comment line)

5 Table 2 – The in.dat file. See Appendix A – Parameter File voro.par
The voro.par contains directive of working mode (point/surfaces), bounding domain, output options of
VORO2MESH. Keywords are briefly resumed in the given example file.

##################################

voro.par example parameter file#

##################################

Domain definition

x_max=+192200.00

x_min=+16900.0000

y_max=+802800.00

y_min=+652800.000

z_max=-1000.00

z_min=-8000.0# Operating ways

fit_surface=1 #0:no fit, use in.dat as input file; 1=execute fit: the

seed point will be stored in the in.dat.ready file.

MESH generation parameters

toler=1.001 #in the CONNE section, if area interface between adjacent

blocks < toler, then connection will be discarded.

read_rocktype=1 #0:no,1=yes

block_names_format=0 #default=0, standard A3I[len_char_eleme_name-3];=1

use I[len_char_eleme_name]

len_char_eleme_name=5 #default 5; must be: 5<=len_char_eleme_name<=9

len_char_volume=10 #

len_char_eleme_surface=10 #

len_char_coordinates=10 #

len_char_d1d2=10 #

len_char_surface=10 #

len_char_cosine=10 #

#voro++ parameters

auto_nxnynz=1 #0=manual;1=auto, then n_x,n_y, n_z are not used.

n_x=7 # number of subdivision of the domain in x

n_y=7 # number of subdivision of the domain in y

n_z=7 # number of subdivision of the domain in z

printing options

write_tough2viewer_dat=1 #0:no; 1:yes

print_vtkXML_file=1 #0=no;1=yes.

export_surface_as_ply=0 #0=no;1=yes: the input surface are exported as

ply files.

end=end #end of parameter file

Appendix B – input points file format for details.

5.1 Walls
By default, the VORO2MESH programs discretize the space in a box, defined by xmin, ymin, zmin, xmax, ymax,

zmax. The voro++ library allows to consider a set of planes that define the convex volume of interest.

7

VORO2MESH use walls plane by reading from a file a list of planes. Each plane must be defined by the four

parameters values (in meters) of the implicit equation of a plane in the 3D space, Ax+By+Cz+D=0. To activate

this option, the readWalls parameter must be set equal to 1 in the voro.par parameters file. If readWalls is

set to 1, a file named wallsList.dat (see table 3) must be present in the same folder of the executable of

VORO2MESH. Optionally, in the MESH file, a value of rocktype=BOUND can be set for the cells cut by the

walls planes and a volume of 1.E+55 (boundary conditions) can be set for each cell that is defined to be

BOUND. This option is activated by setting the variable assign_infinite_volume_to_boundary of the voro.par

parameter file to 1.

-1700 -8500 0 -5634310000
0 -141100 0 -92138300000
1700 -1700 0 -786420000
3400 0 0 653140000
83300 3400 0 18239470000
6800 1700 0 2543540000
3400 1700 0 1907740000
….

Table 3 – structure of the wallsList.dat file. Values of A, B, C and D are expressed in meters. No comment
lines are admitted.

6 Output files
The output of a VORO2MESH run consists of several files:

-Tough2viewer.dat, which contains all the geometrical information to visualize the model with

TOUGH2Viewer (Bonduà et al., 2012; Bonduà et al 2017). See Appendix E – Tough2Viewer.dat file format for

details;

-MESH, a ready to use TOUGH2 MESH file. If the input data file contains the rock type, then the MESH is filled

also with this information. If the data file is of surface type, a progressive rock type index is assigned to each

blocks encompassed between two surfaces;

-statistic.dat, which contains statistical grid information (e.g.: minimum and maximum volume for each rock

type, elements number, number of connections, minimum and maximum connection area, etc.). See

Appendix F – Statistic.log file format;

 -Optional grid file in vtu format (ParaView VTK Unstructured Data) for visualization with ParaView;

-Optionally, a ready to use TOUGH2 INCON file. The value of each primary variable used by the simulator can

optionally be computed as a linear combination of the coordinates of the node and specific primary variable

(as for example a temperature gradient) defined and inputted by the user.

-Optionally, a set of surface ply file (Bourke, 2011), converted from the GRASS format. Useful for visualization

of the input surface and the resulting grid at the same time.

8

7 Examples
The following examples are obtained using as input data a file containing the nodes in the [ID, x, y, z, rocktype]

format. The points are generate with a tool not included with VORO2MESH. The visualization is obtained by

means of Tough2Viewer (Bonduá et al., 2012).

7.1 Example 1: radial mesh in a rectangular domain
The radial tessellation is obtained inside a regular box.

Figure 1 – A 3D view of a radial mesh in a rectangular domain. Each stratum (layer) has a different rocktype.

7.2 Example 2: radial mesh with different rocktype for boundary blocks.
In this example, the boundary blocks rocktype is set to a specific value, so that it is possible to remove they

from visualization.

(a) (b)

Figure 2 – (a) a 3D view of the model. Each stratum has a different rocktype. Boundary blocks are marked with a a specific rocktype.(b)
boundary blocks are removed from visualization.

7.3 Example 3: Radial grid with cutting planes
Similar to the previous one, the tessellation is obtained adding a set of cutting planes (walls, 180 cutting

planes to approximate the cylinder lateral shape). The boundary blocks have the lateral vertical face

composed of a set of rectangles, see figure 3b.

9

(a) (b)

Figure 3 – a 3D view of a radial grid with cutting planes. The rectangular domain is cut by 180 planes. Each plane is tangent to a
cylinder of radius 10 m. Note that boundary blocks have segmented boundary vertical faces. Instead block interface is a just one
vertical face.

7.4 Example 4: A semi-telescopic grids

Figure 4 – Semi - Regular grid.

7.5 Example 5: A semi-telescopic grid with cutting planes

Figure 5 – A 3D view of the semi-regular grid, after applying cutting planes.

8 VORO2MESH – tools
How previously mentioned, the VORO2MESH discretization allows generation of totally unstructured grid for

TOUGH2 simulations. Often discretization must take care about shape of geological structures, as surfaces,

discontinuity, faults, pinch out. The arrangement of points nodes that permit to the 3D discretization to

represent geological shapes is subject to several consideration.

1. A surface is well represented in the mesh when a set of nodes (called drive nodes) is positioned to

each side of the surface.

10

2. The surrounding nodes are sufficiently far from the drive nodes.

Following these criteria, we develop a tool, named FitSurfaces(), to generate the set of the drive nodes

conforming to a specified geological shape.

Note that the approach used by the tool is not fully 3D, in the sense that points are generated from a 2.5

gridded data representing a separation surface between geological layer. Therefore, for example, a sphere

surface cannot be represented with this file format, but need of two file, one for each hemisphere. Also pinch

out can be handled with some limitations.

Moreover, this technique consider sedimentary surfaces with low variation of deeps. In case of more

complicated shapes, the tool can still perform the discretization of the domain and the rocktype assignation,

but it cannot generate the drive nodes. Next release will take in account for faults and vertical planes.

9 To generate grids conforming to surfaces, user have to prepare the input surface gridded map in the file

format as specified in Appendix A – Parameter File voro.par
The voro.par contains directive of working mode (point/surfaces), bounding domain, output options of
VORO2MESH. Keywords are briefly resumed in the given example file.

##################################

voro.par example parameter file#

##################################

Domain definition

x_max=+192200.00

x_min=+16900.0000

y_max=+802800.00

y_min=+652800.000

z_max=-1000.00

z_min=-8000.0# Operating ways

fit_surface=1 #0:no fit, use in.dat as input file; 1=execute fit: the seed

point will be stored in the in.dat.ready file.

MESH generation parameters

toler=1.001 #in the CONNE section, if area interface between adjacent

blocks < toler, then connection will be discarded.

read_rocktype=1 #0:no,1=yes

block_names_format=0 #default=0, standard A3I[len_char_eleme_name-3];=1

use I[len_char_eleme_name]

len_char_eleme_name=5 #default 5; must be: 5<=len_char_eleme_name<=9

len_char_volume=10 #

len_char_eleme_surface=10 #

len_char_coordinates=10 #

len_char_d1d2=10 #

len_char_surface=10 #

len_char_cosine=10 #

#voro++ parameters

auto_nxnynz=1 #0=manual;1=auto, then n_x,n_y, n_z are not used.

n_x=7 # number of subdivision of the domain in x

n_y=7 # number of subdivision of the domain in y

n_z=7 # number of subdivision of the domain in z

printing options

write_tough2viewer_dat=1 #0:no; 1:yes

print_vtkXML_file=1 #0=no;1=yes.

11

export_surface_as_ply=0 #0=no;1=yes: the input surface are exported as ply

files.

end=end #end of parameter file

12

Appendix B – input points file format.

9.1 FitSurfaces()
To activate this feature, in the voro.par, the variable fitsurface in voro.par must be set equal to 3 or 5 (the

newest version with automatic local refinement in region with low thickness) or 7 (a new version with bug

fixes and additional options).

If fitsurface is set to 3 or 5, then a file named surfaceList.dat must be present. In the file surfaceList.dat, for

each surface to be used in the node generation, must be present a record with the following format:

[File Name] [(Float) offset] [(Float) block thickness].

Where:

[File Name]: is the file name containing the gridded surface data;

[(Float) offset]: is the distance of the generated drive nodes from the surface;

[(Float) block thickness]: is the thickness of the blocks (this value is used only when option vertical=2).

In the surfaceList.dat, the order of the surfaces must be vertically from top to bottom. Before of starting with

mesh generation, a check about the input surface order is done, verifying if for each x and y,

z(i+1)(x,y)<z(i)(x,y). If this condition is not satisfied, the program will exit.

In case of pinch out, the z value representing absence of the surface must be set greater than z_max or lower

of z_min (in other words, outside the domain to be discretized).

Gridded data are ASCII text format (GRASS data style), as specified in

13

.

In case of multiple surfaces, they must have the same number of rows and columns.

The number of generated point for each surface is 2x(rows-1)x(cols-1) without mesh refinement.

9.1.1 Drive nodes
In a 3D space, a surface can be represented as a regular grid of elevation points. This implies that it may be

decomposed with a set of squares which corner are represented by four elevation coordinates. Therefore, a

Voronoi tessellation including the surface can be obtained forcing a pairs of points (the drive nodes) on both

sides of each 3D square, which represent the nodes of the 3D Voronoi blocks neighbouring to the surface.

The distance of the points from the plane is set by the user (offset from the surface). For each surface can be

defined a custom value of offset.

9.1.2 Inside points
We define “inside points” node are not in contact with the two surfaces of top and bottom. The vertical space

between the drive nodes, the inside points, can be generated in several ways:

1. using the conjunction line between top and bottom drive nodes and vertically splitting the space with

the same number of points (Figure 6a, 6b);

2. using a vertical line passing from the 3D squares centre and vertically splitting the space with the

same number of points (Figure 6c, 6d);

3. using the vertical line passing from the 3D square centre and vertically splitting the space imposing

to the points to have the same elevation value (Figure 6e, 6f).

Comments on the 3 options:

1. vertical=0. This produces blocks with a better approximation of the surface, but the number of

connections will increase, and as consequence increase the number of equations to be solved by the

numerical simulation.

2. vertical=1. This allows to have vertical piles of blocks , but still produce high number of connections.

3. vertical=2. In this case, like the previous one, the nodes are along the vertical line passing from the

centre of the 3D square of the gridded surface and the block-z elevation is a multiple of the block

thickness. In this way, a variable number of blocks is obtained between two surfaces, but a regular

discretization (far from drive nodes) reduce the number of connection to a minimum (6, for an

internal parallel prism) for each node, resulting therefore in a reduction of equation to be solved by

the numerical simulator.

14

Vertical=0

a
b

Vertical=1

c d

Vertical=2

e f

Figure 6 – Vertical discretization of a volume included between two surfaces. (a), (c) and (e) show the distribution of seed points.
(b), (d) and (f) show sections of the corresponding discretized domain.

Special cases

-20

-15

-10

-5

0

5

0 5 10

-20

-15

-10

-5

0

5

0 5 10

-20

-15

-10

-5

0

5

0 5 10

15

1. The distance between two surfaces is lower than the offset used for the discretization. In this case

only one point is put inside the two surface, and the drive nodes are modified to have a block with a

correct thickness;

2. in case of pinch out, the corresponding drive nodes and inside points are not generated. The

algorithm will refer to the next valid surface. In this case some manual rocktype assignation must be

done.

9.1.3 Examples
In the following, some example of discretization is given.

9.1.3.1 Example 6: 2D, vertical slice, two surfaces

This example use two surface file as input. The inside points belongs to the conjunction line between the

drive nodes (parameter keyword vertical=0 in the file voro.par). Each conjunction line is discretized with the

same number of node points. See figure 6b.

9.1.3.2 Example 7: 2D, vertical slice, two surfaces

This example use two surface file as input. The inside points belongs to the vertical line between the drive

nodes (parameter keyword vertical=0 in the file voro.par). Each vertical line is discretized with the same

number of node points. See figure 6d.

9.1.3.3 Example 8: 2D, vertical slice, two surfaces

This example use two surface file as input. The inside points belongs to the vertical line between the drive

nodes (parameter keyword vertical=0 in the file voro.par). Each vertical line is discretized at regular interval,

to obtain regulars blocks. See figure 6f.

9.1.3.4 Example 9: 3D, two surfaces

This sample use two surfaces as input. In figure 7a are shown the input surfaces and in figure 7b the resulting

model, removing blocks over the top and below the bottom surfaces. The discretization use the option

vertical=2 to reduce the number of connections.

 (a)

 (b)

Figure 7 - -(a) input surfaces; (b) Grid blocks and surfaces

16

10 References
Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., 1996. The Quickhull algorithm for convex hulls, ACM Trans.

on Mathematical Software, 22(4),469-483, http://www.qhull.org.

Battistelli A., Marcolini M. (2009). TMGAS: a new TOUGH2 EOS module for the numerical simulation of gas

mixtures injection in geological structures. Intl. J. Greenhouse Gas Control, 3, p. 481-493.

Berry, P., Bonduá, S., Bortolotti, V., Cormio, C., Vasini, E.M., 2014. A GIS-based open source pre-processor for

georesources numerical modeling, Environmental Modelling & Software, 62, 52-64, ISSN 1364-8152.

Bonduá, S., Berry, P., Bortolotti, V., Cormio, C. (2012). TOUGH2Viewer: A post-processing tool for interactive

3D visualization of locally refined unstructured grids for TOUGH2. Computers & Geosciences, 46, p. 107-118.

Bonduà, S.; Battistelli, A.; Berry, P.; Bortolotti, V.; Consonni, A.; Cormio, C.; Geloni, C.; Vasini, E. M., (2017).

3D Voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with

TOUGH2-TMGAS, COMPUTERS & GEOSCIENCES, in press.

Bourke P. PLY - Polygon File Format. http://paulbourke.net/dataformats/ply/. Published 2011. Accessed May

3, 2016.

Cormio C., Berry P., Bonduà S., Bortolotti V. (2012). Innovative tools for continuum discretization, better

management of TOUGH2 input data and analysis of the numerical simulation results. Proceedings, TOUGH

Symposium 2012, LBNL, Berkeley, California, September 17-19, 2012.

Hang Si., 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator, ACM Transaction on

Mathematical Software, 41 (2), Article 11, 36 pages, 2015. DOI=10.1145/ 2629697

http://doi.acm.org/10.1145/2629697.

Pruess K., Oldenburg C.M., Moridis G.J. (1999). TOUGH2 User’s Guide, Version 2.0. Lawrence Berkeley

National Lab., report LBNL-43134.

Pruess K. (2004). A composite medium approximation for unsaturated flow in layered sediments. Journal of

Contaminant Hydrology. 70, p. 225– 247.

Rycroft, C.H., 2009. Voro++: A three-dimensional Voronoi cell library in C++, Chaos 19, 041111

17

11 Appendix A – Parameter File voro.par
The voro.par contains directive of working mode (point/surfaces), bounding domain, output options of
VORO2MESH. Keywords are briefly resumed in the given example file.

##################################

voro.par example parameter file#

##################################

Domain definition

x_max=+192200.00

x_min=+16900.0000

y_max=+802800.00

y_min=+652800.000

z_max=-1000.00

z_min=-8000.0# Operating ways

fit_surface=1 #0:no fit, use in.dat as input file; 1=execute fit: the seed

point will be stored in the in.dat.ready file.

MESH generation parameters

toler=1.001 #in the CONNE section, if area interface between adjacent

blocks < toler, then connection will be discarded.

read_rocktype=1 #0:no,1=yes

block_names_format=0 #default=0, standard A3I[len_char_eleme_name-3];=1

use I[len_char_eleme_name]

len_char_eleme_name=5 #default 5; must be: 5<=len_char_eleme_name<=9

len_char_volume=10 #

len_char_eleme_surface=10 #

len_char_coordinates=10 #

len_char_d1d2=10 #

len_char_surface=10 #

len_char_cosine=10 #

#voro++ parameters

auto_nxnynz=1 #0=manual;1=auto, then n_x,n_y, n_z are not used.

n_x=7 # number of subdivision of the domain in x

n_y=7 # number of subdivision of the domain in y

n_z=7 # number of subdivision of the domain in z

printing options

write_tough2viewer_dat=1 #0:no; 1:yes

print_vtkXML_file=1 #0=no;1=yes.

export_surface_as_ply=0 #0=no;1=yes: the input surface are exported as ply

files.

end=end #end of parameter file

18

12 Appendix B – input points file format
The file has one line header, flowed of the coordinate points in the following format:

[id] [x] [y] [z] [rocktype]

Where:

[id]: unique identificative number

[x] [y] [z] Cartesian coordinate

[rocktype] optional: the rocktype value for the node

Lines starting with character “#” are skipped.

Example:

Header – in.dat file format

0 72.594696 927.405334 -279.704498 1

1 27.405306 972.594666 -202.790009 2

2 164.947006 925.829895 -234.842972 1

3 135.052994 974.170105 -152.565567 2

4 250.021210 924.671692 -218.623108 1

5 249.978790 975.328308 -132.403046 2

6 335.082825 925.825134 -234.762024 1

7 364.917175 974.174866 -152.468536 2

…

(comment line)

19

13 Appendix C – List of Surfaces
The file must contain the ordered list of surfaces (from top to bottom). For each surface the user must specify

the offset between the surface and the drive nodes (the nodes near the surface) and the block thickness

between the drive nodes for the block below the surface (block thickness may change between layers).

Example:

surface_test_top.dat 70 140

surface_test_bottom.dat 70 140

20

14 Appendix D – Gridded surface file format
The boundary geological surface file (in GRASS ASCII format) has a header section that describes the location

and size of the data, followed by the elevation of the surface points.

The header has 6 lines:

north: xxxxxx.xx

south: xxxxxx.xx

east: xxxxxx.xx

west: xxxxxx.xx

rows: r

cols: c

The north, south, east, and west field values entered are the coordinates of the edges of the geographic

region. The rows and cols field values entered is the dimension of the data matrix. The following are 44 rows

of 52, float or double data. Null values are identified by a value greater of z_max (or lower of z_min).

Example from the case study:

north: 801750

south: 655550

east: 191250

west: 17850

rows: 44

cols: 52

1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 1.0E5 -3714.75 -3738.88 -3831.66 ……

21

15 Appendix E – Tough2Viewer.dat file format
The geometrical TOUGH2Viewer file has no header. For each block, the data structure is as follows (blank

space separated values):

id x y z n_vertex [n_vertex(x,y,z)] n_faces [n_faces(i_vertex, i_vertex+1, …)] [n_faces(vx,vy,vz)]

Where:

Id: integer, block label. Not used.

x y z: block node coordinate

n_vertex: integer: number of block vertexes.

[n_vertex(x,y,z)]: sequence of x, y, z coordinates for each vertex enclosed between bracket. Coordinates are

relative to the blocks center node.

n_faces: number of faces of the cell

[n_faces(i_vertex, i_vertex+1, …)]: bracket sequences (one for each face) of integers representing the vertex

of each face.

[n_faces (vx, vy, vz)]: for each face, a bracket sequence of double representing normalized vector of the

normal to the face.

To generate this file format from voro++, it is necessary to use the following command line options: "%i %q

%w %p %s %t %l".

Example, one line for one block (in the following is reported only one line):

0 27.4053 27.4053 -202.79 10 (-27.4053,-4.62727,-83.8273) (80.8347,-27.4053,-33.616) (-27.4053,-

27.4053,198.378) (61.7832,61.7832,10.0153) (-27.4053,80.8347,-33.616) (13.0548,72.5947,-14.6858)

(72.5947,13.0548,-14.6858) (61.2534,61.2534,6.96889) (-5.43639,-27.4053,-84.3027) (-27.4053,-27.4053,-

92.4444) 8 (1,6,7,5,4,0,8) (1,2,3,6) (1,8,9,2) (2,4,5,3) (2,9,0,4) (3,7,6) (3,5,7) (8,0,9) (0.451894,0.451894,-

0.769145) (0.906139,-0.0132613,0.422771) (3.18904e-016,-1,1.22161e-017) (-

0.0132613,0.906139,0.422771) (-1,9.51153e-016,-1.68966e-015) (0.924535,0.314346,-0.215455)

(0.314346,0.924535,-0.215455) (0.327509,0.334319,-0.883724).

22

16 Appendix F – Statistic.log file format
For each rocktype, a short resume of the blocks volume (min, max, average, total) is reported. Moreover, a

CONNE section resumes the elements with min and max number of connections, minimum, maximum and

average interface area.

Example of a statistic.log file:

Number of rocktype= : 3

Statistics for rocktype: -1

Number of ELEME: 7983

Min Volume cell: 4.1036e+09

Max Volume cell: 2.3436e+10

Total Volume : 7.5717e+13

mean Volume : 9.4848e+09

Statistics for rocktype: 1

Number of ELEME: 36258

Min Volume cell: 3.1280e+08

Max Volume cell: 1.9197e+09

Total Volume : 1.9528e+13

mean Volume : 5.3806e+08

Statistics for rocktype: -2

Number of ELEME: 7983

Min Volume cell: 9.1746e+08

Max Volume cell: 2.7106e+10

Total Volume : 6.8759e+13

mean Volume : 8.6132e+09

Total Vol(con.vol) : 1.6401e+14

Total Vol sum rock : 1.6401e+14

Difference : -0.21875 [-1.33372e-13 (percentage)]

Number of CONNE: 192186

min num. conne : 6 element [A21 1]

max num. conne : 25 element [H72 1]

mean num. conne: 3.6895

min conne area : 1.0021

23

max conne area : 7.225e+06

17 Appendix F – Complete list of VORO2MESH input keywords.
The voro.par contains all directives and options for generating the MESH file for TOUGH2 with VORO2MESH.

KeyWord Name Default
value

Keyword description

add_walls 0
(int)

The voro++ library offer the possibility of cutting the
domain by 3D planes.
When used, this function need of a file named
"wallslist.dat". The file has to contain a list of 4 space
separated values ([A] [B[[C[[D]), that represent a
plane using the implicit formulation Ax+By+Cz+D>0
(the cutting wall).
Range values are:
0:no;
1:yes.

assign_infinite_volume_to_boundary 0
(int)

In an ustructured grid is not so immediate understand
which blocks are on the boundary (geometrically
speaking) or not. This option allow to assign a inifinite
volume to blocks that are “touching” a wall plane or
on of the six domain planes.
Range values are:
0:no;
1:yes.

assign_roktype_to_gener 0
(int)

When calculating GENER elements using some
criterion (like depth or primary values threshold), the
rocktype is modified, for helping in visualization.
Range values are:
0=no modify;
1=modify rocktype to . rocktype=
assign_roktype_to_gener

auto_nxnynz 1
(int)

The voro++ library divide the domain in sub domains
to speed up the node points search during voronoi
cell computation. The user can choose if give in input
the subdivision (along the 3 cartesian axis)
Range values are:
0=manual;
1=auto.

block_names_format 0
(int)

The default (standard) block name format of TOUGH2
is A3I2 (3 characters, 2 numbers).
This option allow to increase the number of numbers
to be used for block naming as:
0 (default),standard A3I[len_char_eleme_name-3];
1 use I[len_char_eleme_name]

blocks_thick 70.0
(double)

Used when fit_surface keyword>0. It define default
block thickness.

check_4_duplicates 1
(int)

The Voronoi discretization assume that no more of
one point can be located in the same position. If the

24

KeyWord Name Default
value

Keyword description

distance between two pairs of points is lower of
toler_dist2, then execution of VORO2MESH is stoped.

coarse_mesh 1
(int)

Not implemented

create_gener 0
(int)

For special cases, a GENER file is created.
Range values are:
0=no;
1=create.

create_incon 0
(int)

A ready TMGAS compatible file is created, with
variable assignation driven by linear interpolation of
the coordinates:
X1=A1x+B1y+C1z+D1. If create_incon>0, then a file
incon.dat must be created. The file incon.dat must
contain 4 rows with 4 double space separated
representing A1 B1 C1 D1 for thec calculation of the
primary variable as defined previously.
Range values are:
0=no;
1=yes, create.

cut_model_top_bottom 0
(int)

When fit_surface>0, the domain is divided in
n_of_surfaces+1 layer with automated rocktype
asignation. If cut_model_top_bottom>0, then
uppermost and bottommost layer are excluded from
the mesh FILE.

CVT_max_iter 500
(int)

Maximum number of iteration of CVT calculation.

delta_surface_cut_off 1.0
(double)

When usinf fit_surface>0, a check of the surface is
performed. For each xy node, the distance between
2 surface have to be greather than
delta_surface_cut_off. If not, the corresponding
mesh generationis skypped generating :
A pinch out
A mesh refinement

dist_mode_por_perm 1
(int)

For special cases, VORO2MESH can compute cell by
cell permeability values (TMGAS special input
feature). The compute of the distance between the
location of the node and the referenced table of
permeability and porosity can be done on 2D or 3D
mode.
Range values are:
1: 2D
2: 3D

divide_control_inside_points 0
(int)

If fitsurface>0, for each layer between two surfaces,
a different rocktype is assigned to top drive nodes,
bottom drive nodes and inside node.
 Range values are:
0: no distinction between drive and inside node;
1: the rocktype assignation consider drive nodes and
inside nodes.

End (string) The voro.par termination line is “end=end”.

25

KeyWord Name Default
value

Keyword description

exclude_out_pts 1
(int)

During reading of in.dat file, all points outside the
domain (out from xmin,ymin,zmin and out of
xmax,ymax and zmax, and outside from the walls
domain are excluded from input. As the same way,
when using fit_surface>0 some points can be outside
from the domain. This option allow also skip writing
outside points.
Range values are:
0: no
1: skip

export_surface_as_ply 0
(int)

The input surface, that have to be in GRASS ASCCI
format (see Errore. L'origine riferimento non è stata
trovata.), can exported as PLY file, usefuel for
visualization.
Range values are:
=: no export
1: yes, export,

fit_surface 0
(int)

This option activate automated seed points
generation. If fit_surface>0, then a file named
SurfaceList.dat have to present, plus a set of surface
file as specified in the SurfaceList.dat file.
The SurfaceList.dat file must contain a list of file name
that represent the geological separation between
geological layers. The format of the file
SurfaceList.dat is for each line:
[surface name file] [block_thickness] [offset from
surfaces].
Note that at list 2 surfaces have to present to
compute the discretization.
Range values are:
0: no
3: ->fit_surface3() execution
5: ->fit_surface5() execution: an improved version of
fit_surface3() function with local refinement
7: ->fit_surface7() execution: an improved version of
fit_surface5() function with resolved bugs and fixes.
Range values are:
0: no fit
3: first version implemented
5: classical
7: advanced

format_por_perm_tables 0
(int)

The format of the txt file containing porosity and
permeability information. The actual versin is just for
reading [x] [y] [z] [por] [perm].
Under construction other formats.
Range values are
0;-> [x] [y] [z] [por] [perm].

HLBFGS_FLAG 0 Not used

26

KeyWord Name Default
value

Keyword description

(int)

iCVT 0
(int)

VORO2MESH is able to compute a Centroidal Voronoi
Tessellation (CVT) (under development).
By activating this option, a iterative (number of
iteration= CVT_max_iter) Lloyd (or more complicated
methods not described here) relaxation of the seed
points is performed to obtain a CVT tessellation.
Range values are:
iCVT=1 -> CVT_Lloyd();
Under developments:
iCVT=2 -> not used
iCVT=3 -> CVT_Lloyd_surface()
iCVT=4 -> Antonio De Lorenzo()
iCVT=11 -> CVT_Lloyd_weighted()
iCVT=12 -> CVT_withHLBFGS();
iCVT=13 -> CVT_withHLBFGS_with_Lp();

i_CVT_example 1

(int)
When using iCVT=11, special density functions for
weighted CVT computation is set by using this
parameter. To be documented in a future manual
“Weighted CVT with VORO2MESH”.

k_cvt 0.0
(double)

Not used

k_s 0.0
(double)

Not used

len_char_coordinates 10
(int)

The standard length for coordinates in the MESH file
is 10 characters. To improve precision, a different
value can be used. Note that tough2viewer is only
able to read MESH file with standard length.

len_char_cosine 10
(int)

len_char_d1d2 10
(int)

len_char_eleme_name 5
(int)

len_char_eleme_surface 10
(int)

len_char_surface 10
(int)

len_char_volume 10

local_refine_number 3
(int)

If fit_surface>3 (eg 5 or 7), a block is refined when the
ration thickness/edge dimension is lower than
block_thickness/(min(dx,dy).

max_dist_por_perm 3400.0
(double)

In special cases, the block by block
porosity/permeability assignation take a set of
neighbouring values with distance lower than
max_dist_por_perm.

min_2d_dist 0.1
(double)

27

KeyWord Name Default
value

Keyword description

min_distance_from_walls 0.1
(double)

Points near walls are skipped from input if distance is
lower than min_distance_from_walls.

n_layers 5
(int)

When fit_surface>0 and vertical<2, the space
between the upper and the lower drive nodes is
divided in n_layer blocks.

n_x 7
(int)

Voro++ option. The number of subdivision domain for
n_x node search. Ignored if auto_nxnynz=1

n_y 7
(int)

Voro++ option. The number of subdivision domain for
n_y node search. Ignored if auto_nxnynz=1

n_z 7
(int)

Voro++ option. The number of subdivision domain for
n_z node search. Ignored if auto_nxnynz=1

number_of_points_por_perm 4
(int)

In special cases, the block by block
porosity/permeability computation is done with the
specified number of data.
Range values:
4.

offset 70.0
(double)

If fit_surface>0, is the default values for the
drive_node points distance from the surfaces. A value
for each surface(up and down) is specified in the
surfacelist.dat file.

offset_rocktype_boundary 10
(int)

When a block is geometric boundary, then it can have
a different rocktype (usefull for visualization or
identification) defined as
rocktype=rocktype+offset_roccktype_boundary

por_perm_upscaling 1
(int)

1:average
2.Logarithmic average

print_vtkXML_file 1
(int)

Write a vtu file of the model

r_max 2.0
(double)

Obsolete. Not used

read_por_perm_tables 0
(int)

For special case, compute the block by block
porosity/permeability computation for TMGAS input
files

read_rocktype 1
(int)

The in.dat file can contain the rocktype material for
each block. The rocktype is assigned in the MESH file
(see TOUGH2 manual for details).
Range value for the variable are:
0=no (in.dat with 4 columns);
1=yes(in.dat with 5 columns).

refine_mesh 1
(int)

Not used

toler 1.0E00
(double)

Interface area tolerance. If the area is lower than
toler, then connection is skipped from output CONNE

tolerance_walls 1.0E-03
(double)

To evaluate if a point belong to the domain, is
evaluated the implicit equation ax+by+cz-
d>tolerance_walls.

two_digit 1
(int)

In the previous version of visual studio, the default
scientific notation was wth 3 digit (1.0E+001). The
two digit option give 1.0E+01) set the number of digit
to 2.

28

KeyWord Name Default
value

Keyword description

use_w_as_first_letter_rocktype 0
(int)

For the T2well is needed to know what are wells
elements by naming with a “w” as first character of
the eleme name.

variable_n_layers 0
(int)

If fit_surface>0 the number of block between drive
nodes can be fixed or variables.

verbose 0
(int)

Define the grade of printing message to the logfile
and screen.
Range values are:
0: limited printout;
1: detailed printout.

vertical 0
(int)

The position of the inside points.
0: along conjunction line, are inserted n_layers
blocks.
1: along the vertical line passing for the centre of the
gridded surface, are inserted n_layers blocks.
2: a regular grid is build internally to the drive nodes.
The number of blocks can vary.

wall_type 0
(int)

Obsolete, not used.

write_boundary_info 0 In the MESH file, a string of 0 or 1 is written to identify
ia a block “touch” a boundary or a cutting wall.

write_boundary_surface 0
(int)

The area of the face created by the walls is written in
the MESH file. Useful for boundary conditions
assignation.

write_preview_vtu 0
(int)

After node point creation with fit_surface is created
to take a preview of the mesh
Range values are:
0: no;
1: yes.

write_tough2viewer_dat 1
(int)

Range values are:
0: no;
1: yes; (%g)
2: yes (%.17f).

x_min (double) Domain definition

y_max (double) Domain definition

y_min (double) Domain definition

z_max (double) Domain definition

z_min (double) Domain definition

x_max (double) Domain definition

