The network effects of carbon pricing

E. Campiglio^{1,2} H. Massoni¹ S. Trsek³

Association of Environmental and Resource Economists (AERE) Miami - 2 June, 2022

¹University of Bologna

²RFF-CMCC European Institute on Economics and the Environment

³Vienna University of Economics and Business

Motivation

- ullet Climate change o Decarbonisation policies needed!
 - However: concerns over transition risks
 - Carbon pricing → macroeconomic effects and competitive drawbacks?

Motivation

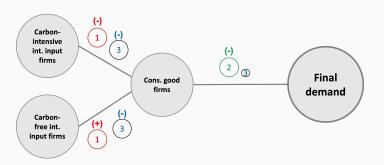
- ullet Climate change o Decarbonisation policies needed!
 - However: concerns over transition risks
 - Carbon pricing → macroeconomic effects and competitive drawbacks?
- Multi-sector and multi-region perspective
 - How does transition costs propagate within the international production network?
 - Who are the winners and losers of the network reconfiguration?

Our contribution

- Multi-sector multi-region model
 - Firms exchange intermediate inputs for production
 - Households purchase final goods for consumption
 - Government taxes and rebates revenues to households

Our contribution

- Multi-sector multi-region model
 - Firms exchange intermediate inputs for production
 - Households purchase final goods for consumption
 - Government taxes and rebates revenues to households
- Firms and households react to price changes by:
 - Modifying their bundles of intermediate/consumption goods
 - Adjusting the shares of imports from other countries


Our contribution

- Multi-sector multi-region model
 - Firms exchange intermediate inputs for production
 - Households purchase final goods for consumption
 - Government taxes and rebates revenues to households
- Firms and households react to price changes by:
 - Modifying their bundles of intermediate/consumption goods
 - Adjusting the shares of imports from other countries
- Numerical simulations
 - Calibration on WIOD database: 44 countries, 56 sectors
 - ullet Three policy scenarios: global tax; EU tax; EU tax + CBAM

Network effects of carbon pricing

1. Input substitution:

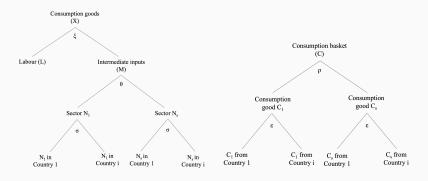
- Firms replace more expensive inputs with cheaper ones
- 2. Direct final demand:
 - Households replace more expensive consumption goods
- 3. Indirect final demand:
 - Final demand changes induce changes in intermediate demand

Overview of results

- Transition-related costs are unequally distributed across sectors/countries
 - Direct emission intensity matters..
 - .. but also your upstream/downstream value chain

Overview of results

- Transition-related costs are unequally distributed across sectors/countries
 - Direct emission intensity matters..
 - .. but also your upstream/downstream value chain
- Network effects
 - Relative dominance of demand/substitution effects depends on relative positioning within GVC and type of policy implemented


Overview of results

- Transition-related costs are unequally distributed across sectors/countries
 - Direct emission intensity matters..
 - .. but also your upstream/downstream value chain
- Network effects
 - Relative dominance of demand/substitution effects depends on relative positioning within GVC and type of policy implemented
- Network reconfiguration
 - Carbon tax shifts network centrality away from carbon-intensive countries and countries trading with them
 - Unilateral EU tax shifts network towards non-EU countries, even with CBAM

The model

Model structure

- ullet Multi-sector open-economy model $(\mathcal{C} \times \mathcal{S})$
 - Firms: nested CES production with input bundle M and labor
 → elasticities ξ (labor/inputs), θ (sectors) and σ (countries)
 - Consumers: nested CES consumption bundle $C \rightarrow$ elasticities ρ (sectors) and ϵ (countries)

Reactions to price changes

- A tax on direct carbon emissions is introduced
 - $\bullet \ \to \mathsf{Cascades} \ \mathsf{of} \ \mathsf{price} \ \mathsf{adjustments}$

Reactions to price changes

- A tax on direct carbon emissions is introduced
 - → Cascades of price adjustments
- New equilibrium with new relative prices p, technological coefficients a and consumption shares G:
 - New prices: $p_{si}^{new}(\mathbf{T},\mathbf{A})$ with $\mathbf{T}=\left\{ au_{si(\omega)}
 ight\}$ and $\mathbf{A}=\left\{a_{si(\omega)}
 ight\}$
 - Firm-level adjustments to p^{new} in inputs:

$$a_{si}^{new} = a_{si} \left(\frac{P_{mew}^{new}}{P_{mew}^{new}}\right)^{\xi} \left(\frac{P_{M}^{new}}{P_{Ns}^{new}}\right)^{\theta} \left(\frac{P_{Ns}^{new}}{P_{si}^{new}}\right)^{\sigma}$$

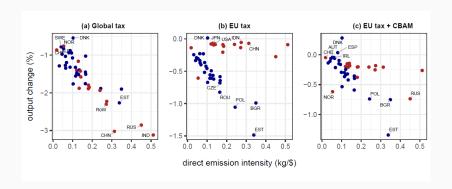
• Consumers' reaction to p^{new} in final goods:

$$G_{si}^{new} = \frac{c_{si}^{new}}{C^{new}} = \gamma_s \gamma_{si} \left(\frac{P_C^{new}}{P_{cs}^{new}}\right)^{\rho} \left(\frac{P_C^{new}}{P_{si}^{new}}\right)^{\varepsilon}$$

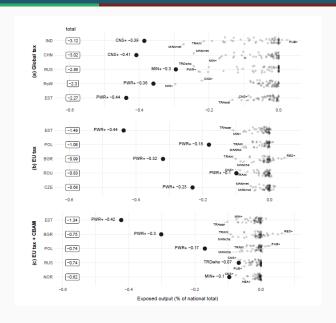
7

- Data: World Input-Output Database (WIOD)
 - \rightarrow 44 countries and 56 productive sectors

- Data: World Input-Output Database (WIOD)
 - → 44 countries and 56 productive sectors
- Calibration:
 - Elasticities: literature in trade and production networks
 → Bagaee & Farhi (2020, 2021), Atalay (2017)
 - Technological requirements (α) and consumption preferences (γ): WIOD

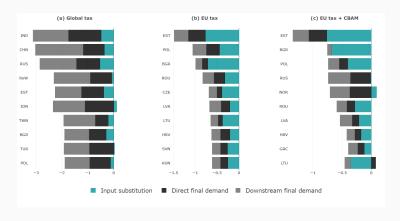

- Data: World Input-Output Database (WIOD)
 - \rightarrow 44 countries and 56 productive sectors
- Calibration:
 - Elasticities: literature in trade and production networks
 → Baqaee & Farhi (2020, 2021), Atalay (2017)
 - Technological requirements (α) and consumption preferences (γ): WIOD
- We run 3 carbon pricing scenarios (40\$/tCO₂):
 - 1. Global carbon tax
 - 2. EU-only carbon tax
 - 3. EU carbon tax + carbon border adjustment mechanism (CBAM)

- Data: World Input-Output Database (WIOD)
 - \rightarrow 44 countries and 56 productive sectors
- Calibration:
 - Elasticities: literature in trade and production networks
 → Baqaee & Farhi (2020, 2021), Atalay (2017)
 - Technological requirements (α) and consumption preferences (γ): WIOD
- We run 3 carbon pricing scenarios (40\$/tCO₂):
 - 1. Global carbon tax
 - 2. EU-only carbon tax
 - EU carbon tax + carbon border adjustment mechanism (CBAM)
- Revenue recycling: collected and distributed to domestic consumers

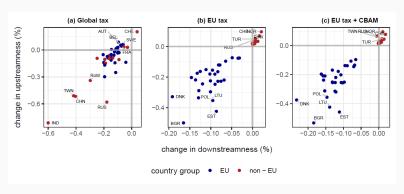

Results

CO₂ emissions and economic impacts

- Global tax vs. EU production tax vs. EU + CBAM tax:
 - Global carbon emissions: -4.5% vs. -0.3% vs. -0.4%
 - Average output change: -1.9% vs. -0.17% vs. -0.21%



Sectoral distribution of costs


Network effects

- Dominant effects:
 - Global tax: direct/indirect demand effects
 - EU/EU+CBAM tax: input substitution

Network recomposition

- Downstreamness/upstreamness indices: details
 - Highly-emitting countries and connected countries get marginalised from global value chain
 - Unilateral EU tax shifts network towards non-EU countries
 - Adding CBAM doesn't help EU GVC marginalisation

- A carbon tax shock modifies relative prices
 - Firms substitute away carbon-intensive inputs
 - Households substitute away carbon-intensive goods
 - Households adjust their overall consumption levels

- A carbon tax shock modifies relative prices
 - Firms substitute away carbon-intensive inputs
 - Households substitute away carbon-intensive goods
 - Households adjust their overall consumption levels
- Macroeconomic impacts
 - Output losses partly depend on production network effects, depending on role of country/sector within GVC
 - Production network reconfigures marginalising affected countries from GVC

- A carbon tax shock modifies relative prices
 - Firms substitute away carbon-intensive inputs
 - Households substitute away carbon-intensive goods
 - Households adjust their overall consumption levels
- Macroeconomic impacts
 - Output losses partly depend on production network effects, depending on role of country/sector within GVC
 - Production network reconfigures marginalising affected countries from GVC
- Coming work
 - Sensitivity analysis / estimation of elasticity parameters
 - Further network statistics
 - Study recycling policies
 - Stranding impacts (employment, capital)

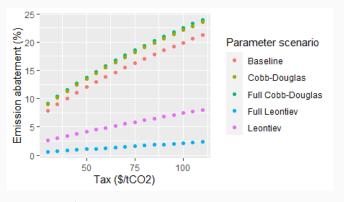
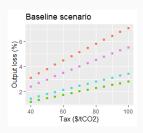
Thank you!

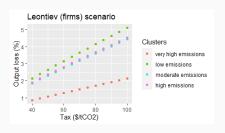
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

Sensitivity analysis

Sensitivity - elasticity parameters (1/2)

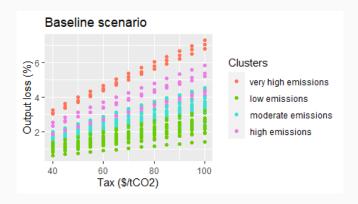
Output and emissions changes are increasing with elasticity parameters


Figure: Sensivity analysis: tax range and parameter space

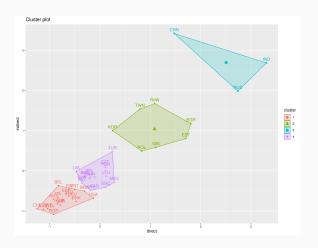
Sensitivity - elasticity parameters (2/2)

Winners and losers are parameter-dependent clustering


- Increased rigidity in the input market: higher price increase contagion
- Hypothesis: less emitting countries are closer to final demand
 ⇒ Downstream price progagation + no substitution ↑ negative demand effects

Sensitivity - tax range

- Absence of strong non-linear effects in increasing tax rate
- Increased variance in economic costs!



Next steps: does this translate into network statistics (centrality, degree, etc.)?

Support slides

Emission-based clustering back

- Direct emissions: own emission intensity
- Indirect emissions: emissions intensity implied by the value chain

GVC position indices **back**

Upstreamness - total forward linkages

Average 'distance' from final use (Antràs et al. 2012; Miller and Temurshoev 2017)

$$u_i = 1 \cdot c_i + 2 \cdot \sum_j \alpha_{ij} c_j + 3 \cdot \sum_{j,k} \alpha_{ik} \alpha_{kj} c_j + 4 \cdot \sum_{j,k,l} \alpha_{il} \alpha_{lk} \alpha_{kj} c_j + \cdots$$

Downstreamness - total backward linkages

- Average 'distance' from primary inputs (labor) (Miller and Temurshoev 2017)
- Average number of production stages (Fally 2012)

$$d_i = 1 \cdot \kappa_i + 2 \cdot \sum_j \alpha_{ij} \kappa_j + 3 \cdot \sum_{j,k} \alpha_{ik} \alpha_{kj} \kappa_j + 4 \cdot \sum_{j,k,l} \alpha_{il} \alpha_{lk} \alpha_{kj} \kappa_j + \cdots$$

Notation: c_i final goods, κ_i value-added (labor), α technical coefficients.

Baseline model - Firms

- ullet Economy populated with $\mathcal{C} imes \mathcal{S}$ representative firms
- Firms produce with a set of factors F and a bundle of intermediate inputs M, using technology $X = \min \left\{ \frac{F}{\alpha_F}, \frac{M}{\alpha_M} \right\}$
- Factors are used in fixed proportions $F = \min \left\{ \frac{K}{\alpha_{K}}, \frac{L}{\alpha_{L}} \right\}$
- Interm. input bundle (double-nested CES) jointly defined by

$$M = \underbrace{\left(\sum_{s} \alpha_{s}^{\frac{1}{\theta}} N_{s}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}}_{\text{sectors}}, \quad N_{s} = \underbrace{\left(\sum_{i} \alpha_{si}^{\frac{1}{\sigma_{s}}} f_{si}^{\frac{\sigma_{s}-1}{\sigma_{s}}}\right)^{\frac{\sigma_{s}}{\sigma_{s}-1}}}_{\text{countries}}$$

• Firms minimise output costs $\Gamma = \sum_{s,i} p_{si} f_{si}$

Baseline model - Households

- ullet Economy populated with ${\mathcal C}$ representative households
- Households consume a bundle of final goods C defined by

$$C = \underbrace{\left(\sum_{s \in \mathcal{S}} \gamma_s^{\frac{1}{\rho}} C_s^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}}_{\text{sectors}}, \quad C_s = \underbrace{\left(\sum_{i \in \mathcal{C}} \gamma_{si}^{\frac{1}{\varepsilon_s}} c_{si}^{\frac{\varepsilon_s-1}{\varepsilon_s}}\right)^{\frac{\varepsilon_s}{\varepsilon_s-1}}}_{\text{countries}}$$

Budget constraint is

$$P_CC = r\sum_s K_s + w\sum_s L_s + T$$

where revenues are generated from:

- Renting capital endowments K at rate r
- Supplying labour L at rate w
- Receiving lump-sum taxes T from carbon pricing

Baseline model - Input-output structure

• Optimal consumption of input and final goods $\{s,i\} \in \mathcal{S} \times \mathcal{C}$ yields a linear relationship between input and output¹

$$\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{c}$$

where:

- x is the vector of country-sector output
- c is the vector of final demand
- A is the matrix of technical coefficients
- Important: both **A** and **c** are *price-dependent*
- We normalise prices to 1 to keep the model in real terms

 $^{^{1}}$ The 'Leontiev inverse' can be decomposed as a power series, such that $(\mathbf{I}-\mathbf{A})^{-1}=\mathbf{I}+\mathbf{A}+\mathbf{A}^{2}+...$; this is the basis for the decomposition of the stranding cascades hereafter.

Carbon pricing

- Emissions δ_{si} are taxed by country-sector ω at rate $\tau_{si(\omega)}$
- Given the intermediate input market structure **A**, the new price of input $\{s, i\}$ for other firms should encompass:
 - (i) *direct* emission costs: $\delta_{si}\tau_{si(\omega)}$
 - (ii) *indirect* emission costs resulting from buying inputs further up the supply chain
- New intermediate input prices are therefore given by²:

$$p_{si(\omega)}^{new} = \underbrace{1}_{\text{normalised price}} + \underbrace{\delta_{si}\tau_{si(\omega)}}_{\text{direct emissions}} + \underbrace{\sum_{j}\sum_{k}\tau_{j(k)}a_{j(k)}I_{k(si)}\delta_{j}}_{\text{indirect emissions}}$$

²All $\{s, i\}, \omega, j, k \in \mathcal{S} \times \mathcal{C}$

New equilibrium (1/3)

New prices distort the structure of the intermediate inputs market

A^{new} with elements

$$a_{si}^{new} = a_{si} \left(\frac{P_{M}^{new}}{P_{Ns}^{new}} \right)^{\theta} \left(\frac{P_{Ns}^{new}}{P_{si}^{new}} \right)^{\sigma_{s}}$$

- Price indices P_M^{new} and P_{Ns}^{new} contain a weighted average of input prices w.r.t. sectors and countries
- \bullet a_{si}^{new} coefficients are *deflated* from new prices

New prices affect households consumption patterns

• New share allocated to good c_{si} by country n is given by

$$\frac{c_{si}^{new}}{C^{new}} = \gamma_s \gamma_{si} \left(\frac{P_C^{new}}{P_{Cs}^{new}}\right)^{\rho} \left(\frac{P_C^{new}}{P_{si}^{new}}\right)^{\varepsilon_s}$$

 Price indices P_C^{new} and P_{Cs}^{new} contain a weighted average of input prices w.r.t. sectors and countries

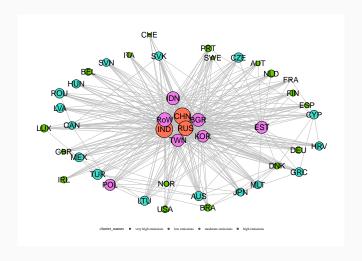
New equilibrium (3/3)

• Changes in revenues after carbon pricing is introduced:

$$P_C^{new} C^{new} = r \sum K_s^{new} + w \sum L_s^{new} + T^{new}$$

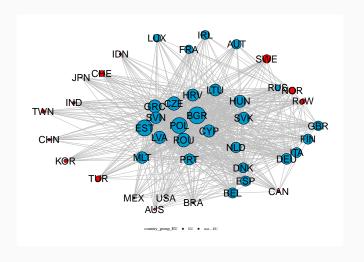
- Tax revenues T^{new} are collected at the country level and allocated to households
- Revenues from capital and labour rK^{new} and wL^{new} are collected by domestic households

New equilibrium output


$$\mathbf{x}^{new} = (\mathbf{I} - \mathbf{A}^{new})^{-1} \mathbf{c}^{new}$$

Stranding

Defined as the change in factor utilisation


$$\Delta u = \frac{X^{new}}{X^{old}}$$

Intermediate output at risk (global)

Edges: $\Delta\%$ in intermediate trade > 2; Nodes: $\Delta\%$ in total output

Intermediate output at risk (EU+CBAM)

Edges: $\Delta\%$ in intermediate trade > 0.7; Nodes: $\Delta\%$ in total output