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Image Segmentation

Decomposition of an Image
iInto Non-overlapping and
Meaningful Regions
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X Define The Study Case

@ Image Acquisition Modeling !



" pefine the Study Case

Femur segmentation from CT for risk of fracture computation




" Define the Study Case

Femur segmentation from CT for risk of fracture computation




Graph-Cut Validate

Aldieri, A., Biondi, R., et al. (2024). Development and validation of a semi-
automated and unsupervised method for femur segmentation from CT.
SCIENTIFIC REPORTS, 14(1), 1-13 [10.1038/s41598-024-57618-6].
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-~ Define the Study Case: Joint-Enhancement
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" Define the Study Case: Segmentation
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4 Define the Study Case: Boundary Term

Boundary Term

H(o) = B(p,q) — u(R¢(p) + Rp(p))

2 (BJE(p)—BJE(q))°
B(p.q) ={e 207, if BJE(p) < BJE(q)
A, otherwise

Allows Spatial Coherence




" Define the Study Case: Segmentation

Per-Pixel Term

H(o) = B(p,q) — u(R¢(p) + Rp(p))

[ Foreground
[ Background

(A,if p € bkg

Ry,(p) =40,if p € frg
1, otherwise

(Aif p € frg
Re(p) =4 1if p € bkyg
0, otherwise




' Image Acquisition Modling: Results

Overlapping

0.98 1

0.97 1

=

O

o
1

Dice Score
o
w
L

B Proposed
T W TotalSegmentator

Femur Anatomical Region



Outline

R

Image Modelling




- Image Acquisition Modeling




- Image Acquisition Modeling
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Image Acquisition Modeling

p(x) = p'(x) * PSF(x)

L(x;t) = p(x) * G(x; t)

L(xo + 0xy) =
L(.X'O) —+
0x0 Vo ¢

1
LT
+ 5 0x) Ho.:0xp + €(]10x5]|)




" Image Acquisition Modeling: Application
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~ Image Acquisition Modeling: Application

L(x;t) = p(x) * G(x; t)

t Object Scale
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Segmentation Process Modeling

Assing to each voxel a probability to belong to a class. The probability change in time till an equilibrium
that is the segmentation

Each pixel has a probability to belong to
one of two classes

PY The probability evolves till equilibrium,
That is the segmentation

® This process could be described by
Fokker Plank Equation




'~ Segmentation Process Modeling

Fokker-Plank Equation ® »(x t) pdf for voxel x at time t

ap 1 @ B(x, ¢) drift vector, representing deterministic

— = —V(p X B) + =V[DVp] movements (its a force)

ot 2
® D(x,t) diffusion tensor (representing
diffusion rates)
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Fokker-Plank Equation ®

dp 1 O
o V(p X B) + > V[DVp] .

We are interested in the stationary state

Our potential will be not time-dependent

The drift vector read as B(x) = —VV(x)

And considering D(x,t) = D and writing % = —

Segmentation Process Modeling

p(x,t) pdf for voxel x at time t

B(x, t) drift vector, representing deterministic

movements (its a force)

D(x, t) diffusion tensor (representing

diffusion rates)

FP Equation Form

O=—V(p><B)+%V

0=-V(pxB)+_V

DVp]

DVp]

1 1
;VV(X) — vaz — Vln(pz)
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Segmentation Process Modeling

Maxwell-Boltzmann FP to MB Equation

1 1
- VV(x) == sz = V]n(pz) ® The potential could be unknown for the
T p specific task, and learned

The potential could be computed for each
PS specific task and image modelling the image,

eg. As a lattice, using models as the Ising or
V(X)] Potts model
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Image Modeling

O X = {Xo, ""X15}

O P(Xo»---»X15) — ch(X)

O
P(g]0) = ﬁe—ﬁﬂffﬂ)



" Image Modeling: Graph Approach
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Image Modeling: Markow Random Field




4 Image Modeling: Markow Random Field

Pairwise Markov Property Any two non-
(O adjacent variables are conditionally independent
given all other variables




" Image Modeling: Markow Random Field

O Local Markov Property A variable is conditionally
independent of all other variables
given its neighbors
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Image Modeling: Markow Random Field
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Global Markov Property Any two subsets of
O variables are conditionally independent
given a separating subset
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Image Modeling: Ising Model

! | l l Describe Spin distribution in a Lattice. Spin
could have two states: Up and Down
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V(o) = — 2 j>Ji,j0i0; — kX% hjo;



V(o) = B(p,q) — u(Rs(p) + Ry (p))

O 0 O )
Find the configuration that

‘ ‘ ' minimize the Energy
g J

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222-1239, November 2001.



V(o) = B(p,q) — u(Rs(p) + Ry (p))

O 0 O )
Find the configuration that

‘ ‘ ' minimize the Energy
g J

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222-1239, November 2001.



" Neural Network derivation

s

Xue-Cheng Tai, Hao Liu, and Raymond Chan. PottsMGNet: A Mathemat-
ical Explanation of Encoder-Decoder Based Neural Networks, September 2023.
arXiv:2307.09039



" Conclusion

Many method works well
also out of the box,
however sometimes it is
worth to step back and
try to understand why
they work
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Oh. that's why.




Get in Touch

\, - 3489876702

Fell free to

contact N riccardo.biondi7@unibo.it

me!

https://www.linkedin.com/in/riccardo-
biondi-8b464b203/
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