Stranding ahoy?

Heterogenous transition beliefs and capital investment

Louison Cahen-Fourot 1, Emanuele Campiglio 2, Louis Daumas 3, Michael Miess 4, Andrew Yardley 5

ESEE Conference Pisa - 16 June 2022

¹Roskilde University
²University of Bologna
³Centre International de Recherche en Environnement et Développement (CIRED)
⁴Environment Agency Austria
⁵Offshore Renewable Energy Catapult

- Urgent to mitigate climate change
 - $\bullet~\rightarrow$ Transition to low-carbon technologies
 - $\bullet \ \rightarrow$ More investments in low-carbon capital needed
- How do firms choose investments?
 - Our assumption: relative future profit expectations
- Profit expectations are heterogeneous across firms
 - Technological and financial variables
 - Transition speed expectations
 - Time preferences (e.g. discount rate; planning horizon)

- Research question: how are investment choices affected by
 - Heterogeneity of expectations;
 - Time preferences?
- We develop small electricity model with:
 - Low- and high-carbon capital stocks
 - Heterogeneous transition expectations \rightarrow stranding expectations
 - Heterogeneity of expectations increasing in psychological time
 - Finite planning horizons

- Expectations of more rapid transition \rightarrow higher low-carbon investment share
- Heterogeneity matters
 - Lower heterogeneity \rightarrow Bang-bang solutions
 - Higher heterogeneity \rightarrow Convergence to a 'full hedging' investment allocation
- Discounting
 - Higher discount rate \rightarrow Lower low-carbon investment
 - Heterogeneity effects non-linearly exacerbated by higher discount rate
- Investment planning horizon
 - Ambiguous non-linear effects

The model

- Exogenously expanding electricity demand e^d
- Two technologies (i = l, h)
 - High-carbon incumbent K_h with productivity ξ_H
 - Low-carbon niche K_I with productivity ξ_L
- Merit order in electricity system
 - K_L first in merit order $\rightarrow K_L$ always fully utilised $(u_L = u_L^f)$
 - K_H provides the remainder \rightarrow High-carbon capacity utilisation:

$$u_H = \frac{e_H}{\xi_i K_i}$$

- Firm *j* chooses investments calculating relative return rates of technologies *i* ∈ {*l*, *h*}, within planning horizon *S*
 - Sum of discounted stream of expected profits obtainable from a unit of *K* (e.g. a GW of installed capacity)

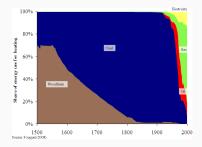
$$r_{i,t} = \sum_{s=t}^{S} \beta^s \mathbb{E}_t^j(\pi_{i,s})$$

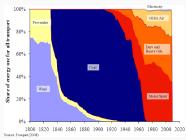
Firms compare return rates. If φ = r_L - r_H > 0 they will invest in K_L; if not, in K_H

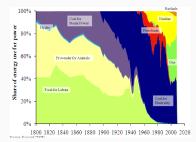
Three components of unitary profit rate π_i

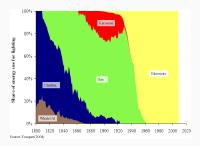
- Revenues
 - Electricity price p_e fixed through PPA
 - Capital productivity ξ_i fixed in capital vintage available
 - Capital utilisation u_H depends on transition expectations
- Capital costs
 - Fixed installation costs in each period c_i^k
 - A portion ψ_i of investment is financed via bank lending
 - α_i is capital recovery ratio, given interest rate and loan tenure
- Variable costs
 - Purchase of fossil fuel for high-carbon firms

$$\mathbb{E}(\pi_{L,s}) = p_e \xi_L - \alpha_L \psi_L c_L^k$$
$$\mathbb{E}(\pi_{H,s}) = p_e \xi_H \mathbb{E}_t^j(u_{H,s}) - \frac{p_f}{\xi_f} \xi_H \mathbb{E}_t^j(u_{H,s}) - \alpha_H \psi_H c_H^k$$

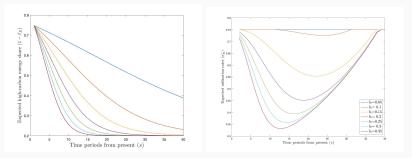

 \rightarrow Only u_H remains subject to uncertainty


• We assume stranding expectations to be normally distributed around a central expectation path


$$\mathbb{E}_t^j(u_{H,s}) = u_{H,s}^* + \varepsilon_{u,s}^j$$


- $u_{H,s}^*$ is the benchmark 'rational stranding' scenario
 - I_{H_s} is expected to either satisfy e_s^d at $u_{H_s} = u_H^f$ or be zero
 - Calibrated to reflect 'dominant narratives'
- $\varepsilon_{u,s} \sim \mathcal{N}(0, \sigma_{u,s})$ represents heterogeneity of expectations
 - Higher $\sigma_u \rightarrow$ Higher stranding expectations heterogeneity

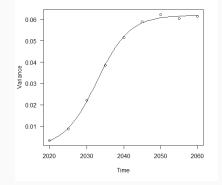
Technological transitions follow a logistic pattern


Source: Fouquet (2008)

Central transition expectations

 Firms expect share of low-carbon energy ℓ to follow logistic pattern with intrinsic growth rate b_ℓ:

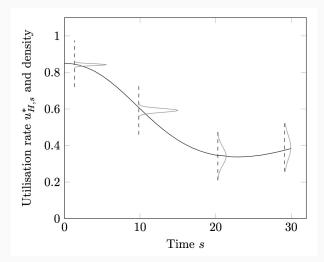
$$\mathbb{E}(\ell_{s+1}) = \mathbb{E}(\ell_s) \left[1 + b_\ell \left(1 - \frac{\mathbb{E}(\ell_s)}{\mathbb{E}(\bar{\ell})} \right) \right]$$


• \rightarrow We derive expected path for $u^*_{H,s}$

Expected dynamics of $\mathbb{E}(1-\ell)$ and $\mathbb{E}(u_H^*)$ for different values of b_ℓ

Heterogeneity time profile

- Heterogeneity in IPCC AR6 projections increases logistically $\rightarrow \sigma_{u,s}$ moves logistically in time s
- Firms mostly agree in the short run but rapidly disagree over the medium/long-run



Variance of IPCC AR6 projections of the shares of renewables in electricity production

$$\sigma_{u,s+1} = \sigma_{u,s} \left[1 + b_{\sigma_t} \left(1 - \frac{\sigma_{u,s}}{\bar{\sigma}_u} \right) \right]$$

A schematic representation of expectation densities

• For a given central expectation scenario, σ_u becomes larger in psychological time s

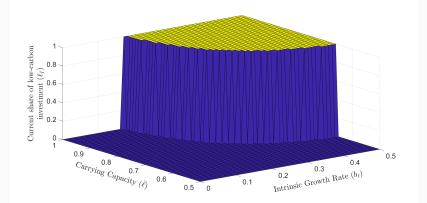
- We want to compute low-carbon share of investments ℓ_I
 - In our setting, this is equivalent to the probability for an individual firm to find a positive φ (i.e. $r_L > r_H$)
- We exploit the properties of Gaussian distribution to move from u_s distributions to r_H and φ distributions

$$\ell_{I} = \mathcal{P}(r_{L,t} > r_{H,t}) = \mathcal{P}(\varepsilon_{\varphi} < \varphi^{*}) = \Phi(\varphi^{*})$$

Calibration

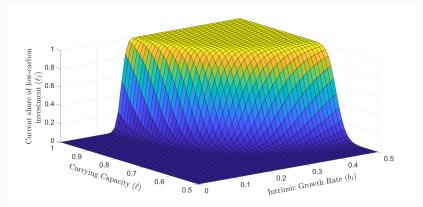
Technological and financial parameters

Symbol	Variable	Value	Unit
<i>g</i> _e	Energy demand growth	0.0048	n.a.
ξΗ	Productivity of high-carbon capital	4.38	TWh/GW
ξL	Productivity of low-carbon capital	3.15	TWh/GW
ξ_f	Productivity of fossil fuels	1/8.75	TWh/tInBtu
δ_H	Depreciation of high-carbon capital	0.03	n.a.
δ_L	Depreciation of low-carbon capital	0.045	n.a.
c_H^K	High-carbon capital cost	1.5	bln\$/TWh
c_l^K	Low-carbon capital cost	1.75	bln\$/TWh
$\bar{\psi_H}$	Debt-to-investment ratio (high-carbon)	0.55	n.a.
ψ_L	Debt-to-investment ratio (low-carbon)	0.75	n.a.
ι _H	Interest rate on loans (high-carbon)	0.045	n.a.
ιL	Interest rate on loans (low-carbon)	0.05	n.a.
LT _H	Loan tenor (high-carbon)	15	years
LT_L	Loan tenor (low-carbon)	15	years
u ^f	Full utilisation rate	0.75	n.a.
p _f	Price of fossil fuels	0.002	bn\$/tlnBtu
p_e	Price of electricity	0.2	bn\$/TWh

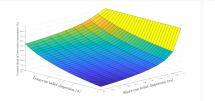

• No data to base behavioural parameters on \rightarrow Sensitivity analysis on their effect on ℓ_I

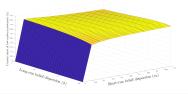
Variable	Meaning	Reference	Sensitivity	Step
		value	range	
S	Length of planning horizon	20	[2, 40]	1
ge	Expected growth of demand	0.048	[0, 0.1]	0.01
b_ℓ	Intrinsic growth rate for ℓ	0.2	[0.01, 0.35]	0.01
b_{σ}	Intrinsic growth rate for σ	0.5	[0.1, 1]	0.1
σ_{min}	Opinion diversity at time t	0.01	[0, 0.1]	0.01
σ_{max}	Maximum opinion diversity	1	[0.01, 5]	0.1
ρ	Corporate discount rate	0.05	[0.01, 0.1]	0.01
$\overline{\ell}$	Maximum expected ℓ	0.8	[0.6, 1]	0.1

Numerical results


The no-heterogeneity benchmark

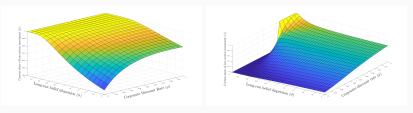
- $\sigma_{u,s} = 0$, $\forall s \rightarrow$ bang-bang solution
- High enough b_ℓ and $\bar\ell o$ Fully decarbonised investments


Introducing expectations heterogeneity


Expectations heterogeneity (σ_{u,s} ≠ 0) makes investment decisions smoother

The balancing effect of opinion diversity

- Higher heterogeneity (higher σ_0 , $\bar{\sigma}$ or b_{σ}) \rightarrow Convergence to a 'full hedging' investment allocation $\ell_I \approx 0.5$
 - Ambitious central scenarios \rightarrow heterogeneity tames ℓ_I
 - Unambitious \rightarrow heterogeneity tames ℓ_I (only up to a point)
- Short-term opinion diversity has stronger effects than long-term one

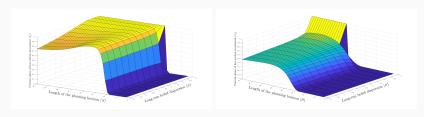


Ambitious central expectations

Unambitious central expectations

Opinion diversity and the discount rate

- The discount rate ρ has an overall expected negative effect on low-carbon investment
- Heterogeneity effects non-linearly exacerbated by higher discount rate



Ambitious central expectations

Unambitious central expectations

Farsightedness and opinion diversity

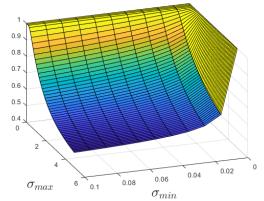
- Ambiguous effects of planning horizon length S
 - Positive: higher S allow to look further along the transition path \rightarrow higher stranding
 - Negative: farsightedness gives more room to heterogeneity and uncertainty

Ambitious central expectations

Unambitious central expectations

Conclusions

- We propose a simple way to introduce heterogeneity in agents' transition expectations and link it to investment behaviours
- We show that:
 - Transition expectations affect investment choices
 - Expectation dispersion can push/hamper transition dynamics, depending on central scenario ambitions
 - Long-termism: ambiguous effects on investment allocation
- Further work:
 - Full analytical study of the paper
 - Dynamical version with belief switching
 - Apply other distributions


Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

Modulating dissensus

- We now focus on $\sigma_{u,min}$ and $\sigma_{u,max}$
- A higher variance means a flatter distribution around u^{*}_s, converging towards ℓ_I ≈ 0.5 (almost equal shares of investments due to censoring)

Value of ℓ_I at time 1 depending on parameter values

Farsightedness

- Ambiguous effects of planning horizon length S
 - Positive: higher S allow to look further along the transition path \rightarrow higher stranding
 - Negative: farsightedness gives more room to heterogeneity and uncertainty

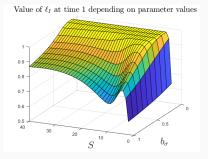


Figure: Sensitivity analysis on parameters S and b_σ

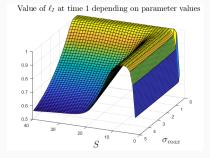


Figure: Sensitivity analysis on parameters S and σ_{max}

Discount Rate

• Finally: discount rate ρ exacerbates the role of the central expectation

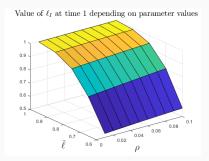


Figure: Sensitivity analysis on parameters $\bar{\ell}$ and ρ

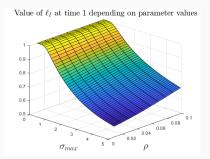


Figure: Sensitivity analysis on parameters σ_{max} and ρ