

Believe me when I say green!

Heterogeneous expectations and climate policy uncertainty

E. Campiglio^{1,2} F. Lamperti^{3,2} R. Terranova²

 1 University of Bologna 2 RFF-CMCC European Institute on Economics and the Environment 3 Sant'Anna School of Advanced Studies

June 6, 2022

Motivation

- Urgent to mitigate climate change
 - → Decarbonisation

Motivation

- Urgent to mitigate climate change
 - → Decarbonisation
- Markets won't go low-carbon by themselves
 - → Policies needed to modify relative prices
 - Long-lived capital assets \rightarrow Future policies matter!

Motivation

- Urgent to mitigate climate change
 - → Decarbonisation
- Markets won't go low-carbon by themselves
 - → Policies needed to modify relative prices
 - Long-lived capital assets → Future policies matter!
- Expectations on future policies
 - Policy-makers announced objectives (e.g. net-zero by 2050)
 - Degree of trust in policy-maker's commitment

Policy-makers come and go

Tony Abbott (2014)

"..the repeal of the carbon tax means a \$550 a year benefit for the average family"

Policy-makers come and go

Tony Abbott (2014)

"..the repeal of the carbon tax means a \$550 a year benefit for the average family" "On energy, I will cancel job-killing restrictions on the production of American energy - including shale energy and clean coal - creating many millions of high-paying jobs"

Donald Trump (2016)

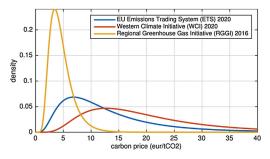
Transition-related disruptions

- Transition-related costs (unemployment, stranding, financial volatility)
- ullet \rightarrow Diversion from plans

Gilets Jaunes movement (2018)

Roberta Terranova

Heterogenous climate policy sentiments


Evidence of heterogeneous expectations in climate policy

OCC Symposium 2022

Heterogenous climate policy sentiments

- Evidence of heterogeneous expectations in climate policy
 - See Refinitiv Carbon Market Survey

Log normal distributions of carbon prices fitted to Refinitiv 2015 survey results. Source: Nemet et al. (2017)

Sentiments and transition

How is the low-carbon transition affected by heterogeneity/volatility of climate-related sentiments?

Sentiments and transition

How is the low-carbon transition affected by heterogeneity/volatility of climate-related sentiments?

Policy commitment

How do climate-related sentiments (and transition) react to policy uncertainty?

Sentiments and transition

How is the low-carbon transition affected by heterogeneity/volatility of climate-related sentiments?

Policy commitment

How do climate-related sentiments (and transition) react to policy uncertainty?

Effective climate policies

How should the policy-maker behave when announcing and implementing climate policies?

Sentiments and transition

How is the low-carbon transition affected by heterogeneity/volatility of climate-related sentiments?

Policy commitment

How do climate-related sentiments (and transition) react to policy uncertainty?

Effective climate policies

How should the policy-maker behave when announcing and implementing climate policies?

+ Methodological aim

Incorporate heterogeneous forward-looking expectations in discrete choice transition model

Links to literature

- Rapid and orderly transition to carbon-free economy
 - Economic effects of climate policy uncertainty: van der Ploeg & Rezai (2020); Fried et al (2021)
 - Climate sentiments: Engle et al. (2020); Noailly et al. (2022); Basaglia et al. (2022)
 - Credible commitment: Helm et al. (2003); Nemet et al. (2017)
 - Transition risks: Semieniuk et al. (2021)

Links to literature

- Rapid and orderly transition to carbon-free economy
 - Economic effects of climate policy uncertainty: van der Ploeg & Rezai (2020); Fried et al (2021)
 - Climate sentiments: Engle et al. (2020); Noailly et al. (2022); Basaglia et al. (2022)
 - Credible commitment: Helm et al. (2003); Nemet et al. (2017)
 - Transition risks: Semieniuk et al. (2021)
- Modelling framework
 - Rooted in discrete choice theory (McFadden 1973)
 - Heterogeneous expectations lit on finance & monetary policy: Brock&Hommes 1997, 1998; De Grauwe and Macchiarelli 2015; Hommes & Lustenhouwer 2019; Assenza et al. 2021)
 - Technological diffusion lit: Mercure et al 2014; Mercure 2015

Ambitious AND credible objectives are necessary to achieve decarbonisation

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'
 - Emergence of multiple equilibria
 - Decarbonisation can fail: timing of policies and transition dynamics is key!

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'
 - Emergence of multiple equilibria
 - Decarbonisation can fail: timing of policies and transition dynamics is key!
- Key role of beliefs and firms' speed of reaction

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'
 - Emergence of multiple equilibria
 - Decarbonisation can fail: timing of policies and transition dynamics is key!
- Key role of beliefs and firms' speed of reaction
 - Polarised beliefs lead to a faster transition under poor commitment

The model

Analytical results

Calibration

Results

Conclusions

Structure of the model

- Two technologies:
 - High- and low carbon
 - Firms decide how to invest based on expected costs which depend on expected carbon tax
- Two expectation rules:
 - Believers and sceptics in the policy-maker announcements
 - Firms switch beliefs depending on their prediction accuracy
- Policy-maker has two goals:
 - Achieve climate objectives
 - Reduce transition risks

Climate policy announcement

- At the beginning of the simulation run, the policy-maker announces a schedule of future tax targets $\bar{\tau}_t \ \forall t$
- We assume an exponential tax announcement

$$ar{ au}_t = ar{ au}_0 (1 + ar{g}_ au)^t$$

where $\bar{\tau}_0$ is initial tax rate and \bar{g}_{τ} is the announced growth rate of τ

Firms' beliefs

 Firms have heterogeneous beliefs about credibility of policy commitment. We assume two belief categories j = b, s

Firms' beliefs

- Firms have heterogeneous beliefs about credibility of policy commitment. We assume two belief categories j = b, s
 - Believers (b) trust policy-makers announcements more
 - Sceptics (s) trust policy-makers announcements less

Firms' beliefs

- Firms have heterogeneous beliefs about credibility of policy commitment. We assume two belief categories j = b, s
 - Believers (b) trust policy-makers announcements more
 - Sceptics (s) trust policy-makers announcements less
- The expected tax growth rate is

$$E_j(g_{\tau}) = \epsilon_j \bar{g}_{\tau}$$

with $\epsilon_j \in [0,1]$ indicating the degree of trust in the announced policy, and $\epsilon_b > \epsilon_s$

How do firms choose their beliefs?

• Firms observe previous tax implemented τ and compute fitness measure of both belief types (Brock and Hommes, 1997, 1998):

$$U_{j,t} = \eta |E_{j,t-1}(\tau_t) - \tau_t)| + (1 - \eta)U_{j,t-1}$$

where $\eta \in [0,1]$ is a memory (or belief inertia) parameter

• The share of firms adopting each belief type $n_j \in (0,1)$ is then determined by

$$n_{j,t} = \frac{\exp(-\beta U_{j,t-1})}{\sum_{j} \exp(-\beta U_{j,t-1})}$$

How do firms choose their beliefs?

• Firms observe previous tax implemented τ and compute fitness measure of both belief types (Brock and Hommes, 1997, 1998):

$$U_{j,t} = \eta |E_{j,t-1}(\tau_t) - \tau_t)| + (1 - \eta)U_{j,t-1}$$

where $\eta \in [0,1]$ is a memory (or belief inertia) parameter

• The share of firms adopting each belief type $n_j \in (0,1)$ is then determined by

$$n_{j,t} = \frac{\exp(-\beta U_{j,t-1})}{\sum_{j} \exp(-\beta U_{j,t-1})}$$

• β is the belief intensity of choice (to what extent firms react to prediction errors)

The role of belief intensity choice β and the fitness measure U_j

• Higher prediction errors of expectation rule $j(U_j)$ lead to a lower n_j

The role of belief intensity choice β and the fitness measure U_i

- Higher prediction errors of expectation rule $j(U_i)$ lead to a lower n_i
- Higher β implies higher adoption of the more accurate expectation rule

The role of belief intensity choice β and the fitness measure U_i

- Higher prediction errors of expectation rule $j(U_i)$ lead to a lower n_i
- Higher β implies higher adoption of the more accurate expectation rule
 - $\beta = 0$: random choice $(n_i = 0.5 \text{ independently of } U_i)$
 - $\beta \to \infty$: all agents switch to the more accurate belief $(n_i \to 0)$ or $n_i \rightarrow 1$)

Cost expectations

• Firms evaluate the net present value Θ_i of expected production costs associated to each technology i

Cost expectations

- Firms evaluate the net present value Θ_i of expected production costs associated to each technology i
- The expected tax increases the net present value Θ_h of expected costs of high-carbon technology (h)

Cost expectations

- Firms evaluate the net present value Θ_i of expected production costs associated to each technology i
- The expected tax increases the net present value Θ_h of expected costs of high-carbon technology (h)

$$E_{j,t}(\Theta_{h,t}) = \sum_{r=t+1}^R \rho^r \theta_{i,r} (1 + E_{j,t}(\tau_{h,r}))$$

where

- ρ: discount rate
- R: planning horizon
- *θ i*-specific production costs
- τ : tax rate on high-carbon production costs θ_h

Capital investments

Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type $j \ \chi_{i,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_i(\Theta_i)$ the expectation of population *j* on technology *i* production costs

Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type $j \ \chi_{i,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_i(\Theta_i)$ the expectation of population *j* on technology *i* production costs

Higher low-carbon expected costs $(E_{i,t}(\Theta_{l,t}))$ lead to lower adoption of low-carbon technology

• Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type j $\chi_{j,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_j(\Theta_i)$ the expectation of population j on technology i production costs

- Higher low-carbon expected costs $(E_{j,t}(\Theta_{l,t}))$ lead to lower adoption of low-carbon technology
- Higher γ leads to higher adoption of most convenient technology

Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type $j \ \chi_{i,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_i(\Theta_i)$ the expectation of population j on technology i production costs

- Higher low-carbon expected costs $(E_{i,t}(\Theta_{l,t}))$ lead to lower adoption of low-carbon technology
- Higher γ leads to higher adoption of most convenient technology
 - $\gamma = 0 \rightarrow \text{random choice}$

Based on their expected costs, firms allocate their investment between technologies The low-carbon investment share for belief type $j \ \chi_{i,t} \in (0,1)$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice; $E_i(\Theta_i)$ the expectation of population j on technology i production costs

- Higher low-carbon expected costs $(E_{i,t}(\Theta_{i,t}))$ lead to lower adoption of low-carbon technology
- Higher γ leads to higher adoption of most convenient technology
 - $\gamma = 0 \rightarrow \text{random choice}$
 - $\gamma \to \infty \to \text{perfect rationality}$

Aggregate investment and capital allocation

The low-carbon investment share for the overall economy is

$$\chi_t = n_{b,t} \chi_{b,t} + n_{s,t} \chi_{s,t}$$

Aggregate investment and capital allocation

The low-carbon investment share for the overall economy is

$$\chi_t = n_{b,t} \chi_{b,t} + n_{s,t} \chi_{s,t}$$

We define the low-carbon share of capital

$$\kappa_t \equiv \frac{K_{l,t}}{\sum_i K_{i,t}}$$

• Policy-maker observes κ and estimates transition risks which increase in the tax target and in the high-carbon capital share

- Policy-maker observes κ and estimates transition risks which increase in the tax target and in the high-carbon capital share
- Transition risk index $\pi \in [0,1)$:

$$\pi_t = 1 - \frac{1}{1 + a(1 - \kappa_t)\bar{\tau}_t}$$

- Policy-maker observes κ and estimates transition risks which increase in the tax target and in the high-carbon capital share
- Transition risk index $\pi \in [0,1)$:

$$\pi_t = 1 - \frac{1}{1 + a(1 - \kappa_t)\bar{\tau}_t}$$

where a represents vulnerability to transition risks

 Transition disruption amplification: financial exposure; welfare system fragility; social turmoil; etc.

- Policy-maker observes κ and estimates transition risks which increase in the tax target and in the high-carbon capital share
- Transition risk index $\pi \in [0,1)$:

$$\pi_t = 1 - \frac{1}{1 + a(1 - \kappa_t)\bar{\tau}_t}$$

where a represents vulnerability to transition risks

- Transition disruption amplification: financial exposure; welfare system fragility; social turmoil; etc.
- Policy-maker then sets actual tax rate au following:

$$\tau_t = c\bar{\tau}_t + (1-c)\bar{\tau}_t(1-\pi_t)$$

where $c \in [0,1]$ is the policy-maker weight given to climate objectives against transition cost mitigation

The model

Analytical results

Calibration

Results

Conclusions

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - $\bar{\tau}$ is treated as a fixed parameter
 - \bullet $\eta=1$
 - $\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$
 - $\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$

https://site.unibo.it/smooth/en

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - $\bar{\tau}$ is treated as a fixed parameter
 - n=1
 - $\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$
 - $\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$
- κ evolves as follows:

$$\kappa_{t+1} = n_{b,t+1}(\chi_{b,t+1} - \chi_s) + \chi_s$$

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - $\bar{\tau}$ is treated as a fixed parameter
 - n=1
 - $\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$
 - $\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$
- κ evolves as follows:

$$\kappa_{t+1} = n_{b,t+1}(\chi_{b,t+1} - \chi_s) + \chi_s$$

where $n_{b,t+1}$ is a function of κ_t :

$$n_{b,t+1} = \frac{1}{1 + \exp\left(-\beta\left(2\tau_t - \bar{\tau}_0 - \bar{\tau}\right)\right)}$$

$$\tau_t = \bar{\tau}\left(c + \frac{1 - c}{1 + a(1 - \kappa_t)\bar{\tau}}\right)$$

Steady states

• **Proposition 1.** $f(\kappa)$ has at least one stable equilibrium and generally an overall odd number of equilibria exists Proof

https://site.unibo.it/smooth/en

Steady states

- **Proposition 1.** $f(\kappa)$ has at least one stable equilibrium and generally an overall odd number of equilibria exists Proof
 - Equilibria with odd index are stable
 - Equilibria with even index are unstable

https://site.unibo.it/smooth/en

Low-carbon steady state I

• Benchmark scenario Under $\beta=\gamma=\infty$, the low-carbon steady state $\kappa^*=1$ exists if

$$\bar{\tau} > \left(\frac{\theta_I - \theta_h}{\theta_h}\right)$$

where $\frac{\theta_l-\theta_h}{\theta_h}$ is the percentage difference between low- and high-carbon production costs

Low-carbon steady state II

Bounded rationality scenario Under finite β and γ , the low-carbon steady state $\kappa^* = 1 - \lambda_I$, with λ_I a small positive number, exists if

$$\bar{\tau} > \frac{\left|\ln\left(\frac{\lambda}{1-\lambda}\right)\right|}{A\gamma\theta_h} + \left(\frac{\theta_I - \theta_h}{\theta_h}\right)$$

where $\lambda > \lambda_I$ and $A \equiv \frac{1-\rho^{R+1}}{1-\rho}$

⇒ Policy announcements have to be sufficiently ambitious!

High-carbon trap I

Benchmark scenario Under $\beta = \gamma = \infty$, the high-carbon steady state $\kappa^* = \chi_s$ exists if

$$c<\frac{1}{2}+b_1$$

where
$$b_1\equiv rac{ar{ au}_0}{2ar{ au}}+rac{ar{ au}_0-ar{ au}}{2\mathsf{a}(1-\chi_s))ar{ au}^2}<0$$

High-carbon trap II

Bounded rationality scenario Under finite β and γ , the additional high-carbon steady state, $\kappa^* = \chi_s + \lambda_h$, with λ_h a small positive number, exists if

$$c<\frac{1}{2}+b_2+d$$

where

•
$$b_2 \equiv \frac{\bar{\tau}_0}{2\bar{\tau}} + \frac{\bar{\tau}_0 - \bar{\tau}}{2a(1 - (\gamma_c + \lambda_c))\bar{\tau}^2} < 0$$

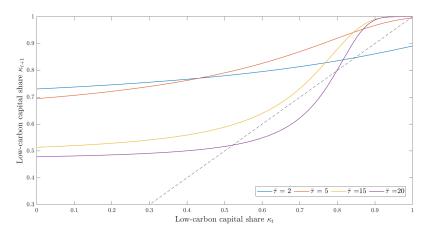
•
$$d \equiv -rac{1}{eta 2 ar{ au}} \ln(ilde{\lambda}_h) \left(rac{1}{a(1-(\chi_s+\lambda_\kappa))ar{ au}}+1
ight) < 0$$

 $\lambda_{\kappa} > \lambda_{h}$ is a sufficiently small positive number

•
$$\tilde{\lambda}_h \equiv \frac{\chi_b - \chi_s - \lambda_\kappa}{\lambda_\kappa}$$

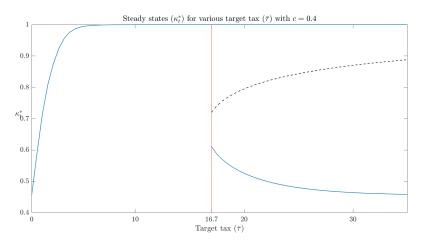
https://site.unibo.it/smooth/en

Safe threshold for policy-maker's commitment

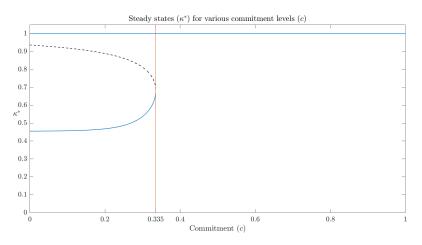

Proposition 2. A sufficient condition for uniqueness of equilibrium is

$$c>1-rac{1}{ar{ au}eta}$$

 \rightarrow The higher the tax announced and β , the higher should be c


When commitment is low, no ambitious announcements

 κ_{t+1} as a function of κ_t , for various values of τ (with c=0.4)


When commitment is low, no ambitious announcements

Bifurcation diagram of $\bar{ au}$

Low commitment creates a high-carbon trap

Bifurcation diagram of c

The model

Analytical results

Calibration

Results

Conclusions

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector

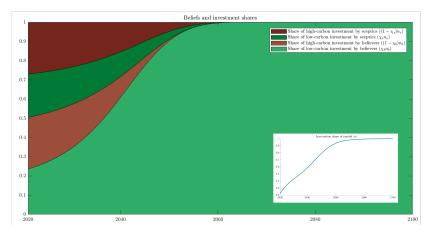
- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Investment and opinion behaviours
 - Esp. intensity of choice parameters β and γ
 - Literature + sensitivity analysis

https://site.unibo.it/smooth/en

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Investment and opinion behaviours
 - Esp. intensity of choice parameters β and γ
 - Literature + sensitivity analysis
- Policy parameters
 - Calibrated on IAM projections
 - Scenario analysis

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Investment and opinion behaviours
 - Esp. intensity of choice parameters β and γ
 - Literature + sensitivity analysis
- Policy parameters
 - Calibrated on IAM projections
 - Scenario analysis
- Time: 320 quarters (2020-2100)

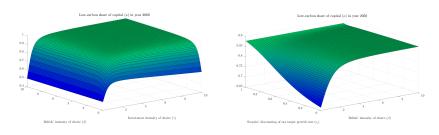
The model


Analytical results

Calibration

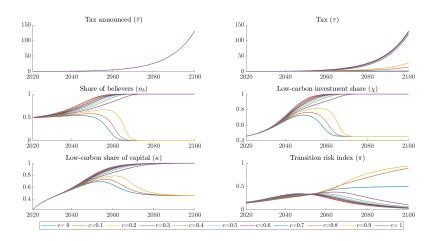
Results

Conclusions

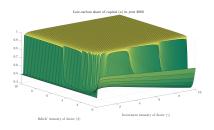

Benchmark scenario

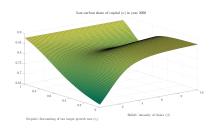
Evolving shares of low/high-carbon investments by sceptics/believers

Belief/investment intensity of choice and beliefs polarisation



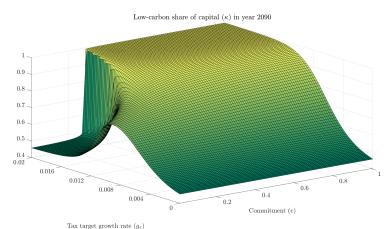
Low-carbon capital share κ as a function of β and γ (left), ϵ_s and β (right)


Transition dynamics under various commitment levels



https://site.unibo.it/smooth/en

Interaction between commitment, belief/investment intensity of choice and beliefs polarisation



Low-carbon capital share κ as a function of β and γ (left), ϵ_s and β (right)

https://site.unibo.it/smooth/en

Commitment and tax announcements

Low-carbon capital share κ as a function of g_{τ} and c

The model

Analytical results

Calibration

Results

Conclusions

Ambitious AND credible objectives are necessary to achieve decarbonisation

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'
 - Emergence of multiple equilibria
 - Decarbonisation can fail: timing of policies and transition dynamics is key!

- Ambitious AND credible objectives are necessary to achieve decarbonisation
 - A sufficiently strong carbon tax schedule planned for the future
 - A sufficiently committed policy-maker
- Ambitious BUT not sufficiently credible objectives create a 'high-carbon trap'
 - Emergence of multiple equilibria
 - Decarbonisation can fail: timing of policies and transition dynamics is key!
- Key role of beliefs and firms' speed of reaction
 - Polarised beliefs lead to a faster transition under poor commitment

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

Additional slides

Proof of proposition 1

- Since $f(\kappa)$ is continuous in [0, 1] and $f(\kappa) \in [0, 1] \ \forall \kappa, f$ has at least one fixed point $\kappa = f(\kappa) \in [0,1]$
- $f(0) = \left(\frac{1}{1+\exp(-\beta(2\tau_t \bar{\tau}_0 \bar{\tau}))}\right) (\chi_b \chi_s) + \chi_s \in (0,1)$ and $f(1) = \left(\frac{1}{1+\exp(-\beta(\bar{\tau} \bar{\tau}_0))}\right) (\chi_b \chi_s) + \chi_s \in (0,1)$, which implies that the map starts above the 45 degree line and ends below the 45 degree line
- Generally an overall odd number of steady states exists.

https://site.unibo.it/smooth/en

Proof of proposition 2

- The second derivative of $f(\kappa)$ is: $f''(\kappa) = -\frac{G\left((a\bar{\tau} \bar{\tau}\,\beta + \bar{\tau}\,\beta\,c a\,\bar{\tau}\,\kappa_t + 1) + \mathrm{e}^{\beta\,(\bar{\tau}_0 2\tau_t + \bar{\tau})}\,(a\,\bar{\tau} + \bar{\tau}\,\beta \bar{\tau}\,\beta\,c a\,\bar{\tau}\,\kappa_t + 1)\right)}{\left(\mathrm{e}^{\beta\,(\bar{\tau}_0 2\tau_t + \bar{\tau})} + 1\right)^3\,(a\,\bar{\tau} a\,\bar{\tau}\,\kappa_t + 1)^4}$ where G < 0.

Calibration: Production

- Exogenous macro landscape: $g_Y \approx 2\%$ per year
- European power sector (LCOE data from IEA)

Parameter	Symbol	Value
Output growth rate	gy	0.5%
Depreciation rate	δ	3%
Initial low-carbon capital share	κ_0	0.21
Low- to high-carbon production cost	$\frac{\theta_I}{\theta_h}$	1.33

Calibration: Beliefs and decisions

- Initial belief shares
 - Endogenously determined but in line with Refinitiv Carbon Market Survey)
- Belief intensity of choice
 - $\beta = 1$ following Hommes (2021) + sensitivity analysis
- Investment intensity of choice $\gamma = 2$
 - χ to fit initial investment shares values
 - transition as planned with full commitment

Parameter	Symbol	Value
Discount rate	ρ	0.5%
Planning horizon	R	120
Initial shares of belief types Policy trust parameters Intensity of belief choice Memory parameter Intensity of investment choice	$n_{b,0}; n_{s,0}$ $\epsilon_b; \epsilon_b$ β η	0.3; 0.7 1; 0 1 0.5 2

https://site.unibo.it/smooth/en

Roberta Terranova

Calibration: Policy decisions

- Current tax $\bar{ au}_0$ calibrated on 2020 EU-ETS allowance prices
- Announced growth rate \bar{g}_{τ} calibrated on optimal mitigation pathways to reach 1.5-2°C
 - ENGAGE project involving 16 IAMs
- a=1 to have low transition risk costs in 2020 $(\pi_0 \approx 0.15)$ and have $\pi_0 \approx 0.5$ for $\bar{ au} \approx 1.2$

Parameter	Symbol	Value
Announced initial tax rate	$ar{ au}_0$	0.24
Announced tax growth rate	$ar{m{g}}_{ au}$	0.02
Transition risk index parameter	a	1
Policy-maker tax commitment	С	[0,1]

Back

