Great expectations in transition Heterogeneous beliefs and climate policy uncertainty

```
E. Campiglio<sup>1,2</sup> F. Lamperti<sup>3,2</sup> R. Terranova<sup>2</sup>
```

¹University of Bologna ²RFF-CMCC European Institute on Economics and the Environment ³Sant'Anna School of Advanced Studies

November 19, 2021

Introduction

The model Benchmark scenario Transition risks and commitment

Extensions

Conclusions

Motivation: policy commitment uncertainty

- Climate change \rightarrow Decarbonisation process
 - Mitigation policies needed to change expected relative costs..
 - ..and move investments towards low-carbon technologies
- Long-term policy commitments are announced..
 - Paris Agreement on keeping temperatures below 1.5-2°C
 - EU net-zero emission target by 2050
- .. but will clear policies follow to fulfil such commitments?
 - Australia: carbon tax in 2012, repealed in 2014 after election
 - USA and Paris: in (Obama), out (Trump), back in (Biden)
 - France: a diesel tax was announced in 2018 and then removed after protests by the Gilets Jaunes movement

イロト 不得下 イヨト イヨト

Introduction

Transition risks drivers of policy uncertainty i

Tony Abbott (2014)

"..the repeal of the carbon tax means a \$550 a year benefit for the average family" "On energy, I will cancel job-killing restrictions on the production of American energy - including shale energy and clean coal - creating many millions of high-paying jobs"

Donald Trump (2016)

< ロ > < 同 > < 回 > < 国

Transition risks drivers of policy uncertainty ii

- Indeed, expanding literature on how a disorderly transition to low-carbon economy might entail several transition risks, e.g.:
 - Job losses winners and losers (Vona, 2018)
 - Stranded assets (Semieniuk et al., 2021; Campiglio and van der Ploeg, 2021)
 - Financial volatility (e.g. 'Climate Minsky moment' (Carney et al., 2019))
- $\rightarrow\,$ What is the impact of this uncertainty on firms' investment decisions?

イロト イボト イヨト イヨト

Heterogeneous expectations about future climate policy

- In order to take investment decisions, firms form expectations about future costs and therefore about future climate policy
- Models studying the impact of climate policy uncertainty often assume rational expectations (e.g. van der Ploeg and Rezai, 2020)
- However, there is extensive empirical evidence that agents' expectations are not rational and are heterogeneous (e.g. Hommes, 2011; Assenza et al., 2014)
- In particular, Barradale, 2014 finds heterogeneous beliefs of energy professionals about future climate policy
- \rightarrow We incorporate the heterogeneous expectations framework (Brock and Hommes, 1997, 1998) into a model of investment allocation and climate policy

イロト 不得 トイヨト イヨト

Research objectives

- Research objectives:
 - Understand the dynamic interaction between investment allocation, climate policy and heterogeneous beliefs
 - Assess the ability of the policy-maker to balance between climate policy commitment and transition risks
- Preliminary results:
 - Firms' beliefs about climate policy might delay transition, even in the presence of full policy commitment
 - Policy-maker's commitment to climate policy influences beliefs and thus transition
 - Delaying climate policy increases the transition risks involved to the point that the transition might fail
 - Continuously revising downward the climate policy target significantly delays or impedes the transition

イロト 不得下 イヨト イヨト

Introduction

The model Benchmark scenario Transition risks and commitment

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣べで

Extensions

Conclusions

Structure of the model

- Two technologies (i = I, h)
 - Incumbent technology *h* based on fossil fuel use and emitting GHG, less expensive
 - Niche low-carbon technology / (renewables, hydrogen, etc.), more expensive
- Policy-maker announces a schedule for carbon tax rate τ , but actual tax rate can deviate from the target depending on:
 - The policy-maker commitment
 - The transition risks potentially involved with imposing the tax
- Firms have heterogeneous beliefs about future carbon tax (j = b, s)
 - Believers in climate policy commitment (b)
 - Skeptics in climate policy commitment (s)
 - ightarrow switching between beliefs depend on their relative accuracy

ヘロア 人間 アメヨア 人口 ア

Investment allocation I

- Firms invest to expand productive capacity
- Investment allocation between the two technologies depends on their discounted sum of expected future costs

$$E_{t-1}^j(\Theta_{it}) = \sum_{r=t+1}^T \rho^r \theta_{ir} (1 + E_t^j(\tau_{ir})) \tag{1}$$

where

- ρ: discount rate
- θ_{ir} : cost of capital *i*, exogenous and constant, $\theta_{lr} > \theta_{hr}$
- $E_t^j(\tau_{ir})$: expected tax (only on high-carbon technology) \rightarrow we assume heterogeneous beliefs j

イロト 不得 トイヨト イヨト

Investment allocation II

 \rightarrow The low-carbon share of investment of type *j*:

$$\chi_t^j = \frac{\exp(-\gamma E_{t-1}^j(\Theta_{lt}))}{\sum_i \exp(-\gamma E_{t-1}^j(\Theta_{it}))}$$
(2)

where:

- χ_t^j : share of low-carbon investment for type j
- $E_{t-1}^{j}(\Theta_{lt})$: expected future discounted costs of low-carbon capital
- γ : intensity of choice

イロト イボト イヨト イヨト

Intensity of choice parameter

< ロ > < 部 > < 差 > < 差 > 差 の

Beliefs on carbon tax

- Firms have heterogeneous beliefs about the future tax:
 - Believers in climate policy commitment (b):

$$\begin{aligned} \boldsymbol{\Xi}_t^b(\boldsymbol{\tau}_r) &= \boldsymbol{\tau}_r^T \\ &= \boldsymbol{\tau}_0 (1 + \boldsymbol{g}_\tau^T)^r \end{aligned} \tag{3}$$

where g_{τ}^{T} is the growth rate of tax target

• Skeptics in climate policy commitment (s):

$$E_t^s(\tau_r) = \tau_0 (1 + g_\tau^s)^r \tag{4}$$

where $g_{ au}^s$ is the tax growth rate expected by the skeptics with

$$g_{ au}^{s} < g_{ au}^{T}$$

イロト 不得下 イヨト イヨト

The model

Belief switching

• Agents can switch belief over time. The share of belief *j* is given by:

$$n_t^j = \frac{\exp(-\beta U_{t-1}^j)}{\sum_j \exp(-\beta U_{t-1}^j)},$$
(5)

where

- β: intensity of choice
- U_t^j : relative performance of expectation rule *j*, i.e.

$$U_t^j = \eta (E_{t-1}^j(\tau_t) - \tau_t)^2 + (1 - \eta) U_{t-1}^j$$
(6)

 η : memory parameter

イロト 不得下 イヨト イヨト

13/31

Э

Low-carbon investment and capital share

• The low-carbon investment share for the overall economy, χ_t , is thus given by:

$$\chi_t = n_t^b \chi_t^b + n_t^s \chi_t^s \tag{7}$$

The low-carbon capital evolves as:

$$K'_t = K'_{t-1}(1-\delta) + I_t \chi_t$$
 (8)

 \rightarrow Low-carbon capital share:

$$\kappa_t = \frac{K_t^l}{\sum_i K_t^i} \tag{9}$$

イロト イポト イヨト イヨト

Climate policy

• Policy-maker, at the beginning of the simulation, announces τ^{T} , i.e. the tax target for following periods:

$$\tau_t^T = \tau_0 (1 + g_\tau^T)^t$$

where

• g_{τ}^{T} : growth rate of tax target

イロト 不得下 イヨト イヨト

Э

Benchmark scenario

イロト イヨト イヨト イヨト

16/31

2

Intensity of choice and degree of belief heterogeneity

→ High heterogeneity of beliefs and low firms' intensity of choice (β, γ) might delay transition even with full climate policy commitment

イロト イポト イヨト イヨト

Transition risks involved with climate policy I

- In every t, policy-maker computes a transition risk index (π) associated with the tax target
- π depends on the share of high-carbon capital and on the tax rate:

$$\pi_t = 1 - \frac{1}{1 + a \left(1 - \kappa_t\right) \tau_t^T},$$
(10)

where

- $(1 \kappa_t)$ is the high-carbon sector share
- *a* is a parameter indicating how π is affected by high-carbon sector share and tax target

イロト イボト イヨト イヨト

Transition risk index π

イロト イヨト イヨト イヨト http://https://site.unibo.it/smooth/en

3

WEHIA 2021

Policy maker commitment

• Based on π_t , the policy-maker might decide to lower the actual tax in *t*:

$$\tau_t = c\tau_t^T + (1 - c)\tau_t^T (1 - \pi_t),$$
(11)

where

- $c \in [0, 1]$ indicates the policy maker commitment to climate objectives (c = 1) or to the reduction of transition risks (c = 0)
- We consider two types of tax target in the presence of transition risks:
 - Fixed tax target:

$$\tau_{0,r}^T = \tau_0 (1 + g_\tau^T)^r$$

• Dynamic tax target:

$$\tau_{t,r}^T = \tau_{t-1} (1 + g_\tau^T)^r$$

イロト イポト イヨト イヨト

Fixed tax target

• When the policy-maker aims at reducing the transition risks, the transition is delayed causing an increase in π which eventually prevents the transition

WEHIA 2021

Dynamic tax target

• A continuous revision of targets appears to be self-defeating under $c \neq 1$

イロト イポト イヨト イヨト

э

Time to transition

(a) Fixed tax target

(b) Dynamic tax target

- (a) Low commitment delays or impedes the transition depending on β because delayed action implies higher transition risks in the future
- (b) Very high commitment and higher g_{τ} are necessary for the transition to happen

< □ > < 同 > < 回 > < 回 > < 回

Introduction

The model Benchmark scenario Transition risks and commitment

(日) (部) (注) (注) (注)

Extensions

Conclusions

Transition risks depending on transition intensity I

• We also consider a transition risk index depending on the transition intensity

$$\pi_t = 1 - \frac{1}{1 + a \ tr_t} \tag{12}$$

• where $tr_t = \frac{\chi_t}{\chi_{t-1}}$, i.e. the ratio of the low-carbon investment share in t and the low-carbon investment share in t - 1

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Extensions

Transition risks depending on transition intensity II

 $\rightarrow\,$ Depending on c and $\beta,$ the transition might be characterised by the emergence of cycles

イロト イボト イヨト イヨ

Introduction

The model Benchmark scenario Transition risks and commitment

Extensions

Conclusions

Preliminary conclusions

- Policy uncertainty and heterogeneity of beliefs might delay transition even in the absence of transition risks
- A policy-maker willing to minimise transition risks (low commitment to climate objectives) might delay climate policy, increasing future transition risks and preventing the green transition
- Continuously revising climate objectives significantly hampers the transition
- The dynamic interaction between climate policy, beliefs and transition costs might imply the emergence of cyclical behaviour in the system

ヘロト ヘ回ト ヘヨト ヘヨト

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

イロト イポト イヨト イヨト

- ASSENZA, T., T. BAO, C. HOMMES, AND D. MASSARO (2014):
 "Experiments on Expectations in Macroeconomics and Finance," in *Experiments in Macroeconomics*, Emerald Group Publishing Limited, vol. 17 of *Research in Experimental Economics*, 11–70.
- BARRADALE, M. J. (2014): "Investment under uncertain climate policy: A practitioners' perspective on carbon risk," *Energy Policy*, 69, 520–535, publisher: Elsevier.
- BROCK, W. A. AND C. H. HOMMES (1997): "A Rational Route to Randomness," *Econometrica*, 65, 1059–1096, publisher: Econometric Society.

——— (1998): "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," *Journal of Economic Dynamics and Control*, 22, 1235–1274.

CAMPIGLIO, E. AND R. VAN DER PLOEG (2021): "Macro-financial transition risks in the fight against global warming," *SSRN Electronic Journal*.

イロト 不得下 イヨト イヨト

- CARNEY, M., F. VILLEROY DE GALHAU, AND F. ELDERSON (2019): "Open letter on climate-related financial risks | Bank of England," .
- HOMMES, C. (2011): "The heterogeneous expectations hypothesis: Some evidence from the lab," *Journal of Economic Dynamics and Control*, 35, 1–24.
- SEMIENIUK, G., E. CAMPIGLIO, J.-F. MERCURE, U. VOLZ, AND N. R. EDWARDS (2021): "Low-carbon transition risks for finance," *Wiley Interdisciplinary Reviews: Climate Change*, 12, e678, publisher: John Wiley & Sons, Ltd.
- VAN DER PLOEG, F. AND A. REZAI (2020): "The risk of policy tipping and stranded carbon assets," *Journal of Environmental Economics and Management*, 100, 102258.
- VONA, F. (2018): "Job losses and political acceptability of climate policies: why the 'job-killing' argument is so persistent and how to overturn it," *Climate Policy*, publisher: Taylor & Francis.

イロト 不同下 イヨト イヨト