

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Believe me when I say green!

Heterogeneous expectations and climate policy uncertainty

E. Campiglio^{1,2} F. Lamperti^{3,2} R. Terranova²

¹University of Bologna ²RFF-CMCC European Institute on Economics and the Environment ³Sant'Anna School of Advanced Studies

April 21, 2022

Motivation

- Urgent to mitigate climate change
 - $\bullet \ \to \mathsf{Decarbonisation}$
- Markets won't go low-carbon by themselves
 - $\bullet \ \rightarrow {\sf Policies} \ {\sf needed} \ {\sf to} \ {\sf modify} \ {\sf relative} \ {\sf prices}$
 - Long-lived capital assets → Future policies matter!
- Expectations on future policies
 - Policy-makers announced objectives (e.g. net-zero by 2050)
 - Degree of trust in policy-maker's commitment

Policy-makers come and go

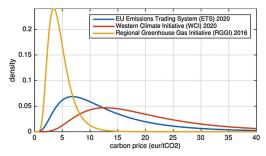
Tony Abbott (2014)

"..the repeal of the carbon tax means a \$550 a year benefit for the average family" "On energy, I will cancel job-killing restrictions on the production of American energy - including shale energy and clean coal - creating many millions of high-paying jobs"

Donald Trump (2016)

Transition-related disruptions

- Transition-related costs (unemployment, stranding, financial volatility)
- $\bullet \ \to {\sf Diversion \ from \ plans}$



Gilets Jaunes movement (2018)

Heterogenous climate policy sentiments

- Context of uncertainty and volatility
 - \rightarrow Heterogeneity of expectations, opinions, beliefs ('sentiments')
- Evidence of heterogeneous expectations in climate policy
 - See Refinitiv Carbon Market Survey

Log normal distributions of carbon prices fitted to Refinitiv 2015 survey results. Source: Nemet et al. (2017)

Research aims

Sentiments and transition

How is the low-carbon transition affected by heterogeneity/volatility of climate-related sentiments?

Policy commitment

How do climate-related sentiments (and transition) react to policy uncertainty?

Effective climate policies

How should the policy-maker behave when announcing and implementing climate policies?

+ Methodological aim

Forward-looking expectations in non-optimisation transition models

Our contribution

- Firms allocate investment across two technologies based on expected costs
 - Low- and high-carbon capital stocks
 - Costs expectations affected by tax expectations
- Heterogeneous policy expectations
 - Two types of tax-related beliefs: sceptics and believers
 - Firms can switch belief depending on past accuracy
- Trade-offs in policy decisions
 - Policy-maker wants to stick to plan but is also afraid of transition costs
- $\bullet \to \mathsf{Dynamic}$ feedback loop between beliefs, investments and policy decisions

・ 同 ト ・ ヨ ト ・ ヨ ト

Links to literature

- Rapid and orderly transition to carbon-free economy
 - Economic effects of climate policy uncertainty: van der Ploeg & Rezai (2020); Fried et al (2021)
 - Climate sentiments: Engle et al. (2020); Noailly et al. (2022); Basaglia et al. (2022)
 - Credible commitment: Helm et al. (2003); Nemet et al. (2017)
 - Transition risks: Semieniuk et al. (2021)
- Modelling framework
 - Rooted in discrete choice theory (McFadden 1973)
 - Heterogeneous expectations lit on finance & monetary policy: Brock&Hommes 1997, 1998; De Grauwe and Macchiarelli 2015; Hommes & Lustenhouwer 2019; Assenza et al. 2021)
 - Technological diffusion lit: Mercure et al 2014; Mercure 2015

Overview of results

- A low-carbon steady state exists if the tax target and the policy-maker's commitment to climate policy are sufficiently high
- Ambitious tax targets coupled with low commitment lead to the emergence of multiple steady states, including a high-carbon one
- Firms' beliefs about climate policy might delay transition, even in the presence of full policy commitment
- Delaying climate policy increases the transition risks involved to the point that the transition might fail
- Under weak commitment, polarised beliefs lead to a faster transition

本間 지 제품 지 제품 지 분들

The model

Analytical results

Calibration

Results

Conclusions

Climate policy

- At the beginning of the simulation run, the policy-maker announces a schedule of future tax targets $\bar{\tau}_t \ \forall t$
 - Long-term decarbonisation objectives (EU: net-zero by 2050)
 - \rightarrow Implied optimal carbon tax (IAMs: ENGAGE scenarios)
- We assume an exponential tax announcement

$$ar{ au}_t = ar{ au}_0 (1 + ar{ extbf{g}}_ au)^t$$

where $\bar{\tau}_0$ is initial tax rate and \bar{g}_τ is the announced growth rate of τ

Firms' beliefs

- Firms have heterogeneous beliefs about credibility of policy commitment. We assume two belief categories *j* = *b*, *s*
 - Believers (b) trust policy-makers announcements more
 - Sceptics (s) trust policy-makers announcements less
- At every time t + r, expected tax rate is:

$$E_{j,t}(g au) = \epsilon_j ar{g}_{ au}$$

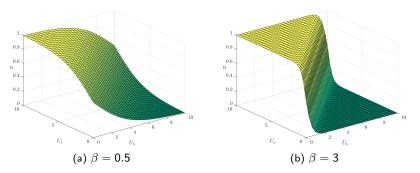
with $\epsilon_j \in [0, 1]$ indicating the degree of trust in the announced policy, and $\epsilon_b > \epsilon_s$

How do firms choose their beliefs?

• The share of firms adopting each belief type $n_j \in [0, 1]$ is then determined by

$$n_{j,t} = \frac{\exp(-\beta U_{j,t-1})}{\sum_{j} \exp(-\beta U_{j,t-1})}$$

with β is the belief intensity of choice


• Firms evaluate the accuracy of their past beliefs via a fitness function *U* (Brock and Hommes, 1997, 1998):

$$U_{j,t} = \eta (E_{j,t-1}(\tau_t) - \tau_t)^2 + (1 - \eta) U_{j,t-1}$$

where $\eta \in [0,1]$ is a memory (or belief inertia) parameter

The model

The role of belief intensity choice β

Share of believers n_b as a function of fitness measures U_b and U_s

- $\beta \rightarrow 0$: random choice $(n_j = 0.5)$
- $\beta \to \infty$: all agents switch at the margin $(n_j \text{ either 0 or 1})$

The model

Cost expectations

 Depending on their belief, firms evaluate the net present value Θ_i of expected costs of producing with technologies h and l:

$$\mathsf{E}_{j,t}(\Theta_{i,t}) = \sum_{r=t+1}^{R} \rho^r \theta_{i,r} (1 + \mathsf{E}_{j,t}(\tau_{i,r}))$$

where

- ρ: discount rate
- R: planning horizon
- θ *i*-specific production costs
- τ: tax rate on high-carbon production costs θ_h

Roberta Terranova

Capital investments

 Based on their expected costs, the *j*-specific share of low-carbon investment χ_{j,t} ∈ [0, 1] is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_j(\Theta_i)$ the expectation of population j on technology i production costs

Aggregate investment and capital allocation

• The low-carbon investment share for the overall economy is

 $\chi_t = n_{b,t}\chi_{b,t} + n_{s,t}\chi_{s,t}$

• We define the low-carbon share of capital

$$\kappa_t \equiv \frac{K_{l,t}}{\sum_i K_{i,t}}$$

The model

Transition risks and policy commitment

• Transition risk index π function of low-carbon capital share κ and planned tax rate $\overline{\tau}_t$:

$$\pi_t = 1 - \frac{1}{1 + a(1 - \kappa_t)\bar{\tau}_t}$$

where a represents vulnerability to transition risks

- Transition disruption amplification: financial exposure; welfare system fragility; social turmoil; etc.
- Policy-maker then sets actual tax rate τ following:

$$\tau_t = c\bar{\tau}_t + (1-c)\bar{\tau}_t(1-\pi_t)$$

where $c \in [0, 1]$ is the policy-maker weight given to climate objectives against transition cost mitigation

Model timeline

• Time *t*₀:

- Policy-maker announces a tax schedule $ar{ au}_{t_0+r} = ar{ au}_0(1+ar{ au}_{ au})^r$
- Firms form initial beliefs
- At each following time t:
 - Firms observe accuracy of their previous expectations, confronting $E_{t-1}(\tau_t)$ with τ_t
 - Firms decide whether to switch belief (*n_t* is determined)
 - Firms decide how to invest $(\chi_{j,t} \text{ are determined } \rightarrow \kappa_t)$
 - Policy-maker observes κ_t and decides tax rate τ_t

SMOOTH

The model

Analytical results

Calibration

Results

Conclusions

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - $\bar{\tau}$ is treated as a fixed parameter
 - $\delta = 1$, $\eta = 1$
 - $\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$
 - $\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$
- κ evolves as follows:

$$\kappa_{t+1} = n_{b,t+1}(\chi_{b,t+1} - \chi_s) + \chi_s$$

where $n_{b,t+1}$ is a function of κ_t :

$$n_{b,t+1} = \frac{\exp\left[-\beta\left(\Pi - \bar{\tau}\right)\right]}{\exp\left[-\beta\left(\Pi - \bar{\tau}\right)\right] + \exp\left[-\beta\left(\Pi - \bar{\tau}_{0}\right)\right]}$$
$$\Pi = \bar{\tau}\left[c + \frac{(1-c)}{1 + a(1-\kappa_{t})\bar{\tau}}\right]$$

王曰曰 소문 제 귀 제 제 제

Steady states

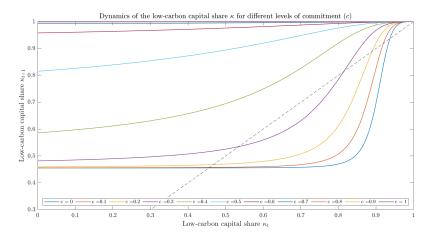
- Low-carbon steady state $(\kappa
 ightarrow 1)$ exists if
 - Tax target $\bar{\tau}$ is higher than a threshold value

$$\bar{\tau} > f(\rho, \gamma, \theta_h) + \left(\frac{\theta_l - \theta_h}{\theta_h}\right)$$

Details

• Commitment c is higher than a threshold value

$$c > \frac{1}{2} + g_l(\bar{\tau}_0, \beta, \chi_s) \left(\frac{1}{\bar{\tau}}\right) + h_l(a, \beta, \bar{\tau}_0, \chi_s) \left(\frac{1}{\bar{\tau}^2}\right)$$

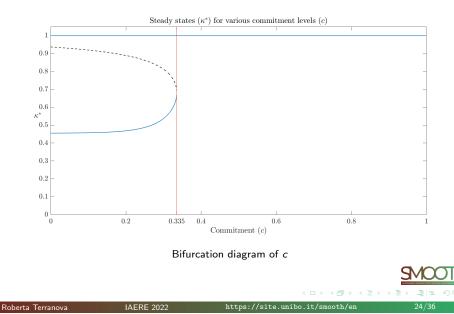

Details

• High-carbon steady state ($\kappa \rightarrow \chi_s$) exists if

$$c < \frac{1}{2} + g_h(\bar{\tau}_0, \beta, \chi_s) \left(\frac{1}{\bar{\tau}}\right) + h_h(a, \beta, \bar{\tau}_0, \chi_s) \left(\frac{1}{\bar{\tau}^2}\right)$$

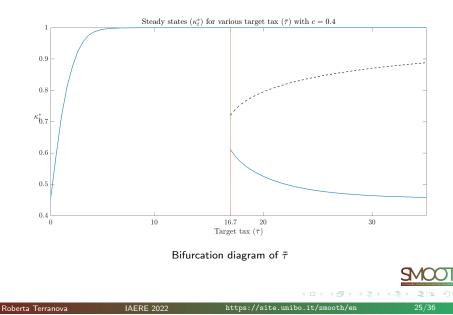
Analytical results

Low commitment creates a high-carbon trap



 κ_{t+1} as a function of κ_t , for various values of c

イロト イヨト イヨト イ


Analytical results

Low commitment creates a high-carbon trap

Analytical results

When commitment is low, no ambitious announcements

The model

Analytical results

Calibration

Results

Conclusions

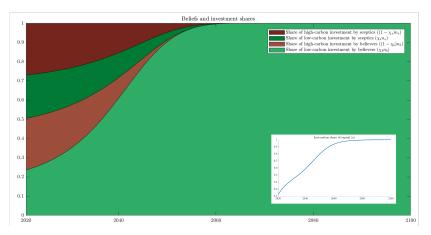
Calibration strategy

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Investment and opinion behaviours
 - Esp. intensity of choice parameters β and γ
 - Literature + sensitivity analysis
- Policy parameters
 - Calibrated on IAM projections
 - Scenario analysis
- Time: 320 quarters (2020-2100)

Details

The model

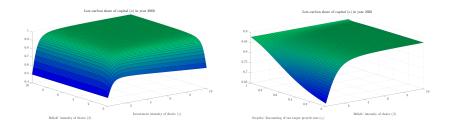
Analytical results


Calibration

Results

Conclusions

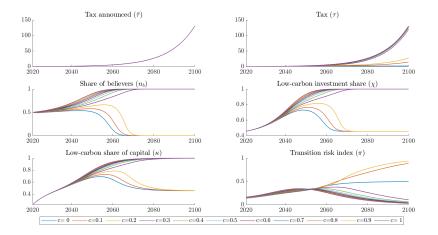
Benchmark scenario



Evolving shares of low/high-carbon investments by sceptics/believers

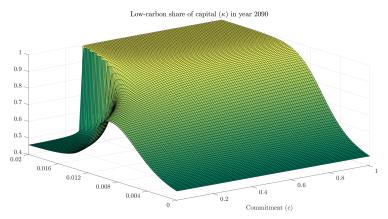
イロン イロン イヨン イヨン

-≣|= 29/36


Belief/investment intensity of choice and beliefs polarisation


Low-carbon capital share κ as a function of β and γ (left), ϵ_s and β (right)

Transition dynamics under various commitment levels


Interaction between commitment, belief/investment intensity of choice and beliefs polarisation

Low-carbon capital share κ as a function of β and γ (left), ϵ_s and β (right)

Commitment and tax announcements

Tax target growth rate $(g_{\bar{\tau}})$

Low-carbon capital share κ as a function of g_τ and c

イロト イヨト イヨト イ

The model

Analytical results

Calibration

Results

Conclusions

Conclusions

- A low-carbon steady state exists if the tax target and the policy-maker's commitment to climate policy are sufficiently high
- Ambitious tax targets coupled with low commitment leads to the emergence of multiple steady states, including a high-carbon one
- Policy uncertainty and heterogeneity of beliefs might delay transition even in the absence of transition risks
- Under weak commitment, polarised beliefs lead to a faster transition
- A policy-maker willing to minimise transition risks (low commitment to climate objectives) might delay climate policy, increasing future transition risks and preventing the green transition

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

Additional slides

First condition for $\kappa ightarrow 1$

• The tax target is high enough:

$$\bar{\tau} > \frac{1}{A\gamma\theta_h} \left| \ln \epsilon_1 \right| + \left(\frac{\theta_l - \theta_h}{\theta_h} \right),$$

where

- ϵ_1 is any sufficiently small number
- $\frac{\theta_l \theta_h}{\theta_h}$ is the percentage difference between low- and high-carbon production costs

•
$$A \equiv \frac{1-\rho^{R+1}}{1-\rho}$$

Back

Second condition for $\kappa \to 1$

Policy-maker's commitment to climate objectives is high enough:

$$c > \frac{1}{2} + C\left(\frac{1}{\overline{\tau}}\right) + D\left(\frac{1}{\overline{\tau}^2}\right),$$

where

•
$$C = rac{ar{ au}_0eta+|\ln(\epsilon_2)|}{2eta} - rac{1}{2a(ilde{\epsilon}_1+\epsilon_2\chi_s)}$$

•
$$D = \frac{-|\ln(\epsilon_2)|}{2a\beta(\tilde{\epsilon}_l + \epsilon_2\chi_s)} - \frac{\bar{\tau}_0}{2a(\tilde{\epsilon}_l + \epsilon_2\chi_s)}$$

• $\epsilon_2, \tilde{\epsilon}_l$ are any sufficiently small numbers

Roberta Terranova

3/8

< 回 > < 回 > < 回 > <

Carbon-intensive steady state

• If commitment is too low, a carbon-intensive steady state exists:

$$c < \frac{1}{2} + E\left(\frac{1}{\bar{\tau}}\right) + F\left(\frac{1}{\bar{\tau}^2}\right), \qquad (1)$$

•
$$E = -\frac{\ln\left(\frac{1}{\epsilon_2}\right)}{2\beta} + \frac{\bar{\tau}_0}{2} + \frac{1}{2(\tilde{\epsilon}_h + \chi_s(1 - \epsilon_2))}$$

•
$$F = -\frac{\ln\left(\frac{1}{\epsilon_2}\right) + \bar{\tau}_0\beta}{2 \, a \, \tilde{\tau}^2 \, \beta \, (\tilde{\epsilon}_h + \chi_s(1 - \epsilon_2))}$$

• $\tilde{\epsilon}_h$ is a sufficiently small number.

- \Rightarrow for $\overline{\tau} \to \infty$, the threshold of *c* converges to $\frac{1}{2}$
- For lower values of $\bar{\tau}$ from bifurcation analyses we observe the existence of a trade-off between the tax target and c!

Dack

Calibration: Production

- Exogenous macro landscape: $g_Y \approx 2\%$ per year
- European power sector (LCOE data from IEA)

Parameter	Symbol	Value
Output growth rate	Øү	0.5%
Depreciation rate	δ	3%
Initial low-carbon capital share	κ_0	0.21
Low- to high-carbon production cost	$\frac{\theta_I}{\theta_h}$	1.33

Calibration: Beliefs and decisions

- Initial belief shares
 - Endogenously determined but in line with Refinitiv Carbon Market Survey)
- Belief intensity of choice
 - $\beta = 1$ following Hommes (2021) + sensitivity analysis
- Investment intensity of choice $\gamma = 2$
 - χ to fit initial investment shares values
 - transition as planned with full commitment

Parameter	Symbol	Value
Discount rate	ρ	0.5%
Planning horizon	R	120
Initial shares of belief types	<i>n</i> _{b,0} ; <i>n</i> _{s,0}	0.3; 0.7
Policy trust parameters	$\epsilon_b;\epsilon_b$	1; 0
Intensity of belief choice	β	1
Memory parameter	η	0.5
Intensity of investment choice	γ	2

Calibration: Policy decisions

- Current tax $\bar{\tau}_0$ calibrated on 2020 EU-ETS allowance prices
- Announced growth rate \bar{g}_{τ} calibrated on optimal mitigation pathways to reach 1.5-2°C
 - ENGAGE project involving 16 IAMs
- a = 1 to have low transition risk costs in 2020 ($\pi_0 \approx 0.15$) and have $\pi_0 \approx 0.5$ for $\bar{\tau} \approx 1.2$

Parameter	Symbol	Value
Announced initial tax rate	$\overline{ au}_0$	0.24
Announced tax growth rate	$ar{g}_{ au}$	0.02
Transition risk index parameter	а	1
Policy-maker tax commitment	с	[0,1]

Roberta Terranova

(本間) (本臣) (本臣) (臣) [王

Additional slides

Roberta Terranova

IAERE 2022

https://site.unibo.it/smooth/en