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Motivation: move to a low-carbon economy

• Goal: bring GHG

emissions close to

zero

• What is the optimal

strategy to get

there?

• Three key aspects

to consider

Mitigation scenarios. Source: IPCC (2022)
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https://www.ipcc.ch/report/ar6/wg3/


1. Capital inertia and stranding

• Capital choices are

(partly)

irreversible

• Rapid transition

→ High-carbon

capital ‘stranding’

• Potential wider

macro-financial

impacts

(Semieniuk et al.,

2021)

Potential coal stranding: Cui et al. (2019); IEA (2019)
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https://www.nature.com/articles/s41467-019-12618-3
https://www.iea.org/reports/world-energy-outlook-2019


2. Clean technological progress

• Technology costs

evolve in time

• R&D, spillovers,

learning/experience,

network effects etc.

• Should we wait to

abate until costs are

lower?

Our World in Data
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https://ourworldindata.org/cheap-renewables-growth


3. Uncertainty

• Multiple sources of

climate-related

uncertainty (Heal

and Millner, 2014)

• Gradual uncertainty

• Macroeconomic and

climate-related

disasters

Barro & Ursúa (2012); Karydas & Xepapadeas (2019) 4

https://www.annualreviews.org/doi/pdf/10.1146/annurev-economics-080511-110932
https://www.research-collection.ethz.ch/handle/20.500.11850/380385


Three key features of our model

• Dynamic model with clean/dirty capital and climate damages

• Capital inertia and stranding

• Investment adjustment costs on both capital stocks

• Disinvestment adjustment costs → non-linear stranding effects

• Clean technological progress

• Abatement costs as clean/dirty capital productivity differentials

• Exogenous/endogenous drivers of abatement cost reduction

• Multiple sources of uncertainty

• Brownian motions on temperature, capital stocks, productivity

• Temperature-dependent jumps in productivity (Barro disasters)

• Recursive preferences (Epstein and Zin, 1989; Weil, 1990)
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Connections to literature

• Adjustment costs (Gould, 1968; Lucas Jr, 1967)

• Coulomb et al. (2019); Vogt-Schilb et al. (2018); van der

Ploeg and Rezai (2020)

• High-carbon stranding

• Capital stranding in deterministic models (Rozenberg et al.,

2020; Baldwin et al., 2020; Coulomb et al., 2019)

• Capital reconversion at a cost (Hambel et al., 2021)

• Technological progress

• Popp (2019); Gerlagh et al. (2009); Gillingham et al. (2008)

• Experience (Arrow, 1962; Boston Consulting Group, 1970)

• Uncertainty

• Recursive IAMs: Lemoine and Traeger (2014); Cai and

Lontzek (2019); Karydas and Xepapadeas (2019); van den

Bremer and van der Ploeg (2021); Hambel et al. (2021);

Olijslagers et al. (2021)
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Overview of results: benchmark transition pathway

• Benchmark optimal transition with full model

• Carbon price: 2021: US$123 → 2050: US$260

• Stop to dirty investments + US$2.6 trillion cum. disinvestment

• 50% GHG drop in 2020s + slower reduction after

• Temperature just under 2◦C in 2100

• Optimal price decomposition

• Our carbon price corresponds to optimal MAC

• Main drivers in 2021: deterministic SCC (81%); temperature

disaster risk premium (17%); technological change (12%);

Dirty capital contraction (-12%)

• Delayed and unexpected policies

• → Increase in cumulative stranding
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Overview of results: disentangling impacts

• Capital inertia

• No inertia → Massive immediate disinvestments

• Capital inertia → Emissions/temperature inertia and higher

carbon prices

• Clean technological progress

• Falling costs lead to lower emissions/temperatures and to

lower carbon prices

• But: endogenous tech progress → carbon price premium

• Uncertainty

• Lower emissions/temperature (precaution)

• Higher carbon prices and larger divestment

• Temperature-dependent disasters main driver

• Comparison to ‘straw man’ model:

• Net carbon price premium of 17% in 2021
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Two alternative policy/planning objectives

• ‘Cost-benefit’ problem

• Trade-off between abatement costs (Kd → Kc) and climate

damage costs (E → T → Ω)

• Maximisation of value function

• ’Cost-effectiveness’ problem

• In line with international commitments (e.g. Paris agreement)

• Minimisation of abatement costs

• 1.5◦C cost-effectiveness: 2021: US$167 → 2050: US$351

• 2◦C cost-benefit vs 2◦C cost-effectiveness

• Ignoring climate damages → emission reduction back-loading

• Carbon price 18% lower in 2021 in 2◦C cost-effectiveness
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The model



Production function

Y = AL1−αKαΛΩ

where

• A: TFP (subject to volatility + disasters)

• L: Labour growing at rate gL

• Λ: Emissions abatement cost multiplier

• Ω: Climate damage multiplier
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Abatement cost multiplier Λ

Λ = exp
(
−ϕt

2
µ2
)

• Abatement µ = φt/ϕt − E , with EBAU = φt/ϕt

• φ: marginal abatement cost when E = 0

• ϕ: slope of marginal abatement cost function

• Marginal abatement cost (MAC) function: −Yµ/Y = −ϕtµ

E

−Yµ/Y

EBAU = φ
ϕ

φt
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Clean technology costs fall over time

• Exogenous component

• Spillovers from general tech progress (AI, nanotechnology, etc.)

• Exogenous growth rates gφ = gϕ < 0

• Endogenous component (learning/experience)

• MAC parameters evolve as a function of cumulative abatement

M̃, with constant learning rate

E

Ya/Y

φt

φt+1

EBAU = φ
ϕ
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Abatement cost dynamics

• MAC at zero emissions evolves according to

φt = φ0

(
ω

1

Mε
+ (1− ω)

1

1 + gφτ

)
where τ is ‘artificial’ time, M̃ is cumulative emissions

abatement and ε is a constant elasticity

• MAC function slope parameter evolves according to

ϕt = ϕ0

(
ω

1

Mε
+ (1− ω)

1

1 + gϕτ

)
where gφ = gϕ so that EBAU remains fixed
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Climate damage multiplier Ω

Ω = exp
(
−γ

2
T 2
)

where

• γ: damage function coefficient

• T = ζS : global mean temperature relative to pre-industrial

• S : cumulative emissions

• ζ is the transient climate response to cumulative carbon

emissions (TCRE)
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Dirty and clean capital stocks

K = Kd + Kc

• Not perfect substitutes!

• Equally productive only at EBAU ; elsewhere YKd > YKc

• + investment/disinvestment costs

• → Replacing dirty with clean capital comes at a cost

• We assume Kc > Kd (Kd concentrated in upstream sectors)

• Use of Kd produces emissions E at intensity ψt

E = ψtKd

where ψ decreases exogenously at rate gψ
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Investment/disinvestment adjustment costs

• Convex adjustment costs on both dirty/clean investments

ιj =
χj i

2
j

k

where i is investments and χj the adjustment cost parameters

• If id = 0 emissions decrease at rate δd + gψ

• But optimal id can be negative!

• Convex disinvestment costs (r ≡ id iff id < 0),

κ(r) =
θ1r

θ2

k

→ When dirty assets are decommissioned/repurposed, less

than 100% of their value can be recovered (‘stranding’)
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Sources of uncertainty (i)

• Temperature response to emissions

• Brownian motion WT

• σT = 0.03 calibrated to IPCC models T range in 2100

dT = ζEdt + σTTdWT

• Value of capital stocks

• Brownian motions Wd and Wc with correlation coefficient ρk
• σj = 0.01 → 5% chance of a shock larger than 2% of GDP

dkj =

(
ij −

χj i
2
j

k
− (δj + gL + g)kj

)
dt + σjkjdWj
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Sources of uncertainty (ii)

• Productivity/growth prospects

• Brownian motion WA

• Poisson process P

dÃ =
(
gA1Ã + (Ã0 − Ã)gA2

)
dt+σAÃdWA−ξ1(1+ξ2T )ÃdP

where

• First term governs drift TFP to a steady state

• ξ1 = 0.2: Size of macro-economic shock without climate

change (20% GDP loss with 1.7% probability)

• ξ2 = 0.07: Effect of temperature on macro shock size (macro

jump 20% → 21.4% when T = 2◦C )
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Consumption and utility

• Consumption

c = y − id − ic − κ(r)

• Epstein-Zin-Weil preferences Details

V (kd , kc , S , Ã, t) = max
ic ,id

E
∫ ∞

0
−f (kd , kc , S , Ã, t,V , id , ic)dτ

• Value function V of expected welfare

• RRA = 4 > EIS = 1.35 → Preference for early resolution of

uncertainty

• HJB equation

max
ic ,id

{
f +

1

dt
E[dV (kd , kc ,S , Ã, t)]

}
= 0
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Calibration



Calibration strategy

• Time:

• One-year time steps

• gτ = g + gL − gψ = 0.015

• Starting time period: 2020

• Three main strategies to calibrate our parameters

• Standard values in the literature or recent empirical estimates

• Calibration to replicate empirical evidence or desired features

of starting values

• Estimation by fitting our model to energy systems model

database Details
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Preferences and production

Parameter Symbol Value Source

Elasticity of marginal utility of consumption η 1.35 Drupp et al. (2018)

Relative risk aversion RRA 4 Barro (2009)

Discount rate ρ 0.011 Drupp et al. (2018)

Parameter Symbol Value Source

Initial TFP value A0 3.44 Calibration

Trend TFP growth rate g 0.0237 Calibration

Std Dev of TFP Brownian motion σA 0.01 Barro (2009)

Initial population L0 7.794 UN (2019)

Population growth rate gL 0.0042 UN (2019)

Output elasticity of capital α 0.3 Standard

Initial dirty capital Kd,0 28 Calibration

Initial clean capital Kc,0 320 Calibration

Depreciation rate δd ,δc 0.04 Calibration

Initial carbon intensity ψ0 2 Calibration

ψ decline rate gψ 0.01 Calibration

Adjustment cost parameter χd ,χc 0.1 van der Ploeg and Rezai (2020)

Std Dev of kd and kc Brownian motions σd ,σc 0.01 Barro (2009)

Correlation between kd and kc Brownian motions ρk 0.5 By assumption

Size of macro disasters without climate ξ1 0.2 Calibration
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Climate and emission abatement

Parameter Symbol Value Source

Temperature increase in 2020 T0 1.2◦C IPCC (2021)

TCRE ζ 0.0006 IPCC (2021)

Climate damage function parameter γ 0.0077 Howard and Sterner (2017)

Std Dev of T Brownian motion σT 0.03 IPCC (2021)

Dependence of macro disasters on T ξ2 0.07 Calibration

Parameter Symbol Value Source

φ initial value φ0 0.00252 Calibration

φ decline rate gφ 0.69 Calibration

ϕ initial value ϕ0 0.000042 Estimation

ϕ decline rate gϕ 0.69 Estimation

Disinvestment cost function parameter θ1 705 Estimation

Disinvestment cost function exponent θ2 2.1 By assumption

Exogenous learning weight parameter ω 0.5 Calibration

Cumulative abatement at t0 M̃0 100 UNEP (2021)

Elasticity of MAC to cumulative emissions ε 0.1 Estimation
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Numerical results



The benchmark optimal transition

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

Red: cost-benefit. Blue: 1.5◦C cost-effectiveness. 23



The impact of capital inertia

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

Red: cost-benefit. Blue: without adjustment/disinvestment costs (χc = χd = θ1 = 0)
24



The impact of learning

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

Red: cost-benefit. Blue: without learning (φt = φ0 and φt = φ0 ∀t) 25



The impact of uncertainty

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

Red: cost-benefit. Blue: without uncertainty (σT = σj = σA = ξ1 = 0) 26



Comparison with ‘straw man’ model

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

Red: cost-benefit. Blue: without inertia, learning and uncertainty
27



Summary of effects

Cumulative Temperature CO2 price Cumulative dirty

emissions in 2100 in 2021 capital disinvestment

2020-2100 2020-2050

No inertia -10.6% -0.08◦C -2.2% n/a

No learning 19.7% 0.16◦C 11.6% 7.5%

No uncertainty 27.7% 0.26◦C -22.5% -64.4%

Straw man 43.2% 0.36◦C -14.5% n/a

Summary of effects, relative to the full model
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Cost-benefit versus cost-effectiveness

(a) Emissions E (b) Temperature T

(c) Carbon price p (d) Dirty capital disinvestment R

Red: 2◦C cost-benefit. Blue: 2◦C cost-effectiveness 29



Optimal carbon price decomposition

• Analytical expression for the optimal carbon price

p = Φ{Ψc−ηyγS − VSSE marginal damage cost

+Ψc−ηy
[
ϕ
2
µ2(1− ω) ε

Mε+1

]
− VtS technological change effect

−VSkd

[
id − χd i

2
d − (δd + gL + g)kd

]
dirty capital contraction effect

−VSkc

[
ic − χc i

2
c − (δc + gL + g)kc

]
clean capital expansion effect

−VSSSσ
2
S − 1/2VSSSS

2σ2
S temperature risk premium

−1/2VSkd kd
k2
dσ

2
d − 1/2VSkc kc k

2
c σ

2
c − VSkc kd

kd kcρ
kσcσd capital risk premiums

−1/2VSAAÃ
2σ2

A TFP volatility risk premium

−λA

[
VS (Ã− ∆Ã)− VS (Ã)

]
disaster risk

+λAVA(Ã− ∆Ã)ξ1ξ2ζÃ− VSA

(
ÃgA1 +

(
A0 − Ã

)
gA2

)
}, premium
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Optimal carbon price decomposition results

Y-axis is scaled in percent of the absolute price
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Policy delays increase stranding costs

Red: cost-benefit. Blue: 1.5◦C cost-effectiveness
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Conclusions



Conclusions

• We develop a recursive IAM with

• Investment/disinvestment adjustment costs

• Exogenous/endogenous clean technological progress

• Multiple sources of uncertainty

• Main findings

• Optimal transition is fast, requiring a high carbon price and

active stranding of dirty assets

• This is especially true if policies are delayed and unanticipated

• Considering capital inertia, clean techn progress and

uncertainty → net premium of 17% on the optimal carbon

price today

• Cost-effectiveness problems underestimate optimal carbon price
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Support slides



Value function

V (kd , kc , S , Ã, t) = max
ic ,id

E
∫ ∞

0
−f (kd , kc , S , Ã, t,V , id , ic)dτ

with

f (kd , kc , S , Ã, t,V , id , ic) =
c1−η

1− η
Υ− ρ̂V 1− RRA

1− η

Υ = ρ̂ ((1− RRA)V )
η−RRA
1−RRA

and

ρ̂ = ρ− gL + (η − 1)g

Back
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Abatement cost estimation

• Database of IAMs and energy system models

• IPCC Special Report on 1.5◦C (122 scenarios)

• NGFS database (12 scenarios)

• → Calculate total and marginal abatement costs

• We choose values of ϕ0, θ1, gϕ and ε that maximise the fit of

our model, using:

Y

YBAU
= exp

[
−ϕt

2

(
E − φt

ϕt

)2
]
− θ1r

θ2
L0e

(g+gL)t

k∗YBAU

−Yµ = Y (φt − ϕtE )

Back

35

https://data.ene.iiasa.ac.at/ngfs/#/login?redirect=%2Fworkspaces
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Abatement cost estimation results

Fixed technology costs Exogenous technology Endogenous technology

cost decreases cost decreases

ϕ0 3.1e-05*** 4.2e-05*** 4.2e-05***

θ1 9.4e+02** 7.0e+02** 7.1e+02**

gϕ 0.74***

ε 0.10***

N 1605 1605 1605

Log likelihood 6654 6664 6660

BIC -13293 -13305 -13297

AIC -13304 -13321 -13313

* p¡.1; ** p¡.05; *** p¡.01

Back
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Differences in optimal carbon price shares

Differences in the share of the optimal carbon price attributable to each element,

relative to the full model. Units are percentage points.

No capital Fixed clean No Straw

inertia tech. costs uncertainty man

2021

Current marginal damage -0.3 0.0 9.8 9.3

Future increase marginal damage -24.2 -0.1 14.0 -18.2

Endogenous tech. change effect 18.9 0.1 0.3 25.4

Clean capital expansion effect 0.2 0.0 0.3 0.6

Dirty capital contraction effect 5.3 0.0 -3.0 4.4

Disaster risk premium 0.1 0.0 -22.1 -22.1

2050

Current marginal damage -1.5 -1.2 12.4 10.8

Future increase marginal damage 1.4 3.5 11.5 14.1

Endogenous tech. change effect -0.7 -0.8 -0.6 -1.4

Clean capital expansion effect 0.0 -0.1 0.3 0.6

Dirty capital contraction effect -0.3 -0.6 -2.0 -2.4

Disaster risk premium 1.0 -0.8 -22.3 -22.3
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