

From Physics to Medical Image Segmentation: Is What We are Doing Random?

Riccardo Biondi IRCCS – Istituto delle Scienze Neurologiche di Bologna

PhD, Health and Technology

IRCCS – Istituto delle Scienze Neuorolgiche di Bologna

°

Medical Image Segmentation

Image Segmentation

Decomposition of an Image into Non-overlapping and Meaningful Regions

 $f: \Omega \to {\Omega_0, \Omega_1}$ s.t:

 $\begin{array}{l} 1.\,\Omega_0 \cap \Omega_1 = \emptyset \\ 2.\,\Omega_0 \cup \Omega_1 = \Omega \\ 3.\,\Omega_0, \Omega_1 \ are \ connected \ regions \end{array}$

Outline

Define The Study Case

Define the Study Case

Femur segmentation from CT for risk of fracture computation

Define the Study Case

Femur segmentation from CT for risk of fracture computation

Define the Study Case: The Pipeline

Define the Study Case: Joint Enhancement

Define the Study Case: Joint-Enhancement

Define the Study Case: Boundary Term

Boundary Term

$$H(\sigma) = B(p,q) - \mu(R_f(p) + R_b(p))$$

$$B(p,q) = \begin{cases} e^{\lambda \frac{(BJE(p) - BJE(q))^2}{2\sigma^2}}, & \text{if } BJE(p) < BJE(q) \\ \lambda, & \text{otherwise} \end{cases}$$

Allows Spatial Coherence

Per-Pixel Term

$$H(\sigma) = B(p,q) - \mu(R_f(p) + R_b(p))$$

$$R_b(p) = \begin{cases} \lambda, if \ p \in bkg \\ 0, if \ p \in frg \\ 1, otherwise \end{cases}$$

 $R_{f}(p) = \begin{cases} \lambda, if \ p \in frg \\ 1 \ if \ p \in bkg \\ 0, otherwise \end{cases}$

Image Acquisition Modling: Results

Outline

Image Acquisition Modeling

Image Acquisition Modeling

Image Acquisition Modeling

Image Acquisition Modeling: Application

Image Acquisition Modeling: Application

$$L(x;t) = p(x) * G(x;t)$$

t Object Scale

Image Acquisition Modeling: Application

Outline

Segmentation Process Modeling

Assing to each voxel a probability to belong to a class. The probability change in time till an equilibrium that is the segmentation

- Each pixel has a probability to belong to one of two classes
- The probability evolves till equilibrium, That is the segmentation
- This process could be described by Fokker Plank Equation

Fokker-Plank Equation

$$\frac{\partial p}{\partial t} = -\nabla(p \times B) + \frac{1}{2}\nabla[D\nabla p]$$

p(x,t) pdf for voxel x at time t

B(x,t) drift vector, representing deterministic movements (its a force)

• D(x,t) diffusion tensor (representing diffusion rates)

Fokker-Plank Equation

$$\frac{\partial p}{\partial t} = -\nabla(p \times B) + \frac{1}{2}\nabla[D\nabla p]$$

- We are interested in the stationary state
- Our potential will be not time-dependent
- The drift vector read as $B(x) = -\nabla V(x)$

And considering
$$D(x, t) = D$$
 and writing $\frac{1}{T} = \frac{L}{2}$

p(x,t) pdf for voxel x at time t

- B(x,t) drift vector, representing deterministic movements (its a force)
- D(x,t) diffusion tensor (representing diffusion rates)

FP Equation Form

$$0 = -\nabla(p \times B) + \frac{1}{2}\nabla[D\nabla p]$$
$$0 = -\nabla(p \times B) + \frac{1}{2}\nabla[D\nabla p]$$
$$\frac{1}{T}\nabla V(x) = \frac{1}{p^2}\nabla p^2 = \nabla \ln(p^2)$$

Maxwell-Boltzmann

$$\frac{1}{T}\nabla V(x) = \frac{1}{p^2}\nabla p^2 = \nabla \ln(p^2)$$

$$p^2(x) \propto \exp[-\frac{V(x)}{T}]$$

FP to MB Equation

The potential could be unknown for the specific task, and learned

The potential could be computed for each specific task and image modelling the image, eg. As a lattice, using models as the Ising or Potts model

Image Modeling

X ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃
<i>X</i> 4	<i>X</i> 5	<i>X</i> ₆	X ₇
X ₈	Х9	X ₁₀	X ₁₁
X ₁₂	X ₁₃	X ₁₄	X ₁₅

•
$$X = \{X_0, ..., X_{15}\}$$

• $P(X_0, ..., X_{15}) = f_c^{\theta}(X)$
• $P(\sigma|\theta) = \frac{1}{Z(\theta)}e^{-\beta V(\sigma,\theta)}$

Image Modeling: Graph Approach

Pairwise Markov Property Any two non adjacent variables are conditionally independent given all other variables

Local Markov Property A variable is conditionally independent of all other variables given its neighbors

 Global Markov Property Any two subsets of
 variables are conditionally independent given a separating subset

Pairwise Markov Property Any two non adjacent variables are conditionally independent given all other variables

Local Markov Property A variable is conditionally independent of all other variables given its neighbors

 Global Markov Property Any two subsets of
 variables are conditionally independent given a separating subset

Pairwise Markov Property Any two non adjacent variables are conditionally independent given all other variables

Local Markov Property A variable is conditionally independent of all other variables given its neighbors

 Global Markov Property Any two subsets of
 variables are conditionally independent given a separating subset

Pairwise Markov Property Any two non adjacent variables are conditionally independent given all other variables

Local Markov Property A variable is conditionally independent of all other variables given its neighbors

Global Markov Property Any two subsets of variables are conditionally independent given a separating subset

Image Modeling: Ising Model

Describe Spin distribution in a Lattice. Spin could have two states: Up and Down

$$\mathsf{V}(\sigma) = -\sum_{\langle i,j \rangle} J_{i,j} \sigma_i \sigma_j - \mu \sum_j h_j \sigma_j$$

Image Modeling: Ising Model

$\mathsf{V}(\sigma) = B(p,q) - \mu(R_f(p) + R_b(p))$

Find the configuration that minimize the Energy

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, November 2001.

Image Modeling: Ising Model

$\mathsf{V}(\sigma) = B(p,q) - \mu(R_f(p) + R_b(p))$

Find the configuration that minimize the Energy

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, November 2001.

Neural Network derivation

Xue-Cheng Tai, Hao Liu, and Raymond Chan. PottsMGNet: A Mathematical Explanation of Encoder-Decoder Based Neural Networks, September 2023. arXiv:2307.09039

Conclusion

Take Home

Many method works well also out of the box, however sometimes it is worth to step back and try to understand why they work

Get in Touch

• 3489876702

Fell free to contact me!

riccardo.biondi7@unibo.it

https://www.linkedin.com/in/riccardo-biondi-8b464b203/