

Believe me when I say green! Heterogeneous expectations and climate policy uncertainty

E. Campiglio^{1,2} F. Lamperti^{3,2} R. Terranova²

¹University of Bologna ²RFF-CMCC European Institute on Economics and the Environment ³Sant'Anna School of Advanced Studies

June 24, 2022

Motivation

• Urgent to mitigate climate change

 $\bullet \ \to \mathsf{Decarbonisation}$

Motivation

- Urgent to mitigate climate change
 - $\bullet \ \to \mathsf{Decarbonisation}$
- Markets won't go low-carbon by themselves
 - $\bullet \ \rightarrow {\sf Policies} \ {\sf needed} \ {\sf to} \ {\sf modify} \ {\sf relative} \ {\sf prices}$
 - Long-lived capital assets \rightarrow Future policies matter!

Motivation

- Urgent to mitigate climate change
 - $\bullet \ \to \mathsf{Decarbonisation}$
- Markets won't go low-carbon by themselves
 - ullet ightarrow Policies needed to modify relative prices
 - Long-lived capital assets → Future policies matter!
- Expectations on future policies
 - Policy-makers announced objectives (e.g. net-zero by 2050)
 - Degree of trust in policy-maker's commitment

Policy-makers come and go

Tony Abbott (2014)

"..the repeal of the carbon tax means a \$550 a year benefit for the average family"

Policy-makers come and go

Tony Abbott (2014)

"..the repeal of the carbon tax means a \$550 a year benefit for the average family" "On energy, I will cancel job-killing restrictions on the production of American energy - including shale energy and clean coal - creating many millions of high-paying jobs"

Donald Trump (2016)

Transition-related disruptions

- Transition-related costs (unemployment, stranding, financial volatility)
- $\bullet \ \to {\sf Diversion \ from \ plans}$

Gilets Jaunes movement (2018)

Heterogenous climate policy sentiments

• Evidence of heterogeneous expectations in climate policy

Heterogenous climate policy sentiments

- Evidence of heterogeneous expectations in climate policy
 - See Refinitiv Carbon Market Survey

Log normal distributions of carbon prices fitted to Refinitiv 2015 survey results. Source: Nemet et al. (2017)

Sentiments and transition

How is the low-carbon transition affected by heterogeneity/volatility of climate-related sentiments?

Sentiments and transition

How is the low-carbon transition affected by heterogeneity/volatility of climate-related sentiments?

Policy commitment

How do climate-related sentiments (and transition) react to policy uncertainty?

Sentiments and transition

How is the low-carbon transition affected by heterogeneity/volatility of climate-related sentiments?

Policy commitment

How do climate-related sentiments (and transition) react to policy uncertainty?

Effective climate policies

How should the policy-maker behave when announcing and implementing climate policies?

SMOOTH

• (1) • (

Sentiments and transition

How is the low-carbon transition affected by heterogeneity/volatility of climate-related sentiments?

Policy commitment

How do climate-related sentiments (and transition) react to policy uncertainty?

Effective climate policies

How should the policy-maker behave when announcing and implementing climate policies?

+ Methodological aim

Incorporate heterogeneous forward-looking expectations in discrete choice transition model

・ 同 ト ・ ヨ ト ・ ヨ ト

Links to literature

- Rapid and orderly transition to carbon-free economy
 - Economic effects of climate policy uncertainty: van der Ploeg & Rezai (2020); Fried et al (2021)
 - Climate sentiments: Engle et al. (2020); Noailly et al. (2022); Basaglia et al. (2022)
 - Credible commitment: Helm et al. (2003); Nemet et al. (2017)
 - Transition risks: Semieniuk et al. (2021)

Links to literature

- Rapid and orderly transition to carbon-free economy
 - Economic effects of climate policy uncertainty: van der Ploeg & Rezai (2020); Fried et al (2021)
 - Climate sentiments: Engle et al. (2020); Noailly et al. (2022); Basaglia et al. (2022)
 - Credible commitment: Helm et al. (2003); Nemet et al. (2017)
 - Transition risks: Semieniuk et al. (2021)
- Modelling framework
 - Rooted in discrete choice theory (McFadden 1973)
 - Heterogeneous expectations lit on finance & monetary policy: Brock&Hommes 1997, 1998; De Grauwe and Macchiarelli 2015; Hommes & Lustenhouwer 2019; Assenza et al. 2021)
 - Technological diffusion lit: Mercure et al 2014; Mercure 2015

• Ambitious AND credible objectives are necessary to achieve decarbonisation

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'
 - Emergence of multiple equilibria
 - Decarbonisation can fail: timing of policies and transition dynamics is key!

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'
 - Emergence of multiple equilibria
 - Decarbonisation can fail: timing of policies and transition dynamics is key!
- Belief dynamics interact with these effects

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'
 - Emergence of multiple equilibria
 - Decarbonisation can fail: timing of policies and transition dynamics is key!
- Belief dynamics interact with these effects
 - Higher firms' reaction to prediction errors rewards more the committed policy-maker, but punishes more the uncommitted policy-maker
 - Polarised beliefs lead to a faster transition under poor commitment

Analytical results

Calibration

Results

Conclusions

Structure of the model

Two technologies:

- High- and low carbon
- Firms decide how to invest based on expected costs which depend on expected carbon tax
- Two expectation rules:
 - Believers and sceptics in the policy-maker announcements
 - Firms switch beliefs depending on their prediction accuracy
- Policy-maker has two goals:
 - Achieve climate objectives
 - Reduce transition risks

SMOOTH

Climate policy announcement

- At the beginning of the simulation run, the policy-maker announces a schedule of future tax targets τ
 _t ∀t
- We assume an exponential tax announcement

$$ar{ au}_t = ar{ au}_0 (1 + ar{ extbf{g}}_ au)^t$$

where $\bar{\tau}_0$ is initial tax rate and \bar{g}_τ is the announced growth rate of τ

Firms' beliefs

• Firms have heterogeneous beliefs about credibility of policy commitment. We assume two belief categories *j* = *b*, *s*

Firms' beliefs

- Firms have heterogeneous beliefs about credibility of policy commitment. We assume two belief categories j = b, s
 - Believers (b) trust policy-makers announcements more
 - Sceptics (s) trust policy-makers announcements less

Firms' beliefs

- Firms have heterogeneous beliefs about credibility of policy commitment. We assume two belief categories j = b, s
 - Believers (b) trust policy-makers announcements more
 - Sceptics (s) trust policy-makers announcements less
- The expected tax growth rate is

$$E_j(g_{ au}) = \epsilon_j ar{g}_{ au}$$

with $\epsilon_j \in [0,1]$ indicating the degree of trust in the announced policy, and $\epsilon_b > \epsilon_s$

12/41

How do firms choose their beliefs?

 Firms observe previous tax implemented τ and compute fitness measure of both belief types (Brock and Hommes, 1997, 1998):

$$U_{j,t} = \eta |E_{j,t-1}(\tau_t) - \tau_t)| + (1 - \eta)U_{j,t-1}$$

where $\eta \in [0,1]$ is a memory (or belief inertia) parameter

How do firms choose their beliefs?

 Firms observe previous tax implemented τ and compute fitness measure of both belief types (Brock and Hommes, 1997, 1998):

$$U_{j,t} = \eta |E_{j,t-1}(\tau_t) - \tau_t)| + (1 - \eta) U_{j,t-1}$$

where $\eta \in [0,1]$ is a memory (or belief inertia) parameter

 The share of firms adopting each belief type n_j ∈ (0, 1) is then determined by

$$n_{j,t} = \frac{\exp(-\beta U_{j,t-1})}{\sum_{j} \exp(-\beta U_{j,t-1})}$$

Roberta Terranova

13/41

How do firms choose their beliefs?

• Firms observe previous tax implemented τ and compute fitness measure of both belief types (Brock and Hommes, 1997, 1998):

$$U_{j,t} = \eta |E_{j,t-1}(\tau_t) - \tau_t)| + (1 - \eta)U_{j,t-1}$$

where $\eta \in [0,1]$ is a memory (or belief inertia) parameter

 The share of firms adopting each belief type n_j ∈ (0, 1) is then determined by

$$n_{j,t} = \frac{\exp(-\beta U_{j,t-1})}{\sum_{j} \exp(-\beta U_{j,t-1})}$$

 β is the belief intensity of choice (to what extent firms react to prediction errors)

13/4

Cost expectations

 Firms evaluate the net present value Θ_i of expected production costs associated to each technology i

Cost expectations

- Firms evaluate the net present value Θ_i of expected production costs associated to each technology *i*
- The expected tax increases the net present value Θ_h of expected costs of high-carbon technology (h)

Cost expectations

- Firms evaluate the net present value Θ_i of expected production costs associated to each technology i
- The expected tax increases the net present value Θ_h of expected costs of high-carbon technology (h)

$$E_{j,t}(\Theta_{h,t}) = \sum_{r=t+1}^{R} \rho^r \theta_{i,r} (1 + E_{j,t}(\tau_{h,r}))$$

where

- ρ: discount rate
- R: planning horizon
- θ *i*-specific production costs
- τ : tax rate on high-carbon production costs θ_h

14/4

Capital investments

• Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type $j \ \chi_{j,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_j(\Theta_i)$ the expectation of population j on technology i production costs

Capital investments

• Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type $j \ \chi_{j,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_j(\Theta_i)$ the expectation of population j on technology i production costs

Higher low-carbon expected costs (*E_{j,t}*(Θ_{*l*,*t*})) lead to lower adoption of low-carbon technology

Capital investments

• Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type $j \ \chi_{j,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_j(\Theta_i)$ the expectation of population j on technology i production costs

- Higher low-carbon expected costs $(E_{j,t}(\Theta_{l,t}))$ lead to lower adoption of low-carbon technology
- Higher γ leads to higher adoption of most convenient technology
Capital investments

• Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type $j \ \chi_{j,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_j(\Theta_i)$ the expectation of population j on technology i production costs

- Higher low-carbon expected costs $(E_{j,t}(\Theta_{l,t}))$ lead to lower adoption of low-carbon technology
- Higher γ leads to higher adoption of most convenient technology
 - $\gamma = 0 \rightarrow$ random choice

Capital investments

• Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type $j \ \chi_{j,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_j(\Theta_i)$ the expectation of population j on technology i production costs

- Higher low-carbon expected costs $(E_{j,t}(\Theta_{l,t}))$ lead to lower adoption of low-carbon technology
- Higher γ leads to higher adoption of most convenient technology
 - $\gamma = 0 \rightarrow$ random choice
 - $\gamma \to \infty \to \text{perfect rationality}$

Aggregate investment and capital allocation

• The low-carbon investment share for the overall economy is

 $\chi_t = n_{b,t}\chi_{b,t} + n_{s,t}\chi_{s,t}$

Aggregate investment and capital allocation

• The low-carbon investment share for the overall economy is

$$\chi_t = n_{b,t}\chi_{b,t} + n_{s,t}\chi_{s,t}$$

• We define the low-carbon share of capital

$$\kappa_t \equiv \frac{K_{l,t}}{\sum_i K_{i,t}}$$

Roberta Terranova

・ 同 ト ・ ヨ ト ・ ヨ ト

Transition risks and policy commitment

• Policy-maker observes κ and estimates transition risks which increase in the tax target and in the high-carbon capital share

Transition risks and policy commitment

- Policy-maker observes κ and estimates transition risks which increase in the tax target and in the high-carbon capital share
- Transition risk index $\pi \in [0, 1)$:

$$\pi_t = 1 - \frac{1}{1 + a(1 - \kappa_t)\bar{\tau}_t}$$

Transition risks and policy commitment

- Policy-maker observes κ and estimates transition risks which increase in the tax target and in the high-carbon capital share
- Transition risk index $\pi \in [0, 1)$:

$$\pi_t = 1 - \frac{1}{1 + a(1 - \kappa_t)\bar{\tau}_t}$$

where a represents vulnerability to transition risks

• Transition disruption amplification: financial exposure; welfare system fragility; social turmoil; etc.

17/41

(本間) (本) (本) (本) (王)

Transition risks and policy commitment

- Policy-maker observes κ and estimates transition risks which increase in the tax target and in the high-carbon capital share
- Transition risk index $\pi \in [0, 1)$:

$$\pi_t = 1 - \frac{1}{1 + a(1 - \kappa_t)\bar{\tau}_t}$$

where a represents vulnerability to transition risks

- Transition disruption amplification: financial exposure; welfare system fragility; social turmoil; etc.
- Policy-maker then sets actual tax rate τ following:

$$\tau_t = c\bar{\tau}_t + (1-c)\bar{\tau}_t(1-\pi_t)$$

where $c \in [0, 1]$ is the policy-maker weight given to climate objectives against transition cost mitigation \underline{SMO}

17/41

Analytical results

Calibration

Results

Conclusions

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - $\bar{\tau}$ is treated as a fixed parameter

•
$$\eta = 1$$

•
$$\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$$

•
$$\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$$

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - $\bar{ au}$ is treated as a fixed parameter

•
$$\eta = 1$$

•
$$\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$$

- $\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$
- κ evolves as follows:

$$\kappa_{t+1} = n_{b,t+1}(\chi_{b,t+1} - \chi_s) + \chi_s$$

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - $\bar{\tau}$ is treated as a fixed parameter

•
$$\eta = 1$$

•
$$\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$$

- $\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$
- κ evolves as follows:

$$\kappa_{t+1} = n_{b,t+1}(\chi_{b,t+1} - \chi_s) + \chi_s$$

where $n_{b,t+1}$ is a function of κ_t :

$$egin{split} m_{b,t+1} &= rac{1}{1+\exp\left(-eta\left(2 au_t-ar{ au}_0-ar{ au}
ight)
ight)} \ au_t &= ar{ au}\left(c+rac{1-c}{1+a(1-\kappa_t)ar{ au}}
ight) \end{split}$$

SMOOTH

Steady states

 Proposition 1. f(κ) has at least one stable equilibrium and generally an overall odd number of equilibria exists

Steady states

- Proposition 1. f(κ) has at least one stable equilibrium and generally an overall odd number of equilibria exists Proof
 - Equilibria with odd index are stable
 - Equilibria with even index are unstable

Low-carbon steady state I

• Benchmark scenario Under $\beta = \gamma = \infty$, the low-carbon steady state $\kappa^* = 1$ exists if

$$\bar{\tau} > \left(\frac{\theta_l - \theta_h}{\theta_h}\right)$$

where $\frac{\theta_I - \theta_h}{\theta_h}$ is the percentage difference between low- and high-carbon production costs

Low-carbon steady state II

• Bounded rationality scenario Under finite β and γ , the low-carbon steady state $\kappa^* = 1 - \lambda_I$, with λ_I a small positive number, exists if

$$\bar{\tau} > \frac{\left| \ln \left(\frac{\lambda}{1 - \lambda} \right) \right|}{A \gamma \theta_h} + \left(\frac{\theta_l - \theta_h}{\theta_h} \right) \tag{1}$$

$$c > \frac{1}{2} + b_l + d_l.$$
 (2)

•
$$\lambda > \lambda_I$$
, $A \equiv \frac{1-\rho^{R+1}}{1-\rho}$, $\tilde{\lambda} \equiv \frac{\chi_b - 1 + \lambda}{1-\lambda - \chi_s}$
• $b_I \equiv \frac{\bar{\tau}_0}{2\bar{\tau}} + \frac{\bar{\tau}_0 - \bar{\tau}}{2a\lambda\bar{\tau}^2} < 0$
• $d_I \equiv \frac{|\ln(\tilde{\lambda})|}{2\beta\bar{\tau}} \left(\frac{1}{a\lambda\bar{\tau}} + 1\right) > 0$

비민 지원에 지원에 지원에 지 않

- ⇒ Policy announcements have to be sufficiently ambitious and policy-maker sufficiently committed!
- \Rightarrow The lower firms' reaction to cost differences (γ) is, the more ambitious the policy-maker needs to be!
- \Rightarrow The lower firms' reaction to prediction errors (β) is, the more committed the policy-maker needs to be!

High-carbon trap I

• Benchmark scenario Under $\beta = \gamma = \infty$, the high-carbon steady state $\kappa^* = \chi_s$ exists if

$$c < rac{1}{2} + b_{hb}$$

where
$$b_{hb}\equiv rac{ar{ au}_0}{2ar{ au}}+rac{ar{ au}_0-ar{ au}}{2a(1-\chi_s))ar{ au}^2}<0$$

High-carbon trap II

• Bounded rationality scenario Under finite β and γ , the additional high-carbon steady state, $\kappa^* = \chi_s + \lambda_h$, with λ_h a small positive number, exists if

$$c<\frac{1}{2}+b_h+d_h$$

where

•
$$b_h \equiv \frac{\overline{\tau}_0}{2\overline{\tau}} + \frac{\overline{\tau}_0 - \overline{\tau}}{2a(1 - (\chi_s + \lambda_\kappa))\overline{\tau}^2} < 0$$

• $d_h \equiv -\frac{1}{\beta 2\overline{\tau}} \ln(\widetilde{\lambda}_h) \left(\frac{1}{a(1 - (\chi_s + \lambda_\kappa))\overline{\tau}} + 1\right) < 0$
• $\lambda_\kappa > \lambda_h$ is a sufficiently small positive number
• $\widetilde{\lambda}_h \equiv \frac{\chi_b - \chi_s - \lambda_\kappa}{\lambda_\kappa}$

Roberta Terranova

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \Rightarrow The lower firms' reaction to prediction errors (β), the less committed the policy-maker is allowed to be
 - To sum up:
 - Higher firms' reaction to cost differences (γ) speeds up the transition
 - Firms' reaction to prediction errors has ambiguous effect: higher β rewards the committed policy-maker more, improving the unique equilibrium, but punishes the uncommitted policy-maker more, creating the high-carbon trap

Safe threshold for policy-maker's commitment

• **Proposition 2.** A sufficient condition for uniqueness of equilibrium is

$$c>1-rac{1}{ar aueta}$$

Proof

ightarrow The higher the tax announced and eta, the higher should be c

When commitment is low, no ambitious announcements

Analytical results

When commitment is low, no ambitious announcements

Analytical results

Low commitment creates a high-carbon trap

Analytical results

Calibration

Results

Conclusions

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Investment and opinion behaviours
 - Esp. intensity of choice parameters eta and γ
 - Literature + sensitivity analysis

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Investment and opinion behaviours
 - Esp. intensity of choice parameters β and γ
 - Literature + sensitivity analysis
- Policy parameters
 - Calibrated on IAM projections
 - Scenario analysis

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Investment and opinion behaviours
 - Esp. intensity of choice parameters β and γ
 - Literature + sensitivity analysis
- Policy parameters
 - Calibrated on IAM projections
 - Scenario analysis
- Time: 320 quarters (2020-2100)

Details

Analytical results

Calibration

Results

Conclusions

Benchmark scenario

Evolving shares of low/high-carbon investments by sceptics/believers

34/41

고나님

イロト 不得 トイヨト イヨト

Belief/investment intensity of choice and beliefs polarisation

Low-carbon capital share κ as a function of β and γ (left), ϵ_s and β (right)

Transition dynamics under various commitment levels

Interaction between commitment, belief/investment intensity of choice and beliefs polarisation

Low-carbon capital share κ as a function of β and γ (left), ϵ_s and β (right)

Commitment and tax announcements

Tax target growth rate $(g_{\bar{\tau}})$

Low-carbon capital share κ as a function of g_τ and c

イロト イヨト イヨト イ

Analytical results

Calibration

Results

Conclusions
Conclusions

• Ambitious AND credible objectives are necessary to achieve decarbonisation

Conclusions

- Ambitious AND credible objectives are necessary to achieve decarbonisation
- But: danger! Ambitious announcements without strong commitment \rightarrow Transition fails

Conclusions

- Ambitious AND credible objectives are necessary to achieve decarbonisation
- But: danger! Ambitious announcements without strong commitment \rightarrow Transition fails
- Firms' reaction to prediction errors is tricky: rewards/punishes more the highly/under committed policy-maker
- Polarised beliefs lead to a faster transition under poor commitment

SMOOTH

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

41/4

Additional slides

Proof of proposition 1

• Since $f(\kappa)$ is continuous in [0, 1] and $f(\kappa) \in [0, 1] \ \forall \kappa, f$ has at least one fixed point $\kappa = f(\kappa) \in [0, 1]$

•
$$f(0) = \left(\frac{1}{1+\exp(-\beta(2\tau_t-\bar{\tau}_0-\bar{\tau}))}\right) (\chi_b - \chi_s) + \chi_s \in (0,1)$$
 and
 $f(1) = \left(\frac{1}{1+\exp(-\beta(\bar{\tau}-\bar{\tau}_0))}\right) (\chi_b - \chi_s) + \chi_s \in (0,1)$, which
implies that the map starts above the 45 degree line and ends
below the 45 degree line

ightarrow Generally an overall odd number of steady states exists. Back

지 아이에 이 아이에 가 아이에 가 나 있다.

Proof of proposition 2

- The second derivative of $f(\kappa)$ is: $f''(\kappa) = -\frac{G\left((a\,\bar{\tau}-\bar{\tau}\,\beta+\bar{\tau}\,\beta\,c-a\,\bar{\tau}\,\kappa_t+1)+\mathrm{e}^{\beta\,(\bar{\tau}_0-2\tau_t+\bar{\tau})}\,(a\,\bar{\tau}+\bar{\tau}\,\beta-\bar{\tau}\,\beta\,c-a\,\bar{\tau}\,\kappa_t+1)\right)}{\left(\mathrm{e}^{\beta\,(\bar{\tau}_0-2\tau_t+\bar{\tau})}+1\right)^3(a\,\bar{\tau}-a\,\bar{\tau}\,\kappa_t+1)^4},$ where G < 0.
- The sign of the second order derivative depends on $(a \bar{\tau} - \bar{\tau} \beta + \bar{\tau} \beta c - a \bar{\tau} \kappa_t + 1) + e^{\beta(\bar{\tau}_0 - 2\tau_t + \bar{\tau})} (a \bar{\tau} + \bar{\tau} \beta - \bar{\tau} \beta c - a \bar{\tau} \kappa_t + 1).$ For $\beta \neq 0$, since $c, \kappa \in [0, 1]$, if $(a \bar{\tau} - \bar{\tau} \beta + \bar{\tau} \beta c - a \bar{\tau} \kappa_t + 1) > 0$, then $f''(\kappa) > 0$. The condition implies $c > 1 - \frac{1}{\bar{\tau}\beta}$. Back

Calibration: Production

- Exogenous macro landscape: $g_Y \approx 2\%$ per year
- European power sector (LCOE data from IEA)

Parameter	Symbol	Value
Output growth rate	Øү	0.5%
Depreciation rate	δ	3%
Initial low-carbon capital share	κ_0	0.21
Low- to high-carbon production cost	$\frac{\theta_I}{\theta_h}$	1.33

SMOOTH

・ 同 ト ・ ヨ ト ・ ヨ ト

Calibration: Beliefs and decisions

- Initial belief shares
 - Endogenously determined but in line with Refinitiv Carbon Market Survey)
- Belief intensity of choice
 - $\beta = 1$ following Hommes (2021) + sensitivity analysis
- Investment intensity of choice $\gamma = 2$
 - χ to fit initial investment shares values
 - transition as planned with full commitment

Parameter	Symbol	Value
Discount rate	ρ	0.5%
Planning horizon	R	120
Initial shares of belief types	$n_{b,0}; n_{s,0}$	0.3; 0.7
Policy trust parameters	$\epsilon_b;\epsilon_b$	1; 0
Intensity of belief choice	β	1
Memory parameter	η	0.5
Intensity of investment choice	γ	2

5/7

Calibration: Policy decisions

- Current tax $\bar{\tau}_0$ calibrated on 2020 EU-ETS allowance prices
- Announced growth rate \bar{g}_{τ} calibrated on optimal mitigation pathways to reach 1.5-2°C
 - ENGAGE project involving 16 IAMs
- a = 1 to have low transition risk costs in 2020 ($\pi_0 \approx 0.15$) and have $\pi_0 \approx 0.5$ for $\bar{\tau} \approx 1.2$

Parameter	Symbol	Value
Announced initial tax rate	$ar{ au}_0$	0.24
Announced tax growth rate	$ar{g}_{ au}$	0.02
Transition risk index parameter	а	1
Policy-maker tax commitment	с	[0,1]

Roberta Terranova

Additional slides

Roberta Terranova

WEHIA 2022

https://site.unibo.it/smooth/en

7/7