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Image Segmentation

Decomposition of an Image 

into Non-overlapping and 

Meaningful Regions

𝑓:  Ω → Ω0, Ω1  s.t: 

1. Ω0 ∩ Ω1 = ∅
2. Ω0 ∪ Ω1 = Ω
3. Ω0, Ω1 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛𝑠
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Define the Study Case: The Pipeline

Aldieri, A., Biondi, R., et al. (2024). Development and validation of a semi-
automated and unsupervised method for femur segmentation from CT. 
SCIENTIFIC REPORTS, 14(1), 1-13 [10.1038/s41598-024-57618-6].
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Define the Study Case: Joint Enhancement



Define the Study Case: Joint-Enhancement

Tube Sheet Blob
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Define the Study Case: Boundary Term

Boundary Term

𝐻 𝜎 = 𝐵 𝑝, 𝑞 − 𝜇(𝑅𝑓 𝑝 + 𝑅𝑏(𝑝)) 

𝐵 𝑝. 𝑞 = ቐ𝑒
𝜆

(𝐵𝐽𝐸 𝑝 −𝐵𝐽𝐸(𝑞))2

2𝜎2 , 𝑖𝑓 𝐵𝐽𝐸 𝑝 < 𝐵𝐽𝐸(𝑞)
𝜆, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Allows Spatial Coherence



Define the Study Case: Segmentation

Per-Pixel Term

𝐻 𝜎 = 𝐵 𝑝, 𝑞 − 𝜇(𝑅𝑓 𝑝 + 𝑅𝑏(𝑝)) 

𝑅𝑏 𝑝 = ቐ
𝜆, 𝑖𝑓 𝑝 ∈ 𝑏𝑘𝑔
0, 𝑖𝑓 𝑝 ∈ 𝑓𝑟𝑔
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑅𝑓 𝑝 = ቐ
𝜆, 𝑖𝑓 𝑝 ∈ 𝑓𝑟𝑔
1 𝑖𝑓 𝑝 ∈ 𝑏𝑘𝑔
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Results Overlapping

Image Acquisition Modling: Results
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Image Acquisition Modeling

𝑝 𝑥 =  𝑝𝑡 𝑥 ∗ 𝑃𝑆𝐹(𝑥)

𝐿 𝑥; 𝑡 = 𝑝 𝑥 ∗ 𝐺(𝑥; 𝑡)

𝐿 𝑥0 + 𝜕𝑥0 =

𝐿 𝑥0 + 

𝜕𝑥0
𝑇∇0,𝑡

+
1

2
𝜕𝑥0

𝑇ℋ0;𝑡𝜕𝑥0
𝑇 + ϵ(||𝜕𝑥0

3||)
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Image Acquisition Modeling: Application

𝐿 𝑥; 𝑡 = 𝑝 𝑥 ∗ 𝐺(𝑥; 𝑡)

t Object Scale



Image Acquisition Modeling: Application
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Segmentation Process Modeling

Assing to each voxel a probability to belong to a class. The probability change in time till an equilibrium 
that is the segmentation

Each pixel has a probability to belong to 
one of two classes

The probability evolves till equilibrium,
That is the segmentation

This process could be described by
Fokker Plank Equation



Segmentation Process Modeling

𝜕𝑝

𝜕𝑡
= −∇ 𝑝 × 𝐵 +

1

2
∇[𝐷∇𝑝]

Fokker-Plank Equation
𝑝(𝑥, 𝑡) pdf for voxel x at time t

B 𝑥, 𝑡  drift vector, representing deterministic 

movements (its a force)

𝐷(𝑥, 𝑡) diffusion tensor (representing 

diffusion rates)



Segmentation Process Modeling

𝜕𝑝

𝜕𝑡
= −∇ 𝑝 × 𝐵 +

1

2
∇[𝐷∇𝑝]

Fokker-Plank Equation
𝑝(𝑥, 𝑡) pdf for voxel x at time t

B 𝑥, 𝑡  drift vector, representing deterministic 

movements (its a force)

𝐷(𝑥, 𝑡) diffusion tensor (representing 

diffusion rates)

We are interested in the stationary state

Our potential will be not time-dependent

The drift vector read as B x =  −∇𝑉 𝑥

And considering 𝐷 𝑥, 𝑡 = 𝐷 and writing 
1

𝑇
=

𝐷

2
 

FP Equation Form

0 = −∇ 𝑝 × 𝐵 +
1

2
∇[𝐷∇𝑝]

0 = −∇ 𝑝 × 𝐵 +
1

2
∇[𝐷∇𝑝]

1

𝑇
∇𝑉 𝑥 =

1

𝑝2 ∇𝑝2 = ∇ln(𝑝2)



Segmentation Process Modeling

FP to MB EquationMaxwell-Boltzmann

1

𝑇
∇𝑉 𝑥 =

1

𝑝2 ∇𝑝2 = ∇ln(𝑝2)

𝑝2 𝑥 ∝ exp[−
𝑉 𝑥

𝑇
]

The potential could be unknown for the 
specific task, and learned

The potential could be computed for each 
specific task and image modelling the image, 
eg. As a lattice, using models as the Ising or 
Potts model



Image Modeling

𝑋0 𝑋1

𝑋4

𝑋2 𝑋3

𝑋9

𝑋5 𝑋7
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𝑋6

𝑋10

𝑋13

𝑋11

𝑋14𝑋12 𝑋15

𝑿 = {𝑋0, … , 𝑋15}

P 𝑋0, … , 𝑋15 =  𝑓𝑐
𝜃(𝑿)

P 𝜎|𝜃 =
1

𝑍(𝜃)
𝑒−𝛽𝑉(𝜎,𝜃) 



Image Modeling: Graph Approach



Image Modeling: Markow Random Field

Pairwise Markov Property Any two non-
adjacent variables are conditionally independent 
given all other variables

Local Markov Property A variable is conditionally 
independent of all other variables
given its neighbors

Global Markov Property Any two subsets of 
variables are conditionally independent
given a separating subset
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Image Modeling: Ising Model

Describe Spin distribution in a Lattice. Spin 

could have two states: Up and Down

V 𝜎 = − σ<𝑖,𝑗> 𝐽𝑖,𝑗𝜎𝑖𝜎𝑗 − 𝜇 σ𝑗 ℎ𝑗𝜎𝑗 



Image Modeling: Ising Model

V 𝜎 = 𝐵 𝑝, 𝑞 − 𝜇(𝑅𝑓 𝑝 + 𝑅𝑏(𝑝)) 

Find the configuration that 
minimize the Energy

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239, November 2001.
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Neural Network derivation

Xue-Cheng Tai, Hao Liu, and Raymond Chan. PottsMGNet: A Mathemat-
ical Explanation of Encoder-Decoder Based Neural Networks, September 2023.
arXiv:2307.09039
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Conclusion

Take Home

Many method works well 
also out of the box, 

however sometimes it is 
worth to step back and 
try to understand why 

they work



Get in Touch

Fell free to 
contact 

me!

• 3489876702

https://www.linkedin.com/in/riccardo-
biondi-8b464b203/

riccardo.biondi7@unibo.it
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