Optimal transition to a low-carbon economy

E. Campiglio^{1,2,3} S. Dietz^{3,4} F. Venmans^{3,5}

Paris School of Economics Regulation and Environment Seminar 9 May 2022

¹University of Bologna ²RFF-CMCC European Institute on Economics and the Environment ³London School of Economics and Political Science ⁴CESifo ⁵University of Mons

Motivation: move to a low-carbon economy

- Goal: bring GHG emissions close to zero
- What is the optimal strategy to get there?
- Three key aspects to consider

Projected global GHG emissions from NDCs announced prior to COP26 would make it likely that warming will exceed 1.5°C and also make it harder after 2030 to limit warming to below 2°C.

Mitigation scenarios. Source: IPCC (2022)

1. Capital inertia and stranding

- Capital choices are (partly) irreversible
- Rapid transition

 → High-carbon
 capital 'stranding'
- Potential wider macro-financial impacts (Semieniuk et al., 2021)

Potential coal stranding: Cui et al. (2019); IEA (2019)

2. Clean technological progress

- Technology costs evolve in time
- R&D, spillovers, learning/experience, network effects etc.
- Should we wait to abate until costs are lower?

3. Uncertainty

- Multiple sources of climate-related uncertainty (Heal and Millner, 2014)
- Gradual uncertainty
- Macroeconomic and climate-related disasters

GDP-disaster size (N = 183, mean = 0.208)

Barro & Ursúa (2012); Karydas & Xepapadeas (2019) 4

Three key features of our model

- Dynamic model with clean/dirty capital and climate damages
- Capital inertia and stranding
 - Investment adjustment costs on both capital stocks
 - Disinvestment adjustment costs \rightarrow non-linear stranding effects
- Clean technological progress
 - Abatement costs as clean/dirty capital productivity differentials
 - Exogenous/endogenous drivers of abatement cost reduction
- Multiple sources of uncertainty
 - Brownian motions on temperature, capital stocks, productivity
 - Temperature-dependent jumps in productivity (Barro disasters)
 - Recursive preferences (Epstein and Zin, 1989; Weil, 1990)

Connections to literature

- Adjustment costs (Gould, 1968; Lucas Jr, 1967)
 - Coulomb et al. (2019); Vogt-Schilb et al. (2018); van der Ploeg and Rezai (2020)
- High-carbon stranding
 - Capital stranding in deterministic models (Rozenberg et al., 2020; Baldwin et al., 2020; Coulomb et al., 2019)
 - Capital reconversion at a cost (Hambel et al., 2021)
- Technological progress
 - Popp (2019); Gerlagh et al. (2009); Gillingham et al. (2008)
 - Experience (Arrow, 1962; Boston Consulting Group, 1970)
- Uncertainty
 - Recursive IAMs: Lemoine and Traeger (2014); Cai and Lontzek (2019); Karydas and Xepapadeas (2019); van den Bremer and van der Ploeg (2021); Hambel et al. (2021); Olijslagers et al. (2021)

Overview of results: benchmark transition pathway

- Benchmark optimal transition with full model
 - Carbon price: 2021: US $123 \rightarrow 2050$: US260
 - Stop to dirty investments + US\$2.6 trillion cum. disinvestment
 - 50% GHG drop in 2020s + slower reduction after
 - Temperature just under $2^{\circ}C$ in 2100
- Optimal price decomposition
 - Our carbon price corresponds to optimal MAC
 - Main drivers in 2021: deterministic SCC (81%); temperature disaster risk premium (17%); technological change (12%); Dirty capital contraction (-12%)
- Delayed and unexpected policies
 - $\bullet \ \rightarrow \ {\rm Increase} \ {\rm in} \ {\rm cumulative} \ {\rm stranding}$

Overview of results: disentangling impacts

- Capital inertia
 - No inertia \rightarrow Massive immediate disinvestments
 - Capital inertia \rightarrow Emissions/temperature inertia and higher carbon prices
- Clean technological progress
 - Falling costs lead to lower emissions/temperatures and to lower carbon prices
 - But: endogenous tech progress \rightarrow carbon price premium
- Uncertainty
 - Lower emissions/temperature (precaution)
 - Higher carbon prices and larger divestment
 - Temperature-dependent disasters main driver
- Comparison to 'straw man' model:
 - Net carbon price premium of 17% in 2021

Two alternative policy/planning objectives

- 'Cost-benefit' problem
 - Trade-off between abatement costs (K_d → K_c) and climate damage costs (E → T → Ω)
 - Maximisation of value function
- 'Cost-effectiveness' problem
 - In line with international commitments (e.g. Paris agreement)
 - Minimisation of abatement costs
 - 1.5°C cost-effectiveness: 2021: US\$167 \rightarrow 2050: US\$351
- $2^{\circ}C$ cost-benefit vs $2^{\circ}C$ cost-effectiveness
 - Ignoring climate damages \rightarrow emission reduction back-loading
 - Carbon price 18% lower in 2021 in 2°C cost-effectiveness

The model

$$Y = AL^{1-\alpha}K^{\alpha}\Lambda\Omega$$

where

- A: TFP (subject to volatility + disasters)
- L: Labour growing at rate g_L
- Λ: Emissions abatement cost multiplier
- Ω: Climate damage multiplier

Abatement cost multiplier Λ

$$\Lambda = \exp\left(-\frac{\varphi_t}{2}\mu^2\right)$$

- Abatement $\mu = \phi_t/\varphi_t E$, with $E_{BAU} = \phi_t/\varphi_t$
- ϕ : marginal abatement cost when E = 0
- $\varphi:$ slope of marginal abatement cost function
- Marginal abatement cost (MAC) function: $-Y_{\mu}/Y = -arphi_t \mu$

Clean technology costs fall over time

- Exogenous component
 - Spillovers from general tech progress (AI, nanotechnology, etc.)
 - Exogenous growth rates $g_\phi = g_arphi < 0$
- Endogenous component (learning/experience)
 - MAC parameters evolve as a function of cumulative abatement \tilde{M} , with constant learning rate

Abatement cost dynamics

• MAC at zero emissions evolves according to

$$\phi_t = \phi_0 \left(\omega \frac{1}{M^{\epsilon}} + (1 - \omega) \frac{1}{1 + g_{\phi} \tau} \right)$$

where τ is 'artificial' time, \tilde{M} is cumulative emissions abatement and ϵ is a constant elasticity

• MAC function slope parameter evolves according to

$$\varphi_t = \varphi_0 \left(\omega \frac{1}{M^{\epsilon}} + (1 - \omega) \frac{1}{1 + g_{\varphi} \tau} \right)$$

where $g_{\phi} = g_{arphi}$ so that E_{BAU} remains fixed

$$\Omega = \exp\left(-\frac{\gamma}{2}\,\mathcal{T}^2\right)$$

where

- γ : damage function coefficient
- $T = \zeta S$: global mean temperature relative to pre-industrial
- S: cumulative emissions
- ζ is the transient climate response to cumulative carbon emissions (TCRE)

$$K = K_d + K_c$$

- Not perfect substitutes!
 - Equally productive only at E_{BAU} ; elsewhere $Y_{Kd} > Y_{Kc}$
 - + investment/disinvestment costs
 - $\bullet \ \rightarrow$ Replacing dirty with clean capital comes at a cost
 - We assume $K_c > K_d$ (K_d concentrated in upstream sectors)
- Use of K_d produces emissions E at intensity ψ_t

$$E = \psi_t K_d$$

where ψ decreases exogenously at rate g_{ψ}

Investment/disinvestment adjustment costs

Convex adjustment costs on both dirty/clean investments

$$\iota_j = \frac{\chi_j i_j^2}{k}$$

where *i* is investments and χ_i the adjustment cost parameters

- If $i_d = 0$ emissions decrease at rate $\delta_d + g_\psi$
 - But optimal *i*_d can be negative!
- Convex disinvestment costs ($r \equiv i_d$ iff $i_d < 0$),

$$\kappa(r) = \frac{\theta_1 r^{\theta_2}}{k}$$

 \rightarrow When dirty assets are decommissioned/repurposed, less than 100% of their value can be recovered ('stranding')

Sources of uncertainty (i)

- Temperature response to emissions
 - Brownian motion W_T
 - $\sigma_T = 0.03$ calibrated to IPCC models T range in 2100

$$\mathrm{d}T = \zeta E \mathrm{d}t + \sigma_T T \mathrm{d}W_T$$

- Value of capital stocks
 - Brownian motions W_d and W_c with correlation coefficient ρ_k
 - $\sigma_j = 0.01 \rightarrow 5\%$ chance of a shock larger than 2% of GDP

$$\mathrm{d}k_j = \left(i_j - \frac{\chi_j i_j^2}{k} - (\delta_j + g_L + g)k_j\right) \mathrm{d}t + \sigma_j k_j \mathrm{d}W_j$$

Sources of uncertainty (ii)

- Productivity/growth prospects
 - Brownian motion W_A
 - Poisson process P

$$\mathrm{d}\tilde{A} = \left(g_{A1}\tilde{A} + (\tilde{A_0} - \tilde{A})g_{A2}\right)\mathrm{d}t + \sigma_A\tilde{A}\mathrm{d}W_A - \xi_1(1 + \xi_2 T)\tilde{A}\mathrm{d}P$$

where

- First term governs drift TFP to a steady state
- ξ₁ = 0.2: Size of macro-economic shock without climate change (20% GDP loss with 1.7% probability)
- ξ₂ = 0.07: Effect of temperature on macro shock size (macro jump 20% → 21.4% when T = 2°C)

Consumption and utility

• Consumption

$$c = y - i_d - i_c - \kappa(r)$$

• Epstein-Zin-Weil preferences Details

$$V(k_d, k_c, S, \tilde{A}, t) = \max_{i_c, i_d} \mathbb{E} \int_0^\infty -f(k_d, k_c, S, \tilde{A}, t, V, i_d, i_c) d\tau$$

- Value function V of expected welfare
- $RRA = 4 > EIS = 1.35 \rightarrow$ Preference for early resolution of uncertainty
- HJB equation

$$\max_{i_c,i_d} \left\{ f + \frac{1}{\mathrm{d}t} \mathbb{E}[dV(k_d,k_c,S,\tilde{A},t)] \right\} = 0$$

Calibration

Calibration strategy

• Time:

- One-year time steps
- $g_{ au} = g + g_L g_{\psi} = 0.015$
- Starting time period: 2020
- Three main strategies to calibrate our parameters
 - Standard values in the literature or recent empirical estimates
 - Calibration to replicate empirical evidence or desired features of starting values
 - Estimation by fitting our model to energy systems model database Details

Parameter	Symbol	Value	Source
Elasticity of marginal utility of consumption	η	1.35	Drupp et al. (2018)
Relative risk aversion	RRA	4	Barro (2009)
Discount rate	ρ	0.011	Drupp et al. (2018)

Parameter	Symbol	Value	Source
Initial TFP value	A ₀	3.44	Calibration
Trend TFP growth rate	g	0.0237	Calibration
Std Dev of TFP Brownian motion	σ_A	0.01	Barro (2009)
Initial population	L ₀	7.794	UN (2019)
Population growth rate	gL	0.0042	UN (2019)
Output elasticity of capital	α	0.3	Standard
Initial dirty capital	$K_{d,0}$	28	Calibration
Initial clean capital	$K_{c,0}$	320	Calibration
Depreciation rate	δ_d, δ_c	0.04	Calibration
Initial carbon intensity	ψ_0	2	Calibration
ψ decline rate	g_{ψ}	0.01	Calibration
Adjustment cost parameter	XdiXc	0.1	van der Ploeg and Rezai (2020)
Std Dev of k_d and k_c Brownian motions	σ_d, σ_c	0.01	Barro (2009)
Correlation between k_d and k_c Brownian motions	ρ_k	0.5	By assumption
Size of macro disasters without climate	ξ_1	0.2	Calibration

Parameter	Symbol	Value	Source
Temperature increase in 2020	T ₀	1.2°C	IPCC (2021)
TCRE	ζ	0.0006	IPCC (2021)
Climate damage function parameter	γ	0.0077	Howard and Sterner (2017)
Std Dev of T Brownian motion	σ_T	0.03	IPCC (2021)
Dependence of macro disasters on \mathcal{T}	ξ2	0.07	Calibration

Parameter	Symbol	Value	Source
ϕ initial value	ϕ_0	0.00252	Calibration
ϕ decline rate	g_{ϕ}	0.69	Calibration
arphi initial value	φ_0	0.000042	Estimation
φ decline rate	g_{φ}	0.69	Estimation
Disinvestment cost function parameter	θ_1	705	Estimation
Disinvestment cost function exponent	θ_2	2.1	By assumption
Exogenous learning weight parameter	ω	0.5	Calibration
Cumulative abatement at t_0	\tilde{M}_0	100	UNEP (2021)
Elasticity of MAC to cumulative emissions	e	0.1	Estimation

Numerical results

The benchmark optimal transition

Red: cost-benefit. Blue: 1.5°C cost-effectiveness.

The impact of capital inertia

Red: cost-benefit. Blue: without adjustment/disinvestment costs ($\chi_c = \chi_d = \theta_1 = 0$)

The impact of learning

Red: cost-benefit. Blue: without learning ($\phi_t = \phi_0$ and $\phi_t = \phi_0 \forall t$)

The impact of uncertainty

Red: cost-benefit. Blue: without uncertainty ($\sigma_T = \sigma_i = \sigma_A = \xi_1 = 0$)

Comparison with 'straw man' model

Red: cost-benefit. Blue: without inertia, learning and uncertainty

	Cumulative	Temperature	CO_2 price	Cumulative dirty
	emissions	in 2100	in 2021	capital disinvestment
	2020-2100			2020-2050
No inertia	-10.6%	-0.08°C	-2.2%	n/a
No learning	19.7%	0.16°C	11.6%	7.5%
No uncertainty	27.7%	0.26°C	-22.5%	-64.4%
Straw man	43.2%	0.36°C	-14.5%	n/a

Summary of effects, relative to the full model

Cost-benefit versus cost-effectiveness

Red: 2°C cost-benefit. Blue: 2°C cost-effectiveness

• Analytical expression for the optimal carbon price

$$\begin{split} p &= \Phi \left\{ \Psi c^{-\eta} y \gamma S - V_{SS} E \\ &+ \Psi c^{-\eta} y \left[\frac{\varphi}{2} \mu^2 (1-\omega) \frac{\epsilon}{M^{\epsilon}+1} \right] - V_{tS} \\ &- V_{Sk_d} \left[i_d - \chi_d i_d^2 - (\delta_d + g_L + g)k_d \right] \\ &- V_{Sk_c} \left[i_c - \chi_c i_c^2 - (\delta_c + g_L + g)k_c \right] \\ &- V_{SS} S \sigma_S^2 - 1/2 V_{SSS} S^2 \sigma_S^2 \\ &- 1/2 V_{Sk_d} k_d^2 \sigma_d^2 - 1/2 V_{Sk_ck_c} k_c^2 \sigma_c^2 - V_{Sk_ck_d} k_d k_c \rho^k \sigma_c \sigma_d \\ &- 1/2 V_{SAA} A^2 \sigma_A^2 \\ &- \lambda_A \left[V_S (\tilde{A} - \Delta \tilde{A}) - V_S (\tilde{A}) \right] \\ &+ \lambda_A V_A (\tilde{A} - \Delta \tilde{A}) (1 + 2\zeta \tilde{A} - V_{SA} (\tilde{A}g_{A1} + (A_0 - \tilde{A}) g_{A2}) \right] \end{split}$$

marginal damage cost technological change effect dirty capital contraction effect clean capital expansion effect temperature risk premium capital risk premium TFP volatility risk premium disaster risk premium

Optimal carbon price decomposition results

Y-axis is scaled in percent of the absolute price

Policy delays increase stranding costs

Red: cost-benefit. Blue: 1.5°C cost-effectiveness

Conclusions

Conclusions

- We develop a recursive IAM with
 - Investment/disinvestment adjustment costs
 - Exogenous/endogenous clean technological progress
 - Multiple sources of uncertainty
- Main findings
 - Optimal transition is fast, requiring a high carbon price and active stranding of dirty assets
 - This is especially true if policies are delayed and unanticipated
 - Considering capital inertia, clean techn progress and uncertainty \rightarrow net premium of 17% on the optimal carbon price today
 - Cost-effectiveness problems underestimate optimal carbon price

Support slides

$$V(k_d, k_c, S, \tilde{A}, t) = \max_{i_c, i_d} \mathbb{E} \int_0^\infty -f(k_d, k_c, S, \tilde{A}, t, V, i_d, i_c) d\tau$$

with

$$f(k_d, k_c, S, \tilde{A}, t, V, i_d, i_c) = \frac{c^{1-\eta}}{1-\eta} \Upsilon - \hat{\rho} V \frac{1-RRA}{1-\eta}$$

$$\Upsilon = \hat{
ho} \left(\left(1 - \textit{RRA} \right) V
ight)^{rac{\eta - \textit{RRA}}{1 - \textit{RRA}}}$$

and

$$\hat{
ho} =
ho - g_L + (\eta - 1)g$$

Back

Abatement cost estimation

- Database of IAMs and energy system models
 - IPCC Special Report on 1.5°C (122 scenarios)
 - NGFS database (12 scenarios)
 - $\bullet \ \rightarrow$ Calculate total and marginal abatement costs
- We choose values of φ₀, θ₁, g_φ and ε that maximise the fit of our model, using:

$$\frac{Y}{Y_{BAU}} = \exp\left[-\frac{\varphi_t}{2}\left(E - \frac{\phi_t}{\varphi_t}\right)^2\right] - \theta_1 r^{\theta_2} \frac{L_0 e^{(g+g_L)t}}{k^* Y_{BAU}}$$
$$-Y_\mu = Y\left(\phi_t - \varphi_t E\right)$$

	Fixed technology costs	Exogenous technology	Endogenous technology		
		cost decreases	cost decreases		
φ_0	3.1e-05***	4.2e-05***	4.2e-05***		
θ_1	9.4e+02**	7.0e+02**	7.1e+02**		
gφ		0.74***			
ε			0.10***		
N	1605	1605	1605		
Log likelihood	6654	6664	6660		
BIC	-13293	-13305	-13297		
AIC	-13304	-13321	-13313		
* n; 1· ** n; 05· *** n; 01					

Back

Differences in the share of the optimal carbon price attributable to each element, relative to the full model. Units are percentage points.

	No capital	Fixed clean	No	Straw
	inertia	tech. costs	uncertainty	man
	2021			
Current marginal damage	-0.3	0.0	9.8	9.3
Future increase marginal damage	-24.2	-0.1	14.0	-18.2
Endogenous tech. change effect	18.9	0.1	0.3	25.4
Clean capital expansion effect	0.2	0.0	0.3	0.6
Dirty capital contraction effect	5.3	0.0	-3.0	4.4
Disaster risk premium	0.1	0.0	-22.1	-22.1
	2050			
Current marginal damage	-1.5	-1.2	12.4	10.8
Future increase marginal damage	1.4	3.5	11.5	14.1
Endogenous tech. change effect	-0.7	-0.8	-0.6	-1.4
Clean capital expansion effect	0.0	-0.1	0.3	0.6
Dirty capital contraction effect	-0.3	-0.6	-2.0	-2.4
Disaster risk premium	1.0	-0.8	-22.3	-22.3

References

- ARROW, K. J. (1962): "The Economic Implications of Learning by Doing," The Review of Economic Studies, 29, 155–173.
- BALDWIN, E., Y. CAI, AND K. KURALBAYEVA (2020): "To build or not to build? Capital stocks and climate policy," Journal of Environmental Economics and Management, 100, 102235.
- BARRO, R. J. (2009): "Rare disasters, asset prices, and welfare costs," American Economic Review, 99, 243-64.

BOSTON CONSULTING GROUP (1970): Perspectives on Experience, Boston Consulting Group.

- CAI, Y. AND T. S. LONTZEK (2019): "The social cost of carbon with economic and climate risks," Journal of Political Economy, 127, 2684–2734.
- COULOMB, R., O. LECUYER, AND A. VOGT-SCHILB (2019): "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," *Environmental and Resource Economics*, 73, 557–590.
- DRUPP, M. A., M. C. FREEMAN, B. GROOM, AND F. NESJE (2018): "Discounting Disentangled," American Economic Journal: Economic Policy, 10, 109–134.
- EPSTEIN, L. G. AND S. E. ZIN (1989): "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework," *Econometrica*, 57, 937–969.

Bibliographic references ii

- GERLAGH, R., S. KVERNDOKK, AND K. E. ROSENDAHL (2009): "Optimal timing of climate change policy: Interaction between carbon taxes and innovation externalities," *Environmental and resource Economics*, 43, 369–390.
- GILLINGHAM, K., R. G. NEWELL, AND W. A. PIZER (2008): "Modeling endogenous technological change for climate policy analysis," *Energy Economics*, 30, 2734–2753.
- GOULD, J. P. (1968): "Adjustment Costs in the Theory of Investment of the Firm," The Review of Economic Studies, 35, 47–55.
- HAMBEL, C., H. KRAFT, AND E. SCHWARTZ (2021): "Optimal carbon abatement in a stochastic equilibrium model with climate change," *European Economic Review*, 132, 103642.
- HEAL, G. AND A. MILLNER (2014): "Reflections: Uncertainty and Decision Making in Climate Change Economics," Review of Environmental Economics and Policy, 8, 120–137.
- HOWARD, P. H. AND T. STERNER (2017): "Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates," Environmental and Resource Economics, 68, 197–225.
- IPCC (2021): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA: Cambridge University Press.
- KARYDAS, C. AND A. XEPAPADEAS (2019): "Pricing climate change risks: CAPM with rare disasters and stochastic probabilities," CER-ETH Working Paper Series Working Paper, 19, 311.
- LEMOINE, D. AND C. TRAEGER (2014): "Watch your step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, 6, 137–66.

Bibliographic references iii

- LUCAS JR, R. E. (1967): "Adjustment Costs and the Theory of Supply," Journal of political economy, 75, 321–334.
- OLIJSLAGERS, S., R. V. DER PLOEG, AND S. VAN WIJNBERGEN (2021): "On current and future carbon prices in a risky world," .
- POPP, D. (2019): "Environmental Policy and Innovation: A Decade of Research," Working Paper 25631, National Bureau of Economic Research, series: Working Paper Series.
- ROZENBERG, J., A. VOGT-SCHILB, AND S. HALLEGATTE (2020): "Instrument Choice and Stranded Assets in the Transition to Clean Capital," *Journal of Environmental Economics and Management*, 100, 102183.
- SEMIENIUK, G., E. CAMPIGLIO, J.-F. MERCURE, U. VOLZ, AND N. R. EDWARDS (2021): "Low-Carbon Transition Risks for Finance," WIRES Climate Change, 12, e678.
- UN (2019): "World Population Prospects 2019: Highlights," Tech. Rep. ST/ESA/SER.A/423, United Nations, Department of Economic and Social Affairs, Population Division.
- UNEP (2021): "Emissions Gap Report 2021," Tech. rep., United Nations Environment Programme.
- VAN DEN BREMER, T. S. AND F. VAN DER PLOEG (2021): "The risk-adjusted carbon price," American Economic Review, 111, 2782–2810.
- VAN DER PLOEG, F. AND A. REZAI (2020): "The Risk of Policy Tipping and Stranded Carbon Assets," Journal of Environmental Economics and Management, 100, 102258.
- VOGT-SCHILB, A., G. MEUNIER, AND S. HALLEGATTE (2018): "When Starting with the Most Expensive Option Makes Sense: Optimal Timing, Cost and Sectoral Allocation of Abatement Investment," *Journal of Environmental Economics and Management*, 88, 210–233.
- WEIL, P. (1990): "Nonexpected Utility in Macroeconomics," The Quarterly Journal of Economics, 105, 29-42.