Believe me when I say green!

Heterogeneous expectations and climate policy uncertainty

E. Campiglio^{1,2} F. Lamperti^{3,2} R. Terranova² *EAERE Conference* Rimini - 1 July 2022

¹University of Bologna ²RFF-CMCC European Institute on Economics and the Environment ³Sant'Anna School of Advanced Studies

- Urgent to mitigate climate change
 - $\bullet \ \to {\sf Decarbonisation}$
- Markets won't go low-carbon by themselves
 - $\bullet \ \rightarrow$ Policies needed to modify relative prices
 - Long-lived capital assets \rightarrow Future policies matter!
- Expectations on future policies
 - Policy-makers announced objectives (e.g. net-zero by 2050)
 - Degree of trust in policy-maker's commitment

Policy-makers come and go

Tony Abbott (2014)

"..the repeal of the carbon tax means a \$550 a year benefit for the average family" "On energy, I will cancel job-killing restrictions on the production of American energy - including shale energy and clean coal - creating many millions of high-paying jobs"

Donald Trump (2016)

Transition-related and landscape disruptions

- Transition-related costs (unemployment, stranding, financial volatility)
- Changing landscapes and opinions
- $\bullet \ \rightarrow \ {\rm Diversion} \ {\rm from} \ {\rm plans}$

Gilets Jaunes movement (2018)

Anti-nuclear protests in Germany (2011)

Ukraine war (2022)

Heterogeneous and evolving climate policy sentiments

- Context of uncertainty → Heterogeneity of expectations
- Sentiments change in time, adapting to new information

Carbon price expectations. Source: Nemet et al. (2017)

Climate sentiment indices. Source: Noailly et al. (2022)

• Research questions

- How could heterogeneity/volatility of climate policy expectations affect the transition?
- How is the policy-maker affected and how should it behave?

• Research questions

- How could heterogeneity/volatility of climate policy expectations affect the transition?
- How is the policy-maker affected and how should it behave?
- We develop small macroeconomic model with:
 - Low- and high-carbon capital stocks
 - Heterogeneous and dynamic
 - Policy expectations
 - Trust in policy-makers ('beliefs')
 - Announcement of increasing carbon tax
 - Policy-maker concerned about transition costs

Overview of results

- Decarbonisation requires:
 - A sufficiently strong carbon tax announcement
 - A sufficiently committed policy-maker

Overview of results

- Decarbonisation requires:
 - A sufficiently strong carbon tax announcement
 - A sufficiently committed policy-maker
- Heterogeneity matters under full commitment
 - Higher expectation/beliefs dispersion \rightarrow slower transition
 - Higher policy expectation dispersion \rightarrow more ambitious policy announcements needed

Overview of results

- Decarbonisation requires:
 - A sufficiently strong carbon tax announcement
 - A sufficiently committed policy-maker
- Heterogeneity matters under full commitment
 - Higher expectation/beliefs dispersion \rightarrow slower transition
 - Higher policy expectation dispersion \rightarrow more ambitious policy announcements needed
- Commitment and the 'high-carbon trap'
 - A weakly committed policy-maker generates multiple equilibria
 - Higher announced tax \rightarrow higher commitment needed
 - $\bullet \ \ \text{Higher belief dispersion} \rightarrow \text{ambiguous effects}$
 - With weak commitment: more polarised expectations \rightarrow faster transition

Related literature

- Rapid and orderly transition to carbon-free economy
 - Economic effects of climate policy uncertainty: van der Ploeg & Rezai (2020); Fried et al (2021)
 - Climate sentiments: Engle et al. (2020); Noailly et al. (2022); Basaglia et al. (2022)
 - Credible commitment: Helm et al. (2003); Nemet et al. (2017)
 - Transition risks: Semieniuk et al. (2021)
- Modelling framework
 - Rooted in discrete choice theory (McFadden 1973)
 - Heterogeneous expectations literature: Brock&Hommes 1997, 1998; De Grauwe&Macchiarelli 2015; Hommes&Lustenhouwer 2019; Assenza et al. 2021; Annicchiarico et al. 2022
 - Technological diffusion literature: Mercure et al 2014; Mercure 2015; Zeppini 2015

The model

Physical productive system

- Two technologies (i = I, h)
 - High-carbon incumbent K_h
 - Low-carbon niche K_I
- Mass 1 of infinitesimal firms
 - Firms split into *j* 'sentiment populations'
- The *j*-specific share of low-carbon investment $\chi_{j,t} \in [0,1]$ is

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

where γ is the investment intensity of choice (inversely related to expectation dispersion); $E_j(\Theta_i)$ the expectation of population j on technology i production costs

The investment allocation choice

Share of low-carbon investment χ as a function of expected NPV costs Θ_h/Θ_l and intensity of choice γ

- $\gamma = 0 \rightarrow \chi = 0.5 \ \forall \Theta_i$
- $\Theta_h = \Theta_I \rightarrow \chi = 0.5 \ \forall \gamma$

 Firms evaluate the net present value Θ_i of expected costs of producing with technologies h and l:

$$\mathsf{E}_{j,t}(\Theta_{i,t}) = \sum_{r=t+1}^{R} \rho^r \theta_{i,r} (1 + \mathsf{E}_{j,t}(\tau_{i,r}))$$

where

- ρ: discount rate
- R: planning horizon
- θ *i*-specific production costs
- τ : tax rate on high-carbon production costs θ_h

- To form expectations on future taxes, firms first look at policy-maker announcements
 - Long-term decarbonisation objectives (EU: net-zero by 2050)
 - \rightarrow Implied optimal carbon tax (IAMs: ENGAGE scenarios)
- We assume an exponential tax announcement

$$\bar{\tau}_{t+r} = \bar{\tau}_0 (1 + \bar{g}_\tau)^r$$

where $\bar{\tau}_0$ is initial (current) tax rate and \bar{g}_{τ} is the announced growth rate of τ

- Firms have heterogeneous beliefs about credibility of policy commitment. We assume two belief categories j = b, s
 - Believers (b) trust policy-makers' announcements more
 - Skeptics (s) trust policy-makers' announcements less
- At every time t + r, expected tax rate is:

$$E_{j,t}(\tau_{t+r}) = \bar{\tau}_t (1 + \epsilon_j \bar{g}_\tau)^r$$

with $\epsilon_j \in [0,1]$ indicating the degree of trust in the announced policy, and $\epsilon_b > \epsilon_s$

How do firms choose their beliefs?

 The share of firms adopting each belief type n_j ∈ [0, 1] is then determined by

$$n_{j,t} = \frac{\exp(-\beta U_{j,t-1})}{\sum_{j} \exp(-\beta U_{j,t-1})}$$

with β is the belief intensity of choice (inversely related to dispersion of opinions)

• Firms evaluate the accuracy of their past beliefs via a fitness function *U* (Brock&Hommes, 1997, 1998):

$$U_{j,t} = \eta (E_{j,t-1}(\tau_t) - \tau_t)^2 + (1 - \eta) U_{j,t-1}$$

where $\eta \in [0,1]$ is a memory (or belief inertia) parameter

The role of belief intensity choice β

Share of believers n_b as a function of fitness measures U_b and U_s

- $\beta \rightarrow 0$: random choice $(n_j = 0.5)$
- $\beta \rightarrow \infty$: all agents switch at the margin (n_j either 0 or 1)

• The low-carbon investment share for the overall economy χ_t is

$$\chi_t = n_{b,t}\chi_{b,t} + n_{s,t}\chi_{s,t}$$

• Population shares

	Low-carbon	High-carbon	j shares
Believers	$n_b\chi_b$	$n_b(1-\chi_b)$	n _b
Sceptics	$n_s\chi_s$	$n_s(1-\chi_s)$	ns
<i>i</i> shares	χ	$1-\chi$	1

Transition risks and policy commitment

 Transition risk index π function of low-carbon capital share κ and planned tax rate τ
_t:

$$\pi_t = 1 - \frac{1}{1 + a(1 - \kappa_t)\bar{\tau}_t}$$

where a represents vulnerability to transition risks

- Transition disruption amplification: financial exposure; welfare system fragility; social turmoil; etc.
- Policy-maker then sets actual tax rate τ following:

$$\tau_t = c\bar{\tau}_t + (1-c)\bar{\tau}_t(1-\pi_t)$$

where $c \in [0, 1]$ is the policy-maker weight given to climate objectives against transition cost mitigation

Analytical results

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - + $\bar{\tau}$ is treated as a fixed parameter
 - $\eta = 1$

•
$$\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$$

- $\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$
- κ evolves as follows:

$$\kappa_{t+1} = f(\kappa_t) = n_{b,t+1}(\chi_{b,t+1} - \chi_s) + \chi_s$$

where $n_{b,t+1}$ is a function of κ_t :

$$egin{split} \eta_{b,t+1} &= rac{1}{1+\exp\left(-eta\left(2 au_t-ar{ au}_0-ar{ au}
ight)
ight)} \ au_t &= ar{ au}\left(c+rac{1-c}{1+a(1-\kappa_t)ar{ au}}
ight) \end{split}$$

- Proposition 1. f(κ) has at least one stable equilibrium and generally an overall odd number of equilibria exists Proof
 - Equilibria with odd index are stable
 - Equilibria with even index are unstable

• Benchmark scenario. Under $\beta = \gamma = \infty$ (the neoclassical limit), the low-carbon steady state $\kappa^* = 1$ exists if

$$\bar{\tau} > \left(\frac{\theta_l - \theta_h}{\theta_h}\right)$$

where $\frac{\theta_I - \theta_h}{\theta_h}$ is the percentage difference between low- and high-carbon production costs

• Bounded rationality scenario. Under finite β and γ , the low-carbon steady state $\kappa^* = 1 - \lambda_I$, with λ_I a small positive number, exists if

$$\bar{\tau} > \frac{\left| \ln \left(\frac{\lambda}{1 - \lambda} \right) \right|}{A \gamma \theta_h} + \left(\frac{\theta_l - \theta_h}{\theta_h} \right)$$

where $\lambda > \lambda_I$ and $A \equiv \frac{1-\rho^{R+1}}{1-\rho}$ \Rightarrow The higher policy expectation dispersion (the lower γ), the more ambitious policy announcements need to be! Benchmark scenario. Under β = γ = ∞ (the neoclassical limit), the high-carbon steady state κ^{*} = χ_s exists if

$$c < rac{1}{2} + b_1$$

where $b_1 \equiv rac{ar{ au}_0}{2ar{ au}} + rac{ar{ au}_0 - ar{ au}}{2a(1 - \chi_s))ar{ au}^2} < 0$

High-carbon steady state II

Bounded rationality scenario. Under finite β and γ, the additional high-carbon steady state, κ^{*} = χ_s + λ_h, with λ_h a small positive number, exists if

$$c < \frac{1}{2} + b_2 + d$$

where

•
$$b_2 \equiv \frac{\overline{\tau}_0}{2\overline{\tau}} + \frac{\overline{\tau}_0 - \overline{\tau}}{2a(1 - (\chi_s + \lambda_\kappa))\overline{\tau}^2} < 0$$

• $d \equiv -\frac{1}{\beta 2\overline{\tau}} \ln(\widetilde{\lambda}_h) \left(\frac{1}{a(1 - (\chi_s + \lambda_\kappa))\overline{\tau}} + 1\right) < 0$
• $\lambda_\kappa > \lambda_h$ is a sufficiently small positive number
• $\widetilde{\lambda}_h \equiv \frac{\chi_b - \chi_s - \lambda_\kappa}{\lambda_\kappa}$

• **Proposition 2.** A sufficient condition for uniqueness of equilibrium is

$$c>1-rac{1}{ar aueta}$$

Proof

⇒ The higher belief dispersion (the lower β), the less committed the policy-maker is allowed to be ⇒ The higher the announced tax, the higher will the policy-maker's commitment need to be

When commitment is low, no ambitious announcements

 κ_{t+1} as a function of κ_t , for various values of au (with c = 0.4)

When commitment is low, no ambitious announcements

Bifurcation diagram of $\bar{\tau}$

Low commitment creates a high-carbon trap

Bifurcation diagram of c

Calibration

- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Investment and opinion behaviours
 - Esp. intensity of choice parameters β and γ
 - Literature + sensitivity analysis
- Policy parameters
 - Calibrated on IAM projections
 - Scenario analysis
- Time: 320 quarters (2020-2100)

Details

Results

Full-commitment benchmark scenario

Evolving shares of low/high-carbon investments by sceptics/believers

Belief/investment choice intensities

Low-carbon capital share κ as function of belief/investment choice intensities (β , γ)

- Under full commitment, higher belief/expectation heterogeneity → slower transition
- Under weak commitment and high belief heterogeneity \rightarrow transition failure

Transition dynamics under various commitment levels

Commitment and tax announcements

Low-carbon capital share κ as a function of g_τ and c

 Weakly committed policy-makers should not announce excessively ambitious tax targets

Beliefs polarisation and transition speed

c = 1 (full commitment)

c = 0.4 (weak commitment)

Low-carbon capital share κ as function of sceptics' degree of trust ϵ_s and belief choice intensity β

• Less heterogeneous beliefs (high belief choice intensity β) \rightarrow more polarised expectations accellerate the transition

Conclusions

Conclusions

- Heterogeneity of expectations/beliefs will affect:
 - Technological investment choices
 - Dynamics expectations and trust in the policy-makers
 - Policy-maker's commitment
 - $\bullet~\rightarrow$ Low-carbon transition speed and shape
- Policy take-away messages
 - More heterogeneous policy expectations \rightarrow More ambitious announcements
 - But: danger! Ambitious announcements without strong commitment \rightarrow Transition fails
 - Belief dispersion can be tricky: makes it easier to have unique equilibrium, but makes things worse if commitment is too low

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

Additional slides

• Since $f(\kappa)$ is continuous in [0, 1] and $f(\kappa) \in [0, 1] \ \forall \kappa, f$ has at least one fixed point $\kappa = f(\kappa) \in [0, 1]$

•
$$f(0) = \left(\frac{1}{1+\exp(-\beta(2\tau_t - \overline{\tau}_0 - \overline{\tau}))}\right) (\chi_b - \chi_s) + \chi_s \in (0,1)$$
 and
 $f(1) = \left(\frac{1}{1+\exp(-\beta(\overline{\tau} - \overline{\tau}_0))}\right) (\chi_b - \chi_s) + \chi_s \in (0,1)$, which
implies that the map starts above the 45 degree line and ends
below the 45 degree line

 $\rightarrow\,$ Generally an overall odd number of steady states exists. $_{\rm Back}$

Proof of proposition 2

- The second derivative of $f(\kappa)$ is: $f''(\kappa) = -\frac{G\left((a\bar{\tau}-\bar{\tau}\beta+\bar{\tau}\beta c-a\bar{\tau}\kappa_t+1)+e^{\beta(\bar{\tau}_0-2\tau_t+\bar{\tau})}(a\bar{\tau}+\bar{\tau}\beta-\bar{\tau}\beta c-a\bar{\tau}\kappa_t+1)\right)}{\left(e^{\beta(\bar{\tau}_0-2\tau_t+\bar{\tau})}+1\right)^3(a\bar{\tau}-a\bar{\tau}\kappa_t+1)^4}$, where G < 0.
- The sign of the second order derivative depends on $(a \overline{\tau} - \overline{\tau} \beta + \overline{\tau} \beta c - a \overline{\tau} \kappa_t + 1) + e^{\beta (\overline{\tau}_0 - 2\tau_t + \overline{\tau})} (a \overline{\tau} + \overline{\tau} \beta - \overline{\tau} \beta c - a \overline{\tau} \kappa_t + 1).$ For $\beta \neq 0$, since $c, \kappa \in [0, 1]$, if $(a \overline{\tau} - \overline{\tau} \beta + \overline{\tau} \beta c - a \overline{\tau} \kappa_t + 1) > 0$, then $f''(\kappa) > 0$. The condition implies $c > 1 - \frac{1}{\overline{\tau}\beta}$. Back

- Exogenous macro landscape: $g_Y \approx 2\%$ per year
- European power sector (LCOE data from IEA)

Parameter	Symbol	Value
Output growth rate	gy	0.5%
Depreciation rate	δ	3%
Initial low-carbon capital share	κ_0	0.21
Low- to high-carbon production cost	$\frac{\theta_I}{\theta_h}$	1.33

Calibration: Beliefs and decisions

- Initial belief shares
 - Endogenously determined but in line with Refinitiv Carbon Market Survey)
- Belief intensity of choice
 - $\beta = 1$ following Hommes (2021) + sensitivity analysis
- Investment intensity of choice $\gamma=2$
 - χ to fit initial investment shares values
 - transition as planned with full commitment

Parameter	Symbol	Value
Discount rate	ρ	0.5%
Planning horizon	R	120
Initial shares of belief types	$n_{b,0}; n_{s,0}$	0.3; 0.7
Policy trust parameters	$\epsilon_b;\epsilon_b$	1; 0
Intensity of belief choice	β	1
Memory parameter	η	0.5
Intensity of investment choice	γ	2

Calibration: Policy decisions

- Current tax $\bar{\tau}_0$ calibrated on 2020 EU-ETS allowance prices
- Announced growth rate \bar{g}_{τ} calibrated on optimal mitigation pathways to reach 1.5-2°C
 - ENGAGE project involving 16 IAMs
- a = 1 to have low transition risk costs in 2020 ($\pi_0 \approx 0.15$) and have $\pi_0 \approx 0.5$ for $\bar{\tau} \approx 1.2$

Parameter	Symbol	Value
Announced initial tax rate	$\overline{ au}_0$	0.24
Announced tax growth rate	$ar{g}_{ au}$	0.02
Transition risk index parameter	а	1
Policy-maker tax commitment	С	[0,1]