

Physiological Regulations In Sleeping Mice

Stefano Bastianini

<u>Department of Biomedical and Neuromotor Sciences</u> (DIBINEM) University of Bologna

e-mail stefano.bastianini3@unibo.it

Summer School, Bologna, 8 July, 2025

- Electrical signals in animals

- What is sleep and why do we care?

- Mice as models of physiology and pathology
 - Detection and analysis of physiological variables
 - Ongoing projects

Living systems can produce electricity

<u>Neurons communicate with each</u> <u>other, forming the basis of our</u> <u>thoughts, behaviors, and perceptions.</u> Muscle cells generate electrical signals before they contract

<u>Across the cellular membrane there is an excess of</u> <u>negative charges inside the cell and positive</u> <u>charges outside of it</u>

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

Action Potential Propagation

© Sinauer Associates, Inc.

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AL TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

- Electrical signals in animals

- What is sleep and why do we care?
- Mice as models of physiology and pathology
 - Detection and analysis of physiological variables
 - Ongoing projects

<u>Sleep</u>

- <u>Sleep is one of the most important</u> <u>human behaviors, indeed it</u> <u>occupies about a third of our lives.</u>
- <u>The main characteristic is the</u> <u>reversible reduction of the response</u> <u>threshold to external stimuli</u>
- <u>It is a universal phenomenon found</u> <u>in all animals studied (from insects</u> <u>to mammals), therefore highly</u> <u>conserved in the evolutionary arc</u>

How can we study sleep behavior?

<u>The electroencephalogram (EEG) is a tool that detects the</u> <u>electrical activity of the brain</u>

Only through the use of EEG we can actually be sure that an individual is sleeping since brain activity changes significantly between wakefulness and sleep.

REM sleep is present only in mammals and some birds.

Neurons work differently between wakefulness and sleep

WAKEFULNESS

Neurons work differently between wakefulness and sleep

EEG rhythms

<u>Wakefulness:</u> fast and desynchronized rhythms

Slow Wave Sleep stage 1: light sleep

Slow Wave Sleep stage 2: synchronization of EEG

Rhythms:

- Alfa = 8-13 Hz (Eyes closed)
- Beta = 14-30 Hz (Wake)
- Sigma = 12-14 Hz (spindles)

L'EEG di un essere umano sveglio e vigile è desincronizzato: un misto di onde di frequenza elevata e piccola ampiezza. (a) Veglia 🔪 200 μV Durante il rilassamento appaiono Durante lo stadio 1 del sonno si oscillazioni in ritmo alfa. osservano brusche onde al vertice. (b) Sonno SWS in stadio 1 Periodi piuttosto brevi di fusi del ...e complessi K caratterizzano sonno... questa fase. (c) Sonno SWS in stadio 2 www.w. Correlate with memory consolidation

EEG rhythms

Rhythms:

- <u>Delta = 0,5-4 Hz (slow waves)</u>
- <u>Theta = 4-7,5 Hz (W and REM)</u>

Hypnogram

Why do we care about sleep?

List of Sleep Problems

Insomnia Chronic Insomnia Disorder Short-Term Insomnia Disorder Other Insomnia Disorder
ISOLATED SYMPTOMS AND NORMAL VARIANTS Excessive Time in Bed Short Sleeper
Sleep Related Breathing Disorders
OBSTRUCTIVE SLEEP APNEA DISORDERS Obstructive Sleep Apnea, Adult Obstructive Sleep Apnea, Pediatric
CENTRAL SLEEP APNEA SYNDROMES Central Sleep Apnea with Cheyne-Stokes Breathing Central Apnea Due to a Medical Disorder without Cheyne-Stokes Breathin Central Sleep Apnea Due to High Altitude Periodic Breathing Central Sleep Apnea Due to a Medication or Substance Primary Central Sleep Apnea. Primary Central Sleep Apnea of Infancy Primary Central Sleep Apnea of Prematurity
I reatment-Emergent Central Sleep Apnea

SLEEP RELATED HYPOVENTILATION DISORDERS

Obesity Hypoventilation Syndrome
Congenital Central Alveolar Hypoventilation Syndrome
Late-Onset Central Hypoventilation with Hypothalamic Dysfunction
Idiopathic Central Alveolar Hypoventilation
Sleep Related Hypoventilation Due to a Medication or Substance
Sleep Related Hypoventilation Due to a Medical Disorder

SLEEP RELATED HYPOXEMIA DISORDER

Sleep Related Hypoxemia

Catathrenia
Central Disorders of Hypersomnolence
Narcolepsy Type 1
Narcolepsy Type 2
Idiopathic Hypersomnia
Kleine-Levin Syndrome
Hypersomnia Due to a Medical Disorder
Hypersomnia Due to a Medication or Substance
Hypersomnia Associated with a Psychiatric Disorder
Insufficient Sleep Syndrome
ISOLATED SYMPTOMS AND NORMAL VARIANTS
Long Sleeper

Circadian Rhythm Sleep-Wake Disorders.....

Delayed Sleep-Wake Phase Disorder
Advanced Sleep-Wake Phase Disorder
Irregular Sleep-Wake Rhythm Disorder
Non-24-Hour Sleep-Wake Rhythm Disorder
Shift Work Disorder
Jet Lag Disorder
Circadian Sleen-Wake Disorder Not Otherwise Specified (NOS)

Parasomnias

Snoring.

NREM-RELATED PARASOMNIAS
Disorders of Arousal (From NREM Sleep)
Confusional Arousals
Sleepwalking
Sleep Terrors
Sleep Related Eating Disorder
REM-RELATED PARASOMNIAS
REM Sleep Behavior Disorder

Recurrent Isolated Sleep Paralysis.....

139	
141	
гагазонниа, онзречнее	210
ISOLATED SYMPTOMS AND NORMAL VARIANTS	
Sleep Talking	279
Sleep Related Movement Disorders	281
Restless Legs Syndrome	282
Periodic Limb Movement Disorder	292
Sleep Related Leg Cramps	299
Sleep Related Bruxism	303
Sleep Related Rhythmic Movement Disorder	312
Benign Sleep Myoclonus of Infancy	317
Propriospinal Myoclonus at Sleep Onset	321
Sleep Related Movement Disorder Due to a Medical Disorder	325
Sleep Related Movement Disorder Due to a Medication or Substance	326
Sleep Related Movement Disorder, Unspecified	327

ISOLATED SYMPTOMS AND NORMAL VARIANTS

Excessive Fragmentary Myoclonus	328
Hypnagogic Foot Tremor and Alternating Leg Muscle Activation	330
Sleep Starts (Hypnic Jerks)	335

Appendix A:

341

Appendix B:

ICD-10-CM	Coding for	Substance-Induced	Sleep	Disorders369
-----------	------------	-------------------	-------	--------------

- Electrical signals in animals
- What is sleep and why do we care?
- Mice as models of physiology and pathology
 - Detection and analysis of physiological variables
 - Ongoing projects

The mouse is the species of choice for studies on functional genomics... and also on sleep

NIH National Libra	ary of Medicine	Log in
Publed®	sleep mice Advanced Create alert Create RSS	X Search User Guide
	Save Email Send to Sort by: Most recent	↓= Display options 🌣
MY CUSTOM FILTERS	13,331 results 🦑 < Page	1 of 1,334 > >>
RESULTS BY YEAR	 Lemon Verbena Extract Enhances Sleep Quality and Durat Adenosine A1 and GABA(A) Receptors in Pentobarbital-Ind Cite Polysomnography-Based Sleep Models. Choi M, Koo YK, Kim N, Lee Y, Yim DJ, Kim S, Park E, Park SJ. Int J Mol Sci. 2025 Jun 14;26(12):5723. doi: 10.3390/ijms26125723. PMID: 40565187 This study investigated the effects of lemon verbena extract (LVE) on sleep pentobarbital-induced sleep model and an EEG-based sleep assessment no 	tion via Modulation of duced and regulation using both a nodel in mice Quantitative

SLEEP IN RODENTS

Rodents: nocturnal animals polyphasic sleep fragmented wake-sleep cycle more NREM than humans NREM sleep not divided in stages

Just an example...

Narcoleptic phenotype

- Electrical signals in animals
- What is sleep and why do we care?
- Mice as models of physiology and pathology
 - Detection and analysis of physiological variables

- Ongoing projects

SCORING AT PRISM lab

EEG/EMG minielectrodes

EEG: frontal-parietal, filterd 0.3–100 Hz EMG: neck muscles, filterd 100–1000 Hz

Cable transmission; signals sampled at 1024 Hz

Blood pressure and heart rate telemetric transducer

catheter insertion: femoral artery catheter tip: abdominal aorta transducer body: subcutaneous pouch on flank

1 mm anterior and 1 mm lateral to bregma

1 mm anterior and 1 mm lateral to lambda

chamber

Whole-body plethysmography

high-sensitivity differential pressure transducer

plastics plug with electrical swivel

modified whole-body plethysmograph

Simultaneous measurement of breathing and blood pressure

Time (s)

SCORING AT PRISM lab

Scoring performed on <u>4 s epochs</u>, based on EEG/EMG signals

W: EMG: high tone EEG: low voltage, possible $\theta(6-9 \text{ Hz})$ components NREMS: EMG lower than in W EEG: high voltage, prominent δ (0.5-4 Hz) components

REMS: EMG muscle atonia, occasional muscle twitches EEG: low voltage, predominant θ components

SCORING SLEEP/AROUSALS IN RODENTS

SCORING SLEEP/AROUSALS IN RODENTS

Power spectrum analysis of EEG to highlight wake-sleep cycle differences

MIOCKOUL, WILL WILL LYPE, TO, YOUNG

FIGURE 4 Electroencephalogram spectral analysis during cataplexy-like episodes. Electroencephalographic (EEG) spectral power (expressed as mean \pm SEM of the percentage of total EEG spectral power) and peak (median with the 95% confidence interval) during cataplexy-like episodes (CLE) are shown for OLD and young (YO) orexin-knockout (KO). *p < 0.05 for Mann–Whitney test with the false discovery rate correction, with significant Kruskal-Wallis test. Black bars indicate p < 0.05 for the post-hoc corrected comparison between KO-OLD and KO-YO mice with significant age \times EEG frequency interaction.

Central vs obstructive apnea during sleep

Central vs obstructive apnea during sleep

Central vs obstructive apnea during sleep

- Electrical signals in animals
- What is sleep and why do we care?
- Mice as models of physiology and pathology
 - Detection and analysis of physiological variables
 - Ongoing projects

PRIN: PROGETTI DI RICERCA DI RILEVANTE INTERESSE NAZIONALE – Bando 2022 Prot. 2022CR32TM

PART A

1. Research project title

Chemogenetic and Optgenetic Rescue of Sleep Apnea (CORSA) in mice

Prove funzionale CG17t: Chart View* 1 💌 1k • No 1.05 Ch > 1.00 · + 0.95 --÷ ▼ No ▼ No ■ Ch 0 -0.08 -0.06 0.04 > 0.02 0.00 -0.02 + -0.04 -0.006 Ŧ ▼ No 0.004 V.S 0.002 -+ -• No 0.004 Ch V.S 0.003 + 0.002 ▼ No • 0.005 15:00. 2 mg/kg 0.004 V.S 0.003 CNO 5 r ÷ Saline JUN JAN 0.002 10:00. 20:00. 25:00. 30:00. 35:00. 40:00. 45:00. 50:00. 55:00. 5:0 1 ۵ **⊞•** | ▲ 1k1 .

Optical Stimulation

PRIN: PROGETTI DI RICERCA DI RILEVANTE INTERESSE NAZIONALE – Bando 2022 PNRR Prot. P2022RTCCA

PART A

1. Line of intervention

Main line/Linea Principale

2. Research project title

ESTROSA: Energy-autonomous System for TReatment of Obstructive Sleep Apnea

Methods

<u>To develop a WPT opto-stimulating system, we performed in-silico conceptualization, simulation and validation of transmitting and implantable receiving components. The design and optimization of these devices guarantees to harvest a minimum DC (Direct Current) power of 30 mW regardless of the position of the mouse inside the WBP chamber, to allow brain optogenetic stimulation using an implantable light-emitting diode (μ-ILED) directly controlled by a microcontroller unit.
</u>

Results

<u>Schematic representation of the WPT system (left) and images of the</u> <u>prototype (right)</u>

We designed and validated a transmitting multi-coil array operating at 13.56 MHz to be integrated into the walls of a circular mouse cage or <u>WBP</u> chamber. A pair of receiving coils with minimal size and weight were designed and validated to be implanted subcutaneously on the <u>mouse back, together with the electronic circuitry for RF-to-DC power conversion and digital wireless control, then connected</u> <u>subcutaneously to a µ-ILED probe in the HN.</u>

<u>The in-silico validation of the proposed WPT opto-stimulating system was successful, supporting the achievement of a</u> <u>continuous power of \geq 30 mW, independently of the position and orientation of the mouse inside the cage. This amount</u> <u>of harvested energy is sufficient for the wireless control of the implantable receiving device and to switch the μ -ILED on</u>

Physiological Regulations In Sleeping Mice

Stefano Bastianini

<u>Department of Biomedical and Neuromotor Sciences</u> (DIBINEM) University of Bologna

e-mail stefano.bastianini3@unibo.it

Summer School, Bologna, 8 July, 2025