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Plan
• Geometric Deep Learning

• The interesting crosstalk between diffusion models and graph 
representation learning.

• Methological applications across scales (molecules, cells, tissues, full body, 
population) 



Neural Networks

• Constructed of layers, take vector as input, 
multiply by weight matrix Wn, add bias vector 
bn, apply non-linear element-wise activation 
function

• Stack the layers to make a neural network



Neural Networks - Benefits

• Universal Function Approximator – can 
approximate any function to an arbitrary 
degree
• Not just universal approximators but seem 

to be better at generalizing in certain 
situations, than other universal 
approximators (large amount of data)
• Train with gradient descent and 

backpropagation (if a model is differentiable 
it can be trained this way), can construct 
complicated architectures



Link to Image Source

Complexity



A traditional machine learning/bioinformatics vs deep learning



Architectures

Perceptrons
Function regularity

CNNs
Translation

Spherical CNNs
Rotation

GNNs
Permutation

Intrinsic CNNs
Isometry / Gauge choice

Deep Sets
Permutation

LSTMs
Time warping



A series of “good days” 
and “bad days

Patient stratification

12

identifying 
trajectories

Data



Benchside    Narrowing the distance             Bedside



Making expert knowledge scalable

Super resolution



Geometric Deep Leaning



Learning on irregular domains

Credits to Michael Bronstein



Mathematical formulation

● Graphs: collections of objects (nodes) + interactions (edges) between 
them

● Formally, a graph                            is a tuple of nodes (V) and edges (E).
○ Edges typically operate over pairs of nodes, i.e. E ⊆ V x V.
○ Depending on context, nodes may be referred to as vertices, and edges as links

or relations. 

● We can represent edges with an adjacency matrix, A ∈ ℝ|V| x |V|, such that:



Some interesting graph types

● Undirected:   (u, v) ∈ E ⇒ (v, u) ∈ E   (equivalently, AT = A)
○ e.g. in a social network, friendship links are (usually?) bidirectional

● Weighted: provided edge weight, wij for every edge (i, j) ∈ E
○ e.g. in a road network, weights may specify distances or speeds

● Multirelational: various edge types; (u, t, v) ∈ E if (u, v) linked by type t
○ e.g. in a knowledge graph, types encode different relations (“is-parent”, “is-

spouse”, …)

● Heterogeneous: various node types
○ e.g. in a biomedical interaction graph, nodes may be drugs, proteins or diseases

(...and many more, which we will not cover here)



Encoder-decoder Setup

Credits to Will Hamilton



Node Embeddings

Discover good ways to embed nodes into vectors zu using an encoder function

Deep learning on graphs before GNNs! (use the graph structure implicitly)
Credits to Will Hamilton



A recipe for graph neural networks, visualised



Graph Neural Networks



How to use GNNs?



How to use GNNs?



How to use GNNs?



How to use GNNs?



How to use GNNs?



The three “flavours” of GNN layers

Credits to Petar velickovic



Nodes in GNNs do not know where Neighbours Are coming 
from: the aggregation is symmetric

Credits to Beaini,Passaro,Corso,Hamilton

Directional GNN



Credits to Beaini,Passaro,Corso,Hamilton,Lio’

Directional GNN:Eigenvectors Can Give Structural Information



Directional Graph Networks. D. Beaini*, S. Passaro*, V. Létourneau, W. Hamilton, G. Corso, P. Liò

Directional Aggregators



Directional GNN



Directional Graph Neural Networks



• Directional graph neural networks can alleviate over-smoothing and 
over-squashing. 
• In particular, the Laplacian eigenfunctions reveal directions that can 

counteract over-smoothing and over-squashing by allowing efficient 
propagation of information between distant nodes instead of
following a diffusion process.

Directional Graph Neural Network



Message passing neural network as diffusion of information on a graph

input message passing transformation output

Credits to Francesco di Giovanni



Message passing neural network as diffusion of information on a graph

input message passing transformation output



Message passing neural network as diffusion of information on a graph

input message passing transformation output



Message passing neural network as diffusion of information on a graph

input message passing transformation output



Message passing neural network as diffusion of information on a graph

input message passing transformation output



input message passing transformation output

Message passing neural network as diffusion of information on a graph



input message passing transformation output

Message passing neural network as diffusion of information on a graph



input message passing transformation output

Message passing neural network as diffusion of information on a graph



𝑖

𝐗𝒩!
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ϕ

local function

Graph Neural Networks: Message Passing “flavour”

Gilmer et al. 2017; Battaglia et al 2018; Wang et B. 2018
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Spatial discretisation

∇𝑿 !" = 𝒙! − 𝒙" div 𝑿 ! =)
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gradient - flow along edges divergence - aggregation of edges
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= div ∇𝒙 𝑢, 𝑡 (1)

𝑿̇(𝑡) = 𝑨 𝑿 𝑡 − 𝑰 𝑿(𝑡) (2)



Uri Alon and Eran Yahav (2020) On the Bottleneck of Graph Neural Networks and its Practical Implications. J. 
Topping, F. Di Giovanni et al., Understanding over-squashing and bottlenecks on graphs via curvature (2021) 
arXiv:2111.14522

Over-squashing and over-smoothing

Oversquashing: inability for GNNs to 
propagate informative signals between
distant nodes and is a major bottleneck
to training deep GNN models

Over-smoothing: node representations
become indistinguishable and 
prediction performance severely
degrades when the number of layers
increase



Interpretability

ATTENTION

LOGIC

CONCEPTS

One model is more interpretable than another if it is easier 

for a human to understand how it makes predictions than 

the other model.

Works by Emma Rocheteau

Ciravegna, Gabriele, et al. "Human-Driven FOL Explanations of Deep Learning." IJCAI. 2020.

mailto:gc579@cam.ac.uk
mailto:gc579@cam.ac.uk
mailto:gc579@cam.ac.uk


GCExplainer

102

Graph Neural Network
reasons on relational data

Graph Concept Explainer
clusters the GNN’s 

embeddings

● Graph Concept 
Explainer (GCExplainer)

● Key Ideas:
○ Concept-based 

explanations
○ Global explanations
○ Quantitative evaluation

Magister, Lucie Charlotte, et al (PL). "Gcexplainer: Human-in-the-loop concept-based explanations for graph neural 
networks." arXiv preprint arXiv:2107.11889 (2021).



Hierarchical Explainable Latent Pooling (HELP)

● Clusters node embeddings and merges connected components clustered 
together

● Discovered a hierarchy of Concepts

103
Jürß, Jonas, et al (PL). "Everybody Needs a Little HELP: Explaining Graphs via Hierarchical 

Concepts." arXiv preprint arXiv:2311.15112 (2023).



A note on Transformers
● Transformers are Graph Neural Networks!

○ Fully-connected graph
○ Attentional flavour

● The sequential information is injected 
through the positional embeddings. 
Dropping them yields a fully-connected 
GAT model.

● Attention can be seen as inferring 
a “soft” adjacency matrix.

See Joshi (The Gradient; 2020).



• Topological Neural Networks (TNNs) are deep learning architectures 
that extract knowledge from data associated with topologically rich 
systems such as protein structures, city traffic maps, or citation 
networks.

• A TNN, like a GNN, is comprised of stacked layers that transform data 
into a series of features. Each layer leverages the fundamental 
concepts of data and computational domains, neighborhoods, and 
message passing

Topological Neural Networks



Topological Neural Networks

Data associated with a complex system are features defined on a data domain, 
which is preprocessed into a computational domain that encodes interactions 
between the system’s components with neighborhoods. 
The TNN’s layers use message passing to successively update features and yield an 
output, e.g. a categorical label in classification or a quantitative value in regression. 
The output represents new knowledge extracted from the input data.



Domains
In Topological Deep Learning (TDL), data are features defined on 
discrete domains. Traditional examples of discrete domains include 
sets and graphs.
The domains of TDL generalize the pairwise relations of graphs to 
part-whole and set-types relations that permit the representation of 
more complex relational structure (see figure below: Nodes in blue, 
(hyper)edges in pink, and faces in dark red)



Simplicial complexes
Simplicial complexes (SCs) generalize graphs to 
incorporate hierarchical part-whole relations through 
the multi-scale construction of cells. Nodes are rank 0 
cells that can be combined to form edges (rank 1 
cells). 

Edges are, in turn, combined to form faces (rank 2 
cells), which are combined to form volumes (rank 3 
cells), and so on. As such, an SC’s faces must be 
triangles, volumes must be tetrahedrons, and so forth. 

SCs are commonly used to encode discrete 
representations of 3D geometric surfaces represented 
with triangular meshes. 



Cellular complexes
Cellular complexes (CCs) generalize SCs 
such that cells are not limited to simplexes: 
faces can involve more than three nodes, 
volumes more than four faces, and so on. 

This flexibility endows CCs with greater 
expressivity than SCs. 

A practitioner should consider employing 
this domain when studying a system that 
features part-whole interactions between 
more than three nodes, such as a molecule 
with benzene rings



Hypergraphs
Hypergraphs (HGs) extend graphs in that their 
edges, called hyperedges, can connect more 
than two nodes. Connections in HGs represent 
set-type relationships, in which participation in 
an interaction is not implied by any other 
relation in the system. 
This makes HGs an ideal choice for data with 
abstract and arbitrarily large interactions of 
equal importance, such as semantic text and 
citation networks. 
Protein interaction networks also exhibit this 
property: an interaction between proteins 
requires a precise set of molecules—no more 
and no less. 
The interaction of Proteins A, B, and C does not 
imply an interaction between A and B on their 
own.



Combinatorial complexes 
Combinatorial complexes generalise CCs and 
HGs to incorporate both part-whole and set-
type relationships . 
The benefit of this can be observed in the 
example of molecular representation. 
The strict geometric constraints of simplicial 
and cellular complexes are too rigid for 
capturing much of hierarchical structure 
observed in molecules. 
By contrast, the flexible but hierarchically 
ranked hyperedges of a combinatorial 
complex can capture the full richness of 
molecular structure. 



Combinatorial Complexes
Combinatorial complexes 
including 
(a) sequences and images, 
(b)  graphs, 
(c) 3D shapes and 
simplicial complexes, 
(d) cubical and cellular 
complexes, 
(e) discrete manifolds, and 
(f) hypergraphs.



The landscape of the Combinatorial Complexes

Sets have entities with no connections, graphs encode binary relations between 
vertices, simplicial and cell complexes model hierarchical higher-order relations, and 
hypergraphs accommodate arbitrary set-type relations with no hierarchy. 
Combinatorial complexes (CCCs) generalise graphs, simplicial and cell complexes, and 
hypergraphs. CCCs are equipped with set-type relations as well as with a hierarchy of 
these relation.



Lifting topological domains

(a)  A graph is lifted to a 
hypergraph by adding 
hyperedges that connect groups 
of nodes. 
(b)  A graph can be lifted to a 
cellular complex by adding faces 
of any shape. 
(c) Hyperedges can be added to 
a cellular complex to lift the 
structure to a combinatorial 
complex.



Topological Deep learning

from Papillon et al. 2023 



Sheaf Neural Networks



Learned force equation
Sheaf Neural Networks

Barbero et al, Sheaf Neural Networks with Connection Laplacians, 
Bodnar et al., Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns, arxiv 



Sheaf Neural Networks



Sheaf Neural Networks



• A taxonomy of topological domains. Adapted from Papillon et al. 

Topological Deep learning



Sheaf for Bigger molecules

Cellular lifting process. Given an 
input graph G, we attach closed 
two-dimensional rings to the 
boundary of the induced cycles of 
G. The result is a 2D regular cell 
complex C.
Boundary messages received by an 
edge (top) and a ring (bottom)

Lorenzo Giusti et al., CIN++: Enhancing Topological Message Passing, arxiv



Geometric Deep Learning Across Scales:

Molecules
Cell

Tissues
Patients

Population



Molecules



Geometric Deep Learning has many applications on 
molecular data

Illustration courtesy Chaitanya Joshi



If you’re interested in this space, check out 
our tutorial paper.

2312.07511.pdf (arxiv.org)

https://arxiv.org/pdf/2312.07511.pdf


Graphs are everywhere in biology

Unsurprisingly, Graph Neural Networks (GNNs) have achieved 
remarkable results in biological modelling

Drug molecules Protein structure Protein-protein 
interaction networks

Gene regulatory
networks

Slide credit: Chaitanya Joshi



with bonds
with protein-specific 
secondary structure

as surface

Pure point cloud

There are several ways of representing protein structures



Can also represent each amino 
acid as “extended object”: 

(position, orientation) 
<latexit sha1_base64="QO6rlA8vc0PWKhKv+VGlXYzcSpA=">AAACDnicbVC7TgJBFJ3FF+ILtbSZSEiwIbti0JLExk588EhYJLPDABNmZzczd41kwxfY+Cs2Fhpja23n3zgLFAqeZDIn59ybe+/xQsE12Pa3lVpaXlldS69nNja3tneyu3t1HUSKshoNRKCaHtFMcMlqwEGwZqgY8T3BGt7wPPEb90xpHshbGIWs7ZO+5D1OCRipk81nXC6x6xMYeF58Pb4rYRe4z7T52APEN5fjQumok83ZRXsCvEicGcmhGaqd7JfbDWjkMwlUEK1bjh1COyYKOBVsnHEjzUJCh6TPWoZKYia248k5Y5w3Shf3AmWeBDxRf3fExNd65HumMtlbz3uJ+J/XiqB31o65DCNgkk4H9SKBIcBJNrjLFaMgRoYQqrjZFdMBUYSCSTBjQnDmT14k9eOiUy6Wr05ylcIsjjQ6QIeogBx0iiroAlVRDVH0iJ7RK3qznqwX6936mJamrFnPPvoD6/MHegWbDQ==</latexit>

2 R3 ⇥ SO(3)



3D Infomax

Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan Günnemann, Pietro Liò 3D Infomax improves GNNs for Molecular 
Property Prediction https://arxiv.org/abs/2110.04126



Designing proteins

with Arian Jamasb, Andreea Deac, Petar Velickovic, Alice del Vecchio



AlphaFold2-3
Jumper et al. 2021 (DeepMind)+

1st use of Deep 
Learning

1st use of 
Geometric Deep 

Learning

Structural information has become much more available recently, 
in part thanks to geometric deep learning.

1st use of Diffusion



The importance of symmetries

Illustration courtesy Chaitanya Joshi



Protein backbones as graphs
ProteinMPNN – message passing neural network

Graph Neural 
Network

Probability distribution 
over 20 amino acid 

types

message passing

Ingraham et al. Generative models for graph-based protein design. NeurIPS. 2019.

Neighbourhood in 3D



Google Research, 2022 & Beyond: Language, Vision and Generative Models (Google Research)

Sohl-Dickenstein et al. 2015 (Stanford)

Diffusion Models (Level 1)



(lilianweng.github.io)

Sohl-Dickenstein et al. 2015 (Stanford)

“Diffusion models define a Markovian chain of random diffusion steps, 
gradually adding noise to sample data until it loses all of its distinguishing 

features. A neural network is then trained to reverse this process”

Forward Diffusion Process

Reverse (Generative) Diffusion Process

Learned Usually 
fixed

Diffusion Models (Level 2)



Diffusion models can be seen as a 
‘stretched out’ VAE

Credit: lilianweng.github.io



Approximating some target distribution

Credit: lilianweng.github.io



Variational Autoencoders
A Variational Autoencoder graphically represented. Here, encoder q(z|x) 
defines a distribution over latent variables z for observations x, and p(x|z) 
decodes latent variables into observations.

The encoder of the VAE is commonly chosen to model a multivariate 
Gaussian with diagonal covariance, and the prior is often selected to be a 
standard multivariate Gaussian;
the KL divergence term of the ELBO can be computed analytically, and the 
reconstruction term can be approximated using a Monte Carlo estimate. 
Our objective can then be rewritten as:



A Hierarchical Variational Autoencoder (HVAE) is a generalization of a 
VAE that extends to multiple hierarchies over latent variables. 
Under this formulation, latent variables themselves are interpreted 
as generated from other higher-level, more abstract latents. 
Whereas in the general HVAE with T hierarchical levels, each latent is 
allowed to condition on all previous latents, we focus on a special 
case which we call a Markovian HVAE (MHVAE). 
In a MHVAE, the generative process is a Markov chain; that is, each 
transition down the hierarchy is Markovian, wher

Hierarchical Variational Autoencoders

A Markovian Hierarchical Variational Autoencoder with T hierarchical 
latents. The generative process is modeled as a Markov chain, where 
each latent zt is generated only from the previous latent zt+1.



Hierarchical Variational Autoencoders

A Markovian Hierarchical Variational Autoencoder with T hierarchical 
latents. The generative process is modeled as a Markov chain, where 
each latent zt is generated only from the previous latent zt+1.



Variational Diffusion Models
A Variational Diffusion Model (VDM) is simply as a Markovian 
Hierarchical Variational Autoencoder with three key restrictions:
 The latent dimension is exactly equal to the data dimension.
 The structure of the latent encoder at each timestep is not 

learned; it is pre-defined as a linear Gaussian model. In other 
words, it is a Gaussian distribution centered around the output 
of the previous timestep.

 The Gaussian parameters of the latent encoders vary over time 
in such a way that the distribution of the latent at final timestep 
T is a standard Gaussian.



A visual representation of a Variational Diffusion Model; x0 represents true data observations such
as natural images, xT represents pure Gaussian noise, and xt is an intermediate noisy version of x0. Each
q(xt|xt−1) is modeled as a Gaussian distribution that uses the output of the previous state as its mean.

Variational Diffusion Models



Maximisin
g the ELBO 
for VDM



Variational Diffusion Models

a VDM can be optimized by ensuring that for every intermediate xt, the posterior from the latent above it pθ (xt|xt+1) 
matches the Gaussian corruption of the latent before it q(xt|xt−1). In this figure, for each intermediate xt, we minimize the 
difference between the distributions represented by the pink and green arrows.



Variational Diffusion Models

Depicted is an alternate, lower-variance method to optimize a VDM; we compute the form of ground-truth denoising 
step q(xt−1|xt, x0) using Bayes rule, and minimize its KL Divergence with our approximate denoising step pθ (xt−1|xt). This 
is once again denoted visually by matching the distributions represented by the green arrows with those of the pink 
arrows. Artistic liberty is at play here; in the full picture, each pink arrow must also stem from x0, as it is also a 
conditioning term.



Variational Diffusion Models

• Variational Diffusion Models as a special case of a Markovian 
Hierarchical Variational Autoencoder, where three key assumptions 
enable tractable computation and scalable optimization of the ELBO. 
• A VDM boils down to learning a neural network to predict one of 

three potential objectives: 
• the original source image from any arbitrary noisification of it, 
• the original source noise from any arbitrarily noisified image, or
• the score function of a noisified image at any arbitrary noise level.



Chroma and RFDiffusion: Diffusion Models for 
Protein Design

https://www.biorxiv.org/content/10.1101/2022.12.01.518682v1?rss=1



Chroma: Design based on symmetry

https://www.biorxiv.org/content/10.1101/2022.12.01.518682v1?rss=1



Chroma: Condition based text (i.e. DALLE-x for 
proteins)

https://www.biorxiv.org/content/10.1101/2022.12.01.518682v1?rss=1
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Ancestral Node
or ROOT of 

the Tree
Internal Nodes

(fossil)

Branches or
Lineages A

B
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D

E

Terminal Nodes
(Living species) 

Time (mutations)

species tree by Darwin

Nothing in Biology Makes Sense Except in the 
Light of Evolution (Dobzhansky, 1964)Protein Evolution

local

global

No clock

Pietro Lio’ and Nick Goldman Models of Molecular Evolution and Phylogeny
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Generative Modelling

(Credit: Yang Song)



Source: Generative Modeling by Estimating Gradients of the Data Distribution | Yang Song (yang-song.net)

add more and more noise (noise scale        )
<latexit sha1_base64="ksoQb7xFTNGyquMDbe1VG4hAWZ8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoOQU9gViR4DXjxGMA9IljA7mU3GzGOZmRXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk5q9w0bCTwoV/yavwBaJ0FOKpCjOSh/9YeKpIJKSzg2phf4iQ0zrC0jnM5K/dTQBJMJHtGeoxILasJsce0MXThliGKlXUmLFurviQwLY6Yicp0C27FZ9ebif14vtfFNmDGZpJZKslwUpxxZheavoyHTlFg+dQQTzdytiIyxxsS6gEouhGD15XXSvqwF9Vr9/qrSqOZxFOEMzqEKAVxDA+6gCS0g8AjP8ApvnvJevHfvY9la8PKZU/gD7/MHmB+PFA==</latexit>
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Sampling distribution
(fully noised)

Often a unit Gaussian.

Easy to sample from

Data distribution
(fully denoised)

Hard to sample from.

https://yang-song.net/blog/2021/score/


Source: [2312.09236] A framework for conditional diffusion modelling with applications in motif scaffolding for protein design (arxiv.org)

https://arxiv.org/abs/2312.09236


Source: Generative Modeling by Estimating Gradients of the Data Distribution | Yang Song (yang-song.net)

remove more and more noise

Sampling distribution
(fully noised)

Often a unit Gaussian.

Easy to sample from

Data distribution
(fully denoised)

Hard to sample from.

sample random starting point

https://yang-song.net/blog/2021/score/


Source: [2312.09236] A framework for conditional diffusion modelling with applications in motif scaffolding for protein design (arxiv.org)

Didi*, Vargas*, Mathis*, Dutordoir* et al.  NeurIPS AI4D3 2023

https://arxiv.org/abs/2312.09236


Diffusion models for protein design
Enable “controllable” design of proteins for many properties

Source: Watson et al. 2023, Ingraham et al. 2022,
generatebiomedicines.com

Dynamical properties



Tackling Motif Scaffolding
Scaffold a certain motif into diverse backbones

Transferrin-binding motif
6E6R

Transferrin-binding motif
+ new scaffold

Didi*, Vargas*, Mathis*, Dutordoir* et al.  NeurIPS AI4D3 2023



Many ways to condition diffusion models
Tug-of-war between unconditional and conditional update

Didi*, Vargas*, Mathis*, Dutordoir* et al.  NeurIPS AI4D3 2023



Source: [2312.09236] A framework for conditional diffusion modelling with applications in motif scaffolding for protein design (arxiv.org)

Didi*, Vargas*, Mathis*, Dutordoir* et al.  NeurIPS AI4D3 2023

https://arxiv.org/abs/2312.09236


h-Transforming SDE = Conditional Sampling
General framework to enforce various conditioning constraints

Didi*, Vargas*, Mathis*, Dutordoir* et al.  NeurIPS AI4D3 2023



Source: [2312.09236] A framework for conditional diffusion modelling with applications in motif scaffolding for protein design (arxiv.org)

Didi*, Vargas*, Mathis*, Dutordoir* et al.  NeurIPS AI4D3 2023

https://arxiv.org/abs/2312.09236


DiffSBDD: Diffusion for Structure-based Drug 
Design with Equivariant Diffusion Models

• Both proteins and ligands are represented as all-atom graphs (with coordinates 𝑥 and feature {i.e. 
atoms types} vectors ℎ). 

• Our model is trained to predict the transitional probability distribution 𝑝! 𝑧"#$
% 𝑧"

% , 𝑧&'"'
( which 

is conditioned both on the previous latent state of the ligand 𝑧"
% and the fixed presentation of the 

pocket 𝑧&'"'
( .

• In practice, samples are constructed using a denoising network ̂𝜖!

SE(3)-equivariant Graph 
Neural Network 

Based on: Schneuing, Arne, et al. "Structure-based drug design with equivariant diffusion models." NeurIPS MLSB 2022.



DiffSBDD: Results



DiffSBDD: Results



DiffSBDD: Results


