The network effects of carbon pricing

E. Campiglio^{1,2}, H. Massoni¹, S. Trsek³

¹University of Bologna ²RFF-CMCC European Institute on Economics and the Environment ³Vienna University of Economics and Business

> EAERE 2022 - 27th Annual Conference Rimini - 28 June, 2022

Motivation

Macroeconomic costs and competitive drawbacks are prominent obstacles to the introduction of carbon pricing.

With interconnected industries (GVC), carbon pricing potentially affects:

- emission-intensive industries
- Industries connected to high-carbon value chains

Network effects of carbon pricing:

- Propagation of (price-induced) demand shocks
- Recomposition of the global production network (Whalley and Wigle 1991)

Motivation

Macroeconomic costs and competitive drawbacks are prominent obstacles to the introduction of carbon pricing.

With interconnected industries (GVC), carbon pricing potentially affects:

- emission-intensive industries
- Industries connected to high-carbon value chains

Network effects of carbon pricing:

- Propagation of (price-induced) demand shocks
- Recomposition of the global production network (Whalley and Wigle 1991)

Research questions

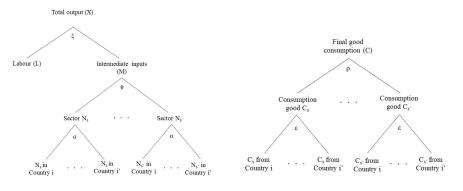
- How does a price on carbon emissions affect the structure of GVC?
- Which sectors or countries bear the cost of GVC reconfigurations?

() A production network approach to carbon pricing impacts

- Multi country-sector model with price substitution (Baqaee and Farhi 2019; Devulder and Lisack 2020; Frankovic 2022; Sager 2021)
- Network effects: price substitution vs. contagion of demand shocks
- A GVC positioning perspective: input-output analysis tools

() A production network approach to carbon pricing impacts

- Multi country-sector model with price substitution (Baqaee and Farhi 2019; Devulder and Lisack 2020; Frankovic 2022; Sager 2021)
- Network effects: price substitution vs. contagion of demand shocks
- A GVC positioning perspective: input-output analysis tools
- Q Results: complex network and policy interactions
 - Carbon tax shifts network centrality away from carbon-intensive countries and countries trading with them
 - Unilateral policy: increases marginalization, even with burden-sharing policies (border tax)



Model overview details

Multi-sector open-economy model with firms ($C \times S$) and households (C)

- Firms: total output production with input bundle M and labor L
 ⇒ Nested CES: elasticities ξ (labor/inputs), θ (sectors) and σ (countries)
- Households: consumption bundle C of final goods
 ⇒ Nested CES: elasticities ρ (sectors) and ε (countries)

Carbon tax induces price and output adjustments in the economy:

• New prices:
$$p_{si}^{new}(\mathbf{T}, \mathbf{A})$$
 with $\mathbf{T} = \{\tau_{si(\omega)}\}$ and $\mathbf{A} = \{a_{si(\omega)}\}$
tax on direct emissions input-output matrix

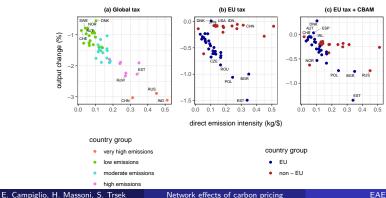
• Firm-level adjustments to *p^{new}* in inputs:

$$a_{si}^{new} = \alpha_M \alpha_s \alpha_{si} \left(\frac{P^{new}}{P_M^{new}}\right)^{\xi} \left(\frac{P_M^{new}}{P_{Ns}^{new}}\right)^{\theta} \left(\frac{P_{Ns}^{new}}{P_{si}^{new}}\right)^{\sigma}$$

• Consumers' reaction to p^{new} in final goods:

$$G_{si}^{new} = \frac{c_{si}^{new}}{C^{new}} = \gamma_s \gamma_{si} \left(\frac{P_C^{new}}{P_{Cs}^{new}}\right)^{\rho} \left(\frac{P_C^{new}}{P_{si}^{new}}\right)^{\varepsilon}$$

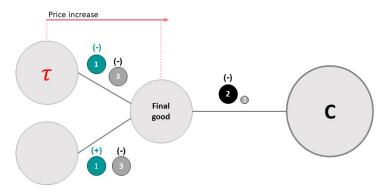
- Data: World Input-Output Database (WIOD)
 ⇒ 44 countries and 56 productive sectors
- Calibration:
 - Elasticities: literature in trade and production networks
 ⇒ Atalay 2017; Baqaee and Farhi 2019
 - Techno. requirements (α) and consumption pref. (γ): WIOD
- We run 3 carbon pricing scenarios $(40\$/tCO_2)$:
 - global tax
 - 2 EU (production)
 - **3** EU + CBAM (production + borders)
- Revenue recycling: collected and distributed to domestic consumers



Baseline results

CO₂ emissions and economic impacts - world level

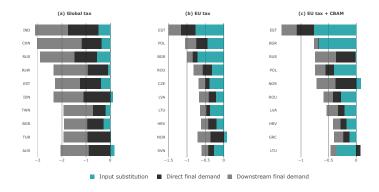
- Global tax vs. EU production tax vs. EU + CBAM tax:
 - Global carbon emissions: -4.5% vs. -0.3% vs. -0.4%
 - Average output change: -1.9% vs. -0.17% vs. -0.21%

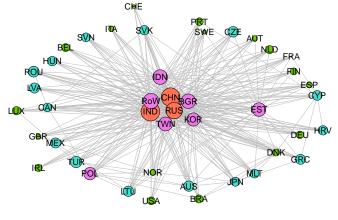

Distribution of costs - country level

level 🔪 cluste

Network effects - drivers

What are the drivers of output loss?

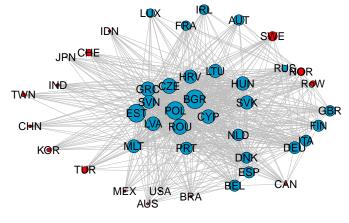

- **Input substitution** effect: direct changes in intermediate demand (firms)
- 2 Direct final demand effect: direct changes in final demand (consumers)
- Oownstream final demand effect: changes in intermediate demand induced by changes in final demand


Network effects - numerical results

Dominant effects:

- Global tax: demand effects
- ② EU and EU+CBAM tax: input substitution responsible for most losses
- \Rightarrow Relative competitiveness losses are sharper in unilateral policy scenarios

Focus: input substitution (global)

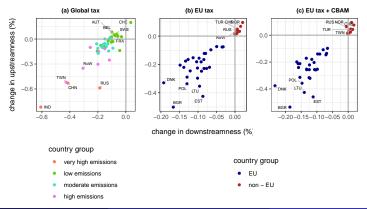

cluster_names • very high emissions • low emissions • moderate emissions • high emissions

Edges: Δ % in intermediate trade > 2; *Nodes*: Δ % in total output

E. Campiglio, H. Massoni, S. Trsek

Network effects of carbon pricing

Focus: input substitution (EU+CBAM)


country_group_EU • EU • non - EU

Edges: Δ % in intermediate trade > 0.7; *Nodes*: Δ % in total output

Network effects - GVC recomposition

A closer look at GVC positions (downstreamness/upstreamness): details

- Highly-emitting countries and connected countries: marginalization
- Unilateral EU tax shifts network towards non-EU countries (scen. 2&3)
- Adding CBAM doesn't help EU GVC marginalisation

() Carbon pricing: potential cascades of price changes and output loss

- Both direct and indirect (imported) emissions matter
- Firms and households substitute away from carbon-intensive inputs

Ø Macroeconomic impacts - winners and losers

- GVC positioning and policy shape network effects
- Carbon pricing reconfigures GVC
- Scoming work: policy!
 - Can a policy-maker counter GVC marginalization?
 - Recycling policies are key for welfare/competitiveness
 - Endogenizing policy: 'cascades' of policy decisions

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

Support slides

Sensitivity - elasticity parameters (1/2)

Output and emissions changes are increasing with elasticity parameters

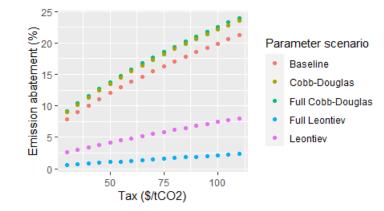
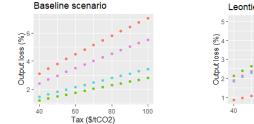
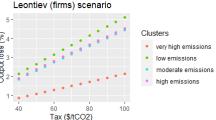
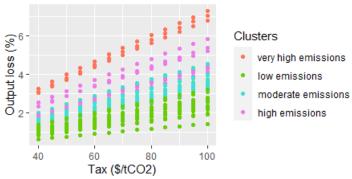
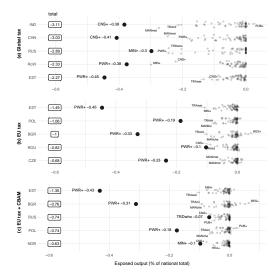




Figure: Sensivity analysis: tax range and parameter space

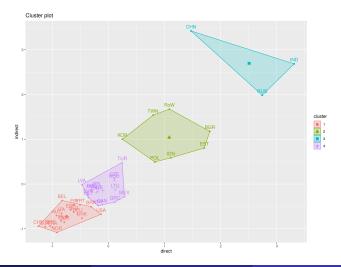
Winners and losers are parameter-dependent Clustering


- Increased rigidity in the input market: higher price increase contagion
- Hypothesis: less emitting countries are closer to final demand
 ⇒ Downstream price progagation + no substitution ↑ negative demand effects

Sensitivity - tax range


- Absence of strong non-linear effects in increasing tax rate
- Increased variance in economic costs!

Baseline scenario


Next steps: does this translate into network statistics (centrality, degree, etc.)?

Sectoral distribution of costs (back)

Emission-based clustering **back**

- Direct emissions: own emission intensity
- Indirect emissions: emissions intensity implied by the value chain

GVC position indices (back)

Upstreamness - total forward linkages

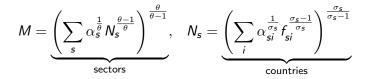
• Average 'distance' from final use (Antràs et al. 2012; Miller and Temurshoev 2017)

$$u_i = 1 \cdot c_i + 2 \cdot \sum_j \alpha_{ij} c_j + 3 \cdot \sum_{j,k} \alpha_{ik} \alpha_{kj} c_j + 4 \cdot \sum_{j,k,l} \alpha_{il} \alpha_{lk} \alpha_{kj} c_j + \cdots$$

Downstreamness - total backward linkages

- Average 'distance' from primary inputs (labor) (Miller and Temurshoev 2017)
- Average number of production stages (Fally 2012)

$$d_i = 1 \cdot \kappa_i + 2 \cdot \sum_j \alpha_{ij} \kappa_j + 3 \cdot \sum_{j,k} \alpha_{ik} \alpha_{kj} \kappa_j + 4 \cdot \sum_{j,k,l} \alpha_{il} \alpha_{lk} \alpha_{kj} \kappa_j + \cdots$$


Notation: c_i final goods, κ_i value-added (labor), α technical coefficients.

Baseline model - Firms

- \bullet Economy populated with $\mathcal{C}\times\mathcal{S}$ representative firms
- Firms produce with a set of factors *F* and a bundle of intermediate inputs *M*, using technology

$$X = \left(\alpha_L^{\frac{1}{\xi}} L^{\frac{\xi-1}{\xi}} + \alpha_M^{\frac{1}{\xi}} M^{\frac{\xi-1}{\xi}}\right)^{\frac{\xi}{\xi-1}}$$
(1)

Interm. input bundle (double-nested CES) jointly defined by

• Firms minimise output costs $\Gamma = wL + \sum_{s,i} p_{si} f_{si}$

Baseline model - Households (back)

- Economy populated with $\mathcal C$ representative households
- Households consume a bundle of final goods C defined by

$$C = \underbrace{\left(\sum_{s \in \mathcal{S}} \gamma_s^{\frac{1}{\rho}} C_s^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}}_{\text{sectors}}, \quad C_s = \underbrace{\left(\sum_{i \in \mathcal{C}} \gamma_{si}^{\frac{1}{\varepsilon_s}} c_{si}^{\frac{\varepsilon_s-1}{\varepsilon_s}}\right)^{\frac{\varepsilon_s}{\varepsilon_s-1}}}_{\text{countries}}$$

Budget constraint is

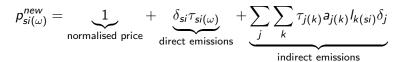
$$P_C C = w \sum_{s} L_s + T$$

where revenues are generated from:

- Supplying labour *L* at rate *w*
- Receiving lump-sum taxes T from carbon pricing

• Optimal consumption of input and final goods $\{s, i\} \in S \times C$ yields a linear relationship between input and output¹

$$\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{c}$$


where:

- **x** is the vector of country-sector output
- c is the vector of final demand
- A is the matrix of technical coefficients
- Important: both A and c are price-dependent
- We normalise prices to 1 to keep the model in real terms

E. Campiglio, H. Massoni, S. Trsek

¹The 'Leontiev inverse' can be decomposed as a power series, such that $(I - A)^{-1} = I + A + A^2 + ...$; this is the basis for the decomposition of the stranding cascades hereafter.

- Emissions δ_{si} are taxed by country-sector ω at rate $\tau_{si(\omega)}$
- Given the intermediate input market structure **A**, the new price of input {*s*, *i*} for other firms should encompass:
 - (i) *direct* emission costs: $\delta_{si} \tau_{si(\omega)}$
 - (ii) *indirect* emission costs resulting from buying inputs further up the supply chain
- New intermediate input prices are therefore given by²:

²All {s, i}, $\omega, j, k \in S \times C$

E. Campiglio, H. Massoni, S. Trsek

New prices distort the structure of the intermediate inputs market

• A^{new} with elements

$$\boldsymbol{a_{si}^{new}} = \alpha_M \alpha_s \alpha_{si} \left(\frac{P^{new}}{P_M^{new}}\right)^{\xi} \left(\frac{P_M^{new}}{P_{Ns}^{new}}\right)^{\theta} \left(\frac{P_{Ns}^{new}}{P_{si}^{new}}\right)^{\sigma}$$

- Price indices P_M^{new} and P_{Ns}^{new} contain a weighted average of input prices w.r.t. sectors and countries
- a_{si}^{new} coefficients are *deflated* from new prices

New prices affect households consumption patterns

• New share allocated to good c_{si} by country n is given by

$$\frac{c_{si}^{new}}{C^{new}} = \gamma_s \gamma_{si} \left(\frac{P_C^{new}}{P_C^{new}}\right)^{\rho} \left(\frac{P_C^{new}}{P_{si}^{new}}\right)^{\varepsilon_s}$$

• Price indices P_C^{new} and P_{Cs}^{new} contain a weighted average of input prices w.r.t. sectors and countries

• Changes in revenues after carbon pricing is introduced:

$$P_{C}^{new}C^{new} = r\sum_{s}K_{s}^{new} + w\sum_{s}L_{s}^{new} + T^{new}$$

- Tax revenues T^{new} are collected at the country level and allocated to households
- Revenues from capital and labour *rK^{new}* and *wL^{new}* are collected by domestic households

New equilibrium output

$$\mathbf{x}^{new} = (\mathbf{I} - \mathbf{A}^{new})^{-1} \mathbf{c}^{new}$$