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* Geometric Deep Learning

* The interesting crosstalk between diffusion models and graph
representation learning.

* Methological applications across scales (molecules, cells, tissues, full body,
population)



Neural Networks
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Neural Networks - Benefits

e Universal Function Approximator — can
approximate any function to an arbitrary
degree

* Not just universal approximators but seem
to be better at generalizing in certain
situations, than other universal
approximators (large amount of data)

* Train with gradient descent and
backpropagation (if a model is differentiable

it can be trained this way), can construct
complicated architectures




Complexity

Neural Network Deep Learning
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Perceptrons

Marvin L. Minsky
Seymour A. Papert

The book cover of an expanded edition of Perceptrons. The two red spirals look the
same but they aren’t. The top one is two disconnected spirals, but the bottom one is a
single connected spiral, which you can verify by tracing the insides of the loops with
a pencil. Minsky and Papert proved that a perceptron cannot distinguish between
these two objects. Can you see the difference without tracing? Why not?



A traditional machine learning/bioinformatics vs deep learning
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Architectures
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Data Phase Astronomy
Acquisition 25 zetta-bytes/year

1 EBlyear
In situ data reduction

Storage
Analysis

Real-time processing
Massive volumes

Distribution Dedicated lines from antennae
to server (600 TB/s)
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MRI
fMRI

Twitter

0.5-15 billion
tweets/year
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Topic and
sentiment mining
Metadata analysis

Small units of
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Tmaging
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YouTube
500-900 million hours/year

1-2 EB/year
Limited requirements

Major component of modern user's
bandwidth (10 MB/s)

‘Whole
genome seq.

Genomics
1 zetta-bases/year
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Variant calling, ~2 trillion central
processing unit (CPU) hours

All-pairs genome alignments, ~10,000
trillion CPU hours

Many small (10 MB/s) and fewer massive
(10 TB/s) data movement
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Exome profiling
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Benchside
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Transcriptomics
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Narrowing the distance

Metabolomics
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Bedside

Precision medicine

Virtual health assistants

. Aland machine

Biometricdata ~. . 1 !
. .-~ learningalgorithms

Patient apps for
wellness and diagnostics

Disease state management platform



Making expert knowledge scalable
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Dermatologist-level classification of skin cancer
with deep neural networks

Andre Esteva'*, Brett Kuprel*, Roberto A. Novoa??, Justin Ko?, Susan M. Swetter>*, Helen M. Blau® & Sebastian Thrun®

Comparison of Chest Radiograph Interpretations by Artificial
Intelligence Algorithm vs Radiology Residents

Joy T. Wu, MBChB, MPH," Ken C. L. Wong, PhD," Yaniv Gur, PhD," Nadeem Ansari, MS," Alexandros Karargyris,
PhD,1 Arjun Sharma, MD,1 Michael Morris, MD,1 Babak Saboury, MD,1 Hassan Ahmad, MD,1 Orest Boyko, MD,
PhD,2 Ali Syed, MD," Ashutosh Jadhav, PhD,! Hongzhi Wang, PhD," Anup Pillai, PhD," Satyananda Kashyap,
PhD, Mehdi Moradi, PhD, and Tanveer Syeda-Mahmood, PhD™" Super resolution
Ground truth

Lesion Detection Bilinear

A scalable physician-level deep learning algorithm
detects universal trauma on pelvic radiographs

Chi-Tung Cheng@”, Yirui Wang® 27 Huan-Wu Chen3, Po-Meng Hsiao# Chun-Nan Yeh®, Chi-Hsun Hsieh!,
Shun Miao?, Jing Xiao?, Chien-Hung Liao® 165 & le Lu® 2

Synthetic images

Real images
5 i

Skin lesions

MS-GAN

Chest X-rays

Machine learning will replace R T 157
human radiologists,
pathologists, maybe soon

As artificial intelligence, cognitive computing and machine
learning systems become better than humans at medicine
and cost less, it might even become unethical not to replace
people.

Renal cell carcinoma histology
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Geometric Deep Leaning




Learning on irregular domains

Image Graph
Regular grid Superpixels

Euclidean Non-Euclidean

Euclidean Non-Euclidean

Credits to Michael Bronstein



Mathematical formulation

o Graphs: collections of objects (nodes) + interactions (edges) between
them

G =WW¢)

o Formally, a graph is a tuple of nodes (V) and edges (E).
Edges typically operate over pairs of nodes, i.e. EC V x V.
o Depending on context, nodes may be referred to as vertices, and edges as links
or relations.

e We can represent edges: 1 (z ]-) cE A€ RIVIX |V|, such that:
_ )
“ 0 otherwise



Some interesting graph types

o Undirected: (U, V) EE= (V, U) € E (equivalently, AT= A)
o e.g.in asocial network, friendship links are (usually?) bidirectional

Weighted: provided edge weight, w;; for every edge (i, j) E E

o e.g.in aroad network, weights may specify distances or speeds

Multirelational: various edge types; (u, t, v) € E if (u, v) linked by type t

o e.g.in a knowledge graph, types encode different relations (“is-parent”, “is-
spouse”, ...)

Heterogeneous: various node types
o e.g.in a biomedical interaction graph, nodes may be drugs, proteins or diseases



Encoder-decoder Setup

encode node

- decode neiahborhood '

(embgé%nng)

Credits to Will Hamilton



Node Embeddings

Discover good ways to embed nodes into vectors z, using an encoder function

encode nodes

.
e
......
.........................................

original network embedding space

Deep learning on graphs before GNNs! (use the graph structure implicitly)
Credits to Will Hamilton



A recipe for graph neural networks, visualised

XNb — {{XCU Xpy Xcy X Xe}}



Multiple scales

Brain
disease

(Rizheimer’)

Graph Neural Networks

» Node classification: Predict property of a node

« Link prediction: Predict whether two nodes are linked

« Graph classification: Predict properties of entire graphs
* Metric learning: How similar are two nodes/graphs

14

a. Node classification

b. Link prediction
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How to use GNNs?
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How to use GNNs?
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How to use GNNs?

Node classification

Z; = f(hs)
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How to use GNNs?

. Node classification

<z = f(hy)

Graph classification

Zo = f(XiF:)




How to use GNNs?

. Node classification

“i | 7 = f(h)

Graph classification

2= £ (i)

D g s o |

_ | Link prediction
Zij = f(hi, by, €j)




The three “flavours” of GNN layers
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Credits to Petar velickovic



Directional GNN

Nodes in GNNs do not know where Neighbours Are coming
from: the aggregation is symmetric

of0  ope °y 3

Grid graph Molecular graph

Credits to Beaini,Passaro,Corso,Hamilton



Directional GNN:Eigenvectors Can Give Structural Information
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Directional Aggregators

O

F v,uq F v,uz

Fv,u3

Directional smoothing aggregation B ,,,(F)x

|Fv,u1 |u1 + |Fv,u2|u2 + |Fv,u3 |u3
|FU;U1| + |FU,u2| + |FV,U3|

Absolute weighted sum
Sum of the absolute weights

1% Features of the node receiving the message
U4 3 Features of the neighbouring nodes
F, ., Directional vector field between the node v and u

Directional derivative aggregation B 4, (F)x

Fv,u1 (uy —v) + Fv,u2 (v —uy) + Fv,u3 (v — u3)
Fou, |+ [Fou, | + [Fou)

Weighted forward Weighted backward Weighted backward
derivative withu; 4 derivative with u, + derivative with ug

Sum of the absolute weights

Directional Graph Networks. D. Beaini*, S. Passaro*, V. Létourneau, W. Hamilton, G. Corso, P. Lio



Directional GNN

Input graph
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Directional Graph Neural Networks

Input graph Aggregation function

Update function

Input (D14 X0
graph | B, X(0)|
1 y(0)
Y© = concat{ Bav :X X X® = MLP(Y©®)
|BG. X
\ Bk, X(© ) Next GNN layer
Bl
Aggregation matrices av t-t+1
from preprocessing k ( X® - x(t+1)
B dx
k
\B,,/



Directional Graph Neural

* Directional graph neural networks can alleviate over-smoothing and
over-squashing.

* In particular, the Laplacian eigenfunctions reveal directions that can
counteract over-smoothing and over-squashing by allowing efficient
propagation of information between distant nodes instead of
following a diffusion process.

ZINC PATTERN CIFAR10 MolHIV MolPCBA
No edge features Edge features No edge features No edge features Edge features No edge features  All models
Mogel MAE MAE % acc % acc %acc  %ROC-AUC  %AP
GCN 0.469:0.002 65.880:0.074 54.4610.10 76.06:0.97* 20.20:0.24 *
GIN 0.408+0.008 85.590:0.011 53.28#3.70 75.58+1.40* 22.6610.28 *
GraphSage 0.410:0.005 50.516%0.001 66.08:0.24
GAT 0.463:0.002 75.824+1.823 65.48:0.33
MoNet 0.407+0.007 85.482+0.037 53.42:043
GatedGCN 0.422:+0.006 0.363:0.009 84.480:0.122 69.19:0.28 69.37:048
PNA 0.320+0.032 0.188:0.004 86.567+0.075 70.46:0.44 70.47+0.72 79.05+1.32* 28.38:0.35*
DGN 0.219:0.010 0.168:0.003 | 86.680:0.034 72.70:0.54 72.84+0.42 79.70:0.97 28.85:0.30*




Message passing neural network as diffusion of information on a graph

input Message passing transformation output

Credits to Francesco di Giovanni



Message passing neural network as diffusion of information on a graph

input Message passing transformation output




Message passing neural network as diffusion of information on a graph

input Message passing & transformation output

Do

Do

Do

Do
Do

Do

Do



Message passing neural network as diffusion of information on a graph

input Message passing & transformation output

Do

&)
Do

Do

Ok
Do

Do




Message passing neural network as diffusion of information on a graph

input Message passing & transformation output

Do

J




Message passing neural network as diffusion of information on a graph

input Message passing a transformation output

N/

Do

Do

Do



Message passing neural network as diffusion of information on a graph

input Message passing transformation output

/
o

Do

Do



Message passing neural network as diffusion of information on a graph

input Message passing transformation output




Graph Neural Networks: Message Passing “flavour”

local function
(EEEEx; )

b

. J aﬁ

learnable message function
-
Fx) = &(xu[] b(xix)))

JEN;

Gilmer et al. 2017; Battaglia et al 2018; Wang et B. 2018



Spatial discretisation

dx(u,t :
D = div[Va(u, )] (1)
gradient - flow along edges divergence - aggregation of edges
(VX))o = x4y — X (diV(X))u = z WuvXup
v
X=Xy

X =@AX®)-DX(@®) (2)



Over-squashing and over-smoothing

Oversquashing: inability for GNNs to
propagate informative signals between
distant nodes and is a major bottleneck
to training deep GNN models

\

Over-smoothing: node representations
become indistinguishable and
prediction performance severely
degrades when the number of layers
increase

Uri Alon and Eran Yahav (2020) On the Bottleneck of Graph Neural Networks and its Practical Implications. J.

Topping, F. Di Giovanni et al., Understanding over-squashing and bottlenecks on graphs via curvature (2021)
arXiv:2111.14522



Interpretability

‘ Liner Regression g
‘ Decision Trees “

‘ K-Nearest Neighbors

Interpretability

‘ Random Forests

‘ Support Vector Machines

. Deep Neural Networks

One model is more interpretable than another if it is easier

A 4

R for a human to understand how it makes predictions than
the other model.

Ciravegna, Gabriele, et al. "Human-Driven FOL Explanations of Deep Learning." IJCAI. 2020.


mailto:gc579@cam.ac.uk
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GCExplainer

e Graph Concept

° . mna [ | *
Explainer (GCExplainer) T ;f(*:
Em x
o Key Ideas: :'|> - ", e
o Concept-based — " e e *
. 0.. * K
explanations o0’
o X J

o Global explanations o
o Quantitative evaluation

Graph Neural Network Graph Concept Explainer
reasons on relational data clusters the GNN’s
embeddings

Magister, Lucie Charlotte, et al (PL). "Gcexplainer: Human-in-the-loop concept-based explanations for graph neural

networks." arXiv preprint arXiv:2107.11889 (2021). )



Hierarchical Explainable Latent Pooling (HELP)

e Clusters node embeddings and merges connected components clustered
together
o Discovered a hierarchy of Concepts

GNN Layers

\4
Pl : Merging
KA %1 comenas o T~ |
() [Components
. embedding
i space

embedding
space

GNN Layers +es—— Pooling GNN Layers
A

Global Pooling
(b)

Jurf3, Jonas, et al (PL). "Everybody Needs a Little HELP: Explaining Graphs via Hierarchical
Concepts." arXiv preprint arXiv:2311.15112 (2023).

103



A note on Transformers Multi-H:ad Attention

e Transformers are Graph Neural Networks! Linear
o Fully-connected graph T
o Attentional flavour
Concat
e The sequential information is injected A !T
through the positional embeddings. [ Scaled Dot-Product N
Dropping them vyields a fully-connected Attention ~u
GAT model. |
Linear

e Attention can be seen as inferring

a “soft” adjacency matrix.

See Joshi (The Gradient; 2020).



Topological Neural Networks

* Topological Neural Networks (TNNs) are deep learning architectures
that extract knowledge from data associated with topologically rich

systems such as protein structures, city traffic maps, or citation
networks.

* ATNN, like a GNN, is comprised of stacked layers that transform data
intn a ceriec nf featiirec Farh |gyer leverages the fiindamental

M i i .
essage passing tational domalnS,

Features Features Features
Features Features Features

l ,c ! ’c l io Moo
Y ) ' | 0 Prediction
&7 Q a ™o edicti > P C C
rediction !
B - - i
»\ //4

\Computational domain
encoding neighborhoods

Message passing




Topological Neural Networks

Topological Neural Network with 3 Layers

Message passing

Features Features Features Features

s l ’0 l ,0 l io ® Prediction
—q in
g 0 Preprocessing ;éyc ;éyc ;ély@
N o

Data domain Computational domain
encoding neighborhoods

Data associated with a complex system are features defined on a data domain,
which is preprocessed into a computational domain that encodes interactions
between the system’s components with neighborhoods.

The TNN’s layers use message passing to successively update features and yield an
output, e.g. a categorical label in classification or a quantitative value in regression.
The output represents new knowledge extracted from the input data.



Domains

In Topological Deep Learning (TDL), data are features defined on
discrete domains. Traditional examples of discrete domains include
sets and graphs.

The domains of TDL generalize the pairwise relations of graphs to
part-whole and set-types relations that permit the representation of
more complex relational structure (see figure below: Nodes in blue,
(hyper)edges in pink, and faces in dark red)

Traditional Discrete Domains Domains of Topological Deep Learning
(@) @) O O
O
© % 4 e W ﬁ) ‘O ‘o LA\ e
o © o—0 o)) \ o )\
Simplicial ~ Cellular Combinatorial
et LR complex complex complex STREELEE
No Pairwise Part-Whole Set-Type
Relation Relations Relations Relations

O :Nodes :Edges is part of v not necessarily part of '



Simplicial complexes

Simplicial complexes (SCs) generalize graphs to
incorporate hierarchical part-whole relations through
the multi-scale construction of cells. Nodes are rank 0
cells that can be combined to form edges (rank 1
cells).

Edges are, in turn, combined to form faces (rank 2
cells), which are combined to form volumes (rank 3
cells), and so on. As such, an SC’s faces must be

triangles, volumes must be tetrahedrons, and so forth.

SCs are commonly used to encode discrete
representations of 3D geometric surfaces represented
with triangular meshes.

Cyclopropane !
O

O O O

O
O

QO

O Q O

K

O
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Cellular complexes

Cellular complexes (CCs) generalize SCs CYC|0pr0paneO!O
such that cells are not limited to simplexes:
CKOCycIopropane

faces can involve more than three nodes,
volumes more than four faces, and so on.

This flexibility endows CCs with greater
expressivity than SCs.

-~ /\ X
A practitioner should consider employing |
this domain when studying a system that e
features part-whole interactions between
more than three nodes, such as a molecule
with benzene rings



Hypergraphs

Hypergraphs (HGs) extend graphs in that their
edges, called hyperedges, can connect more
than two nodes. Connections in HGs represent
set-type relationships, in which participation in
an interaction is not implied by any other
relation in the system.

This makes HGs an ideal choice for data with
abstract and arbitrarily large interactions of
equal importance, such as semantic text and
citation networks.

Protein interaction networks also exhibit this
property: an interaction between proteins

requires a precise set of molecules—no more
and no less.

The interaction of Proteins A, B, and C does not
imply an interaction between A and B on their
own.

= : Protein G@
M Protein A e

-& Protein B {O
& Protein C 20O

, ®)
ffﬁ Protein D

O Protein F @

® Protein E @




Combinatorial complexes

Combinatorial complexes generalise CCs and
HGs to incorporate both part-whole and set-
type relationships .

The benefit of this can be observed in the
example of molecular representation.

The strict geometric constraints of simplicial
and cellular complexes are too rigid for

capturing much of hierarchical structure
observed in molecules.

By contrast, the flexible but hierarchically
ranked hyperedges of a combinatorial
complex can capture the full richness of
molecular structure.

&8 Protein A

Protein G«

o &

£ protein B\C NS Protein F i
*ﬁ' Protein Ca0

g Protein D & Protein E §&



Combinatorial Complexes

Combinatorial complexes
including

(a) sequences and images,
(b) graphs,

(c) 3D shapes and
simplicial complexes,

(d) cubical and cellular
complexes,

(e) discrete manifolds, and

(f) hypergraphs.



The landscape of the Combinatorial Complexes

Geometric deep learning Higher-order domains
domains
0 o) 0 5 <O
°© ° R ST e S e W
o © — o—79° | ! ‘
Set of entities Graph Simplicial complex Cell complex Hypergraph
~— v
0o Rank-0 cells
N
Rank-1 cells !
O Rank-2 cells . :
Combinatorial complex

Sets have entities with no connections, graphs encode binary relations between
vertices, simplicial and cell complexes model hierarchical higher-order relations, and
hypergraphs accommodate arbitrary set-type relations with no hierarchy.

Combinatorial complexes (CCCs) generalise graphs, simplicial and cell complexes, and

hypergraphs. CCCs are equipped with set-type relations as well as with a hierarchy of
these relation.



Lifting topological domains - i i

(a) A graphis lifted to a Graph Hypergraph

hypergraph by adding

hyperedges that connect groups

b.
of nodes.
(b) A graph can be lifted to a

cellular complex by adding faces Graph Cellular Complex

(c) Hyperedges can be added to

of any shape.
C.
a cellular complex to lift the .m_. ‘
structure to a combinatorial
com plex. Cellular Complex Corggrir?gltg):ial




Topological Deep learning

Traditional Discrete Domains Domains of Topological Deep Learning
o) p
Y ww W
O O )’ : L
Simplicial  Cellular Combinatorial
==t Graph complex complex complex Hypergraph
No Pairwise Part-Whole Set-Type
Relation Relations Relations ~ Relations
O :Nodes \ : Edges \ is part of v . not necessarily part of ¢

from Papillon et al. 2023



Sheaf Neural Networks

Vector spaces

Linear maps

Fu<e / 1 / fée

Sheaf Laplacian o — N —— .
F, u<e F v<e
F(u) F(e) F(v)
Normalised Sheaf Laplacian
Zvlﬂe ‘Fg;ﬂe]:l"lﬂ(? _‘F'g;ﬁefb‘nfﬁ

Ar=D2LzD 2

0
S X t —_— A X t Sheaf Heat Diffusion PDE

Generalises GCNs Xt +1 — Xt —_ 0‘( A T ( t) ( [ ® Wlt)X " W2t) Sheaf Convolutional

Network



Sheaf Neural Networks

Vector spaces

Linear maps

Fuse /ﬁ FrL.
]:uTglc . 6\ / ]:'uﬂe

F(u) F(e) F(v)

Sheaf Laplacian T

Normalised Sheaf Laplacian

Zz.-lsle fg:ﬂefl’lﬂt’ te _-Fg:ge}—méc 1 1

L= ] . : _ — s —a
’ A F = D 2L _7:D 2

T T
—]'-,’,” sle'FUnS]E s Zulge ‘F;'"ij(‘fvnﬂe

0
- X t e — A X t Sheaf Heat Diffusion PDE

Generalises GCNs Xt+1 = Xt — O-(Af(t) (I ® Wlt)Xt W2t) Sheaf Convolutional

Network

Barbero et al, Sheaf Neural Networks with Connection Laplacians,
Bodnar et al., Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns, arxiv



Sheaf Neural Networks

Attention matrix Adjacency matrix

%X(t) — (Ao Ar — DX (2)

Sheaf Attention Network

X1 =X +0(A® Ar — (I @ WHX, W)

Generalises GATs



Sheaf Neural Networks
F(v2)

Transport weighted
by attention

T
Avsvl'rv] Qeg‘rvlﬂea



Topological Deep learning

Traditional discrete domains

(o) (0}
(o}
o o —¢ © ’ < EO!
o (o] o) ®) o o !O
(o)
o © " o !BH !H
Set Graph o 0p.xS
Cellular  Simplicial Combinatorial Hypergraph Sheaf
ey complex complex complex ea
Nf’ Pairwise K P hypergraph
relations  relations Part-whole Set-type
relations relations
O : Nodes : Edges is part of v ' is not necessarily part of

* A taxonomy of topological domains. Adapted from Papillon et al.



Sheaf for Bigger molecules

Initialisation First Iteration Second Iteration Initialisation First Iteration

Lorenzo Giusti et al., CIN++: Enhancing Topological Message Passing, arxiv

Cellular lifting process. Given an
input graph G, we attach closed
two-dimensional rings to the
boundary of the induced cycles of
G. The result is a 2D regular cell
complex C.

Boundary messages received by an
edge (top) and a ring (bottom)



Geometric Deep Learning Across Scales:

Molecules
Cell
Tissues
Patients
Population




Molecules




Geometric Deep Learning has many applications on
molecular data
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S o Channel PET Structure Prediction
Network

A Hitchhiker’s Guide to Geometric GNNs
for 3D Atomic Systems

Illustration courtesy Chaitanya Joshi



If you're interested in this space, check out
our tutorial paper.

2312.07511.pdf (arxiv.org)

A Hitchhiker’s Guide to Geometric GNNs
for 3D Atomic Systems

Alexandre Duval* Simon V. Mathis*
Mila, Université Paris-Saclay University of Cambridge, UK
alexandre.duval@mila.quebec simon.mathis@cl.cam.ac.uk
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Abstract

Recent advances in computational modelling of atomic systems, spanning
molecules, proteins, and materials, represent them as geometric graphs with atoms
embedded as nodes in 3D Euclidean space. In these graphs, the geometric attributes

[cs.LG] 12 Dec 2023



https://arxiv.org/pdf/2312.07511.pdf

Graphs are everywhere in biology

Drug molecules Protein structure

Protein-protein Gene regulatory
interaction networks networks

Unsurprisingly, Graph Neural Networks (GNNs) have achieved
remarkable results in biological modelling

Slide credit: Chaitanya Joshi



There are several ways of representing protein structures

Pure point cloud

with protein-specific as surface

with bonds
secondary structure




- &
- N Can also represent each amino
Amino acid e’ : acid as “extended object”:

(position, orientation) € R® x SO(3)



3D Infomax
Setting Approaches Result

Molecules without 3D Standard Approach:
information for which Use GNNs with the x
properties have to be molecular graph 71
: Sproperiy == . i
i ; as the only input % Predictions are fast but less
PR and ignorZ 3prased G N N i p p accurate since 3D information
2 D : atomic interactions. cannot be leveraged.

Explicit 3D Approach: b (i}:vl )

Employ classic (1) or o0 : ."Y;

learned (2) methods to 2 PRI (J BD Accurate predictions but

and use them as input to a coordinates are too slow for
3D Graph Neural Network. PY ) many real-world applications.

Our 3D Infomax:
1. Pre-train 2D Net /|ﬂ maximize MI z propel'fy —9 :G? \/
A =

compute 3D coordinates Q@ & .'°......’_-1~“° G N N "Pfoper t y_é methods for generating
o b :
o

with the molecules for
: which 3D information a — b
z I
is available and learn % %
Z D : to generate implicit 3D
information in latent
representations. e e 0 0 v

During fine-tuning the 2D
Net still generates latent 3D
information and uses it to
inform property predictions.

SN

B 2 => Predictions are more
P 2 Trastorwelslitzor e ﬁ g = accurate than methods that
3D 2D Net and fine-tune YF -LD N@f _SD N@f { { ¢D N@]L do not use 31? information.
Molecules with 3D for predicting S => Inference is fast and only
information that can be | molecular properties. @ i 3{)0
o

uses a single forward pass of
used for pre-training.

the chosen 2D Net.

S

Hannes Stdrk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan Giinnemann, Pietro Lid 3D Infomax improves GNNs for Molecular
Property Prediction https:/ /arxiv.org/abs/2110.04126
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AlphaFold2-3

Jumper et al. 2021 (DeepMind)+

Median Free-Modelling Accuracy

100

ALPHAFOLD 2

80

15t use of Deep
Learning

ALPHAFOLD
60

40

GDT_TS

20

CASP7 CASP8 CASP9 CASP10 CASP11 CASP12 CASP13 CASP14
2006 2008 2010 2012 2014 2016 2018 2020

CASP

Structural information has become much more available recently,
in part thanks to geometric deep learning.

1st use of
Geometric Deep
Learning

‘\
15t use of Diffusion



The importance of symmetries

4 1
g 1 3 2
3D atomic : ; : '
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Illustration courtesy Chaitanya Joshi



Protein backbones as graphs

ProteinMPNN - message passing neural network

message passing

sidechain

<* ' -

Z- peptide bonds '5 G I’aph Neural
Network

Probability distribution

(O Node (amino acid) over 20 amino acid

W Backbone

Neighbourhood in 3D

P(X)

Ingraham et al. Generative models for graph-based protein design. NeurlIPS. 2019.



Diffusion Models (Level 1

Sohl-Dickenstein et al. 2015 (Stanford)

simple destructive process slowly maps data to noise

Diffusion model is trained to map noise back to data

Soogle Research, 2022 & Beyond: Language, Vision and Generative Models (Google Research)



Diffusion Models (Level 2)

Sohl-Dickenstein et al. 2015 (Stanford)

“Diffusion models define a Markovian chain of random diffusion steps,
gradually adding noise to sample data until it loses all of its distinguishing
features. A neural network is then trained to reverse this process”

o=

Forward Diffusion Process q(x:|x:—1) = N (x4; /1 — Bixs_1, Bi)

Reverse (Generative) Diffusion Process po(Xe-1]x¢) = N (xs-13{peo(x¢, t) Bo(x¢, t))

Learned Usually
fixed

(lilianweng.github.io)



Diffusion models can be seen as a
‘stretched out’ VAE

VAE: maximize X :m =. >m - x/
variational lower bound q¢(z|x) po(x|2z)

Diffusion models:. X0 — X1 — Xo| —— T —
Gradually add Gaussian - - - -
noise and then reverse

\ 4

Credit: lilianweng.github.io



Approximating some target distribution

—— Reverse stochastic process

Credit: lilianweng.github.io



Variational Autoencoders —

A Variational Autoencoder graphically represented. Here, encoder q(z|x) @ @

defines a distribution over latent variables z for observations x, and p(x|z) . 4

decodes latent variables into observations. q(z|z)

ped)] g 22l22)

[Eq¢(z|a:) [log q¢(z|w) — Tqe(z|x) q¢(z|a

(Chain Rule of Probability)

= Egy(zla) logpo(x|2)] - wqy212) 1™® go(2]2) | (Split the Expectation)

= Eqy(2|a) log pe(x|z)] — Dk1(gs(2|x) || p(2)) (Definition of KL Divergence)

Vv vV
reconstruction term prior matching term

The encoder of the VAE is commonly chosen to model a multivariate
Gaussian with diagonal covariance, and the prior is often selected to be a

Y ) standard multivariate Gaussian;
9e(z[x) = N(2; po (), o (@)I) the KL divergence term of the ELBO can be computed analytically, and the
p(z) = N(z;0,1) reconstruction term can be approximated using a Monte Carlo estimate.
Our objective can then be rewritten as:
L
, ~ aro T , l
arg ax Eq,(zla) logpe(z|2)] — Dxi(ge(z]x) || p(2)) ~ algd)lgaxz log pe(x|2") — Dxr(g¢(2|z) || p(2))

=1



Hierarchical Variational Autoencoders

A Hierarchical Variational Autoencoder (HVAE) is a generalization of a
VAE that extends to multiple hierarchies over latent variables.

Under this formulation, latent variables themselves are interpreted
as generated from other higher-level, more abstract latents.

Whereas in the general HVAE with T hierarchical levels, each latent is
allowed to condition on all previous latents, we focus on a special
case which we call a Markovian HVAE (MHVAE).

In a MHVAE, the generative process is a Markov chain; that is, each
transition down the hierarchy is Markovian, w-~-

p(zr-1|2r)

p(x|z1) p(21]22)
A Markovian Hierarchical Variational Autoencoder with T hierarchical T T ~—7
(=l

latents. The generative process is modeled as a Markov chain, where ?) a(z2l21) a(zrler-1)

each latent zt is generated only from the previous latent zt+1.



Hierarchical Variational Autoencoders

l‘lzl P(~1|22 p(ar- 1|ZT)
T
p(x, z1.7) = p(zr)pe(x|21) | [ po(2e-1]2¢) @ @ @ @
t=2
T
4o (z1:7|%) = q¢(21|T) H Qo (2t|ze—-1) q(zll q(z2z1) q(zTIzT 1)
=2

A Markovian Hierarchical Variational Autoencoder with T hierarchical
latents. The generative process is modeled as a Markov chain, where
each latent z, is generated only from the previous latent z,,;.

lng(CU) = log/p(w,zlzT)dzlzT

= log/ p(ﬂ?, Zl:T)q¢(21:T|w) dzy.p (Multlp]y by M)
q¢(z1.7|7) q¢(z1.7|)

p(x, z1.7) |
g (z1.7|) |
p(x, z1.7) |
qe(z1.7|T)

=log By, (2.7 |2) ! (Definition of Expectation)

(Apply Jensen’s Inequality)

2 Egy(z11|2) [log

p(z,zir) ] p(zr)po(|21) T1,_ po(2i—1|2t)
— | = EBap(zirlz) |10

E lo
(z1: |m){ g
de (=T 44(z1.7|) 46(21|2) 11—y 4o (2t 21-1)



Variational Diffusion Models

A Variational Diffusion Model (VDM) is simply as a Markovian
Hierarchical Variational Autoencoder with three key restrictions:

The latent dimension is exactly equal to the data dimension.

The structure of the latent encoder at each timestep is not
learned; it is pre-defined as a linear Gaussian model. In other
words, it is a Gaussian distribution centered around the output
of the previous timestep.

The Gaussian parameters of the latent encoders vary over time
in such a way that the distribution of the latent at final timestep
T is a standard Gaussian.



Variational Diffusion Models

p(zolz1) p(@e-1lze)  p(@e|Tit1) p(zr-1|zr)
) . © @ O @
D 4 T T N7
q(x1|zo) q(¢]we-1) q(we41]2t) q(zr|rr-1)

A visual representation of a Variational Diffusion Model; x, represents true data observations such
as natural images, x; represents pure Gaussian noise, and x; is an intermediate noisy version of x,. Each
q(x.| x,—1) is modeled as a Gaussian distribution that uses the output of the previous state as its mean.



Maximisin
g the ELBO
for VDM

log p(x) = log / p(xo.r)dx1.7

—1o P(xozT)Q(w1:T|$o)
=1 g/ q(z1.7|0) ¢

21:1;T
p($O:T)
= logE q(@1.7[x0)
O8 Cg(x1.7|20) |:q($1:T|m0):|
;" M]

E
= “a(@urmo) - 7 q(r|T0)

p(er) [T, polai—1 th)]
Hthl q(x|xi—1)

—E -log p($T)po($o|$1)Hfzgpo(wt_ﬂmt)]

=F

q(x1.7|T0) log

(1.7 |20) —
e q(@rler—1) [T—, a(®|@i1)
L !
B plxr)pe(wolz) [T, po(a:|zii1)
=Ey(z: iz log
q(x1.7|20) T—1
q(xrler—1)[[,=; a(xi|ei—1)

[ plxr)pe(xo|z1) P9($t|mt+1)
=E log ——— 24—~ — % E 1 I I - 7
e{@1.7 (o) I o8 q(xr|Tr_1) T Fa@irieo) 108 q(x¢|xi—1)

p(xr) Do $t|$t+1)
== IEq(wl:TkL‘o) [logpo(x()lml)] + IE(I(wl:Tla'f'O) |:10g (lexT 1) + [E‘Z(ml T|®0) Zl xtlmt 1)

p(xr) — Po(wi|Tii1)
= Eg@r.rlao) [log pe(wo|x1)] + Eq(ar.r|zo) |:10g q(xr|xr_1) ] Z a(@1r|wo) [log q(e|Ti—1)
t=1 B

S po(@i|xisq)
9 (Lt |Tt+1
Z q(xi—1,@,@i41|2T0) [log —:|

=1 q(ze|zi-1)

= IEq(ml|z0) [IOgPO(mOkBl)] + [Eq(wT_l,:chwo) [l 08 q(a:T|fl}T 1) ]

= Eq(ay|ao) [lnge(wolm)l — Eq(@r_i (o) [PxL(q(xr|TT 1) || p(TT))]

reconstru‘c'tion term prior mat‘crhing term
T-1
- Z {Eq(wt,l,wt+1\wo) [Dxr(q(@e|ze—1) || P9($t|$t+1))l
t=1

~~
consistency term



Variational Diffusion Models

p(xolz1)

a VDM can be optimized by ensuring that for every intermediate x,, the posterior from the latent above it pO (x| X.1)
matches the Gaussian corruption of the latent before it q(x;|x,_;). In this figure, for each intermediate x,, we minimize the
difference between the distributions represented by the pink and green arrows.



Variational Diffusion Models

Q(th—1|xt,l’0) Cl(xt\xt+17$0)

p(xo|x1) p(ze—1]ze) p(ze|Tey1) p(xr-1|T)

[_\ [_\

® © 0 & _

N_7 T T N_7

Q(331|330) Q(l’t|$t—1) q(l‘t+1|$t) C](CUT|33T—1)

Depicted is an alternate, lower-variance method to optimize a VDM; we compute the form of ground-truth denoising
step q(x._1 | X, Xo) using Bayes rule, and minimize its KL Divergence with our approximate denoising step p8 (x,_; | ;). This
is once again denoted visually by matching the distributions represented by the green arrows with those of the pink
arrows. Artistic liberty is at play here; in the full picture, each pink arrow must also stem from x,, as it is also a
conditioning term.



Variational Diffusion Models

* Variational Diffusion Models as a special case of a Markovian
Hierarchical Variational Autoencoder, where three key assumptions
enable tractable computation and scalable optimization of the ELBO.

* A VDM boils down to learning a neural network to predict one of
three potential objectives:

* the original source image from any arbitrary noisification of it,
* the original source noise from any arbitrarily noisified image, or
* the score function of a noisified image at any arbitrary noise level.



Chroma and RFDiffusion: Diffusion Models for

Protein Design

a Collapsed Generation. Reverse Polymer Diffusion _ Protein
polymer ~_ complex
system Training. Forwards Polymer Diffusion backbone
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Chroma: Design based on symmetry

a Symmetry

https:/ /www.biorxiv.org/content/10.1101/2022.12.01.518682v1?rss=1



Chroma: Condition based text (i.e. DALLE-x for
proteins)

“Crystal structure of “Protein with
Aminotransferase” CHAD domain”

caption perplexity = 1.50 caption perplexity = 4.81

https:/ /www.biorxiv.org/content/10.1101/2022.12.01.518682v1?rss=1



. . Nothing in Biology Makes Sense Except in the
P rOteI n EVOl UtIOn Light of Evolution (Dobzhansky, 1964)
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Generative Modelling
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https://yang-song.net/blog/2021/score/

Algorithm 1 | Unconditional training of denoising diffusion models [Ho et al., 2020]

Require: Dataset drawn from law Py, = Py > Dataset 1aw Pgata
Require: Noise schedule 5, = ((t), &; = &(t), parametrising process Pgaa — Psampling
Require: Untrained noise predictor function fy(x, ¢t) with parameters 0

1: repeat

2: X0 ~ Po = Paata

3 t ~ Uniform({1,...,7})

4: > Forward noise sample, x; ~ py)o(%o) N
5: €t ~ Proise > Often Brownian motion, Ppeise = N (0, I)
6: Xt < v/ OouXg + +/ 1— Q€

7 > Estimate noise of noised sample <
8: Eg fg(Xt,t)

9: Take gradient descent step on
VoL(es, €g) > Typically, loss L(Zire, Tpred) = ||Ttrue — Tpred||?
10: until converged or max epoch reached

Source: [2312.09236] A framework for conditional diffusion modelling with applications in motif scaffolding for protein design (arxiv.org)



https://arxiv.org/abs/2312.09236
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https://yang-song.net/blog/2021/score/

Algorithm 2 | Unconditional sampling with denoising diffusion models [Ho et al., 2020]

Require: Unconditionally trained noise predictor fp(x;, t)
Require: Noise schedule 8, = ((t), & = &(t), parametrising process Paata — Psampling

1: > Sample a starting point X <
2 XT ~ PT — Psamp]j_ng > Often PT = N(O, I)
3: b Iteratively denoise for 7' steps <
4: fortin (T, T —1,...,1)do

5 > Predict noise with learned network <

6: é@ = fg(xt,t)

T > Denoise sample with learned reverse process x;—1 ~ p;_1+(X¢) <
8: > Perform reverse drift <

1 Be .
= (- =)

9: Xi—1

10: > Perform reverse diffusion, which is often Brownian motion in R", i.e. Pyoise = N (0,I) <
11: €t ~ Proise if t > 1 else g, <+ 0
12: Xi_1 4 X¢—1 + 01 > A common choice is oy = 5(t)

13: ;etum X

Didi*, Vargas*, Mathis*, Dutordoir* et al. NeurlPS Al4D3 2023

Source: [2312.09236] A framework for conditional diffusion modelling with applications in motif scaffolding for protein design (arxiv.org)



https://arxiv.org/abs/2312.09236

Diffusion models for protein design

Enable “controllable” design of proteins for many properties

h? Symmetry

Substructure

‘ Shape

.
[ Semantics

—::@ Dynamical properties

Source: Watson et al. 2023, Ingraham et al. 2022,
generatebiomedicines.com



Tackling Motif Scaffolding

Scaffold a certain motif into diverse backbones

Transferrin-binding motif Transferrin-binding motif

6E6R

Didi*, Vargas*, Mathis*, Dutordoir* et al. NeurlPS Al4D3 2023



Many ways to condition diffusion models

Tug-of-war between unconditional and conditional update

(a) Unconditional Sampling (b) Replacement (c) Reconstruction Guidance

Xmotif

*
Xmotif |=/=

Xscaffold Xscaffold Xscaffold

Didi*, Vargas*, Mathis*, Dutordoir* et al. NeurlPS Al4D3 2023



Algorithm 5 | Amortised training — i.e. Doob’s h-transform conditional training (new)

Require: Dataset drawn from Py, > Dataset law Pyguiq
Require: Noise schedule 3; = 3(t), & = &(t), parametrising process Pgata — Psampling
Require: Untrained noise predictor function fy(x, ¢, xM] M ) with parameters 6

1: repeat

2: x0 ~ Po = Pdata

3: t ~ Uniform({1,...,T})

4: x([)M] U x([)\M] — Xp > Randomly partition data point into motif and rest
5 > Forward noise full sample via sampling from py; (xo) N
6: €t ~ Phoise

T X; < v/ OoXg + vV 1— Q1€

8: > Estimate noise of sample with original motif as additional input d

&9« £p(xs,t, x5, M)

10: Take gradient descent step on
VOL(Ea é@) > Typlcally, L(xtrum xprcd) - thruc - xprcdH2
11: until converged or max epoch reached

Didi*, Vargas*, Mathis*, Dutordoir* et al. NeurlPS Al4D3 2023

Source: [2312.09236] A framework for conditional diffusion modelling with applications in motif scaffolding for protein design (arxiv.org)



https://arxiv.org/abs/2312.09236

h-Transforming SDE = Conditional Sampling
General framework to enforce various conditioning constraints

(a) Original SDE - Unconditional Sampling (b) h-transformed SDE - Conditional Sampling

Didi*, Vargas*, Mathis*, Dutordoir* et al. NeurlPS Al4D3 2023



Algorithm 8 | Reconstruction Guidance (i.e. Moment Matching (MM) Approximation to h-
transform)

Require: Unconditionally trained noise predictor fp(x¢,t) , target motif/context ng].

Require: Noise schedule B; = 5(t), @; = @(t), parameterising process Paa — Peamnline
Require: Guidance scale (schedule) y; = (¢)
Require: Conditioning 10ss I(Zire, Tpred)- €-g, Gaussian MM I(Zirye, Tpred) = ||Tirue — Tpred||?

1: > Sample a starting point X7 d
3: b Iteratively denoise and condition for 7' steps d
4: fortin (T, 7T —1,...,1)do
5: €o = fp(x¢, 1) > Predict noise with learned network
6: > Estimate current denoised estimate via Tweedie’s formula d
7. Ko(x¢,€p) %(xt — /1= aé) > c.f. also eq. 15 in Ho et al. [2020]
8: > Perform gradient descent step towards condition on motif dimensions M d
0: Xt < Xt — Yt Vil (XBM] , )Ac([)M] (xt,€9)) > Requires backprop through fyvia e.g. Lo loss
10: > Denoise sample with learned reverse process x;—1 ~ P;_1;(Xt) <
11: xi—1 ¢ (1= Be) Y2 (x¢ — Be(1 — &) ~1/2&y) > Perform reverse drift
12: > Perform reverse diffusion, which is often Brownian motion in R", i.e. Pyoise = N (0,I) <
13: €t ~ Proise if t > 1else e + 0
14: Xi_1 < Xp_1 + O1Ey > A common choice is oy = 5(t)

15: return x,

Didi*, Vargas*, Mathis*, Dutordoir* et al. NeurlPS Al4D3 2023

Source: [2312.09236] A framework for conditional diffusion modelling with applications in motif scaffolding for protein design (arxiv.org)



https://arxiv.org/abs/2312.09236

DiffSBDD: Diffusion for Structure-based Drug
Design with Equivariant Diffusion Models

» Both proteins and ligands are represented as all-atom graphs (with coordinates x and feature {i.e.
atoms types} vectors h).

* Our model is trained to predict the transitional probability distribution pg ( L | (&) Zc(ilzl)ta) which

(L)

is conditioned both on the previous latent state of the ligand z; and the fixed presentation of the

pocket Zéz)ta.

« In practice, samples are constructed using a denoising network ég
q(zi”|sz2 )
Y- (L) _(P)
€) = ¢9 (zt » Zdata » t)
N N . N
3 Oto - oo:go\./ : 9‘9 06/ 00& \v{ \

Y . e d 8°% ° e %5 %% o

Do O S o o & ‘. ° &% SE(3)-equivariant Graph
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Based on: Schneuing, Arne, et al. "Structure-based drug design with equivariant diffusion models." NeurIPS MLSB 2022.



DiffSBDD: Results

Conditional (2jjg) Inpainting-Ca (2jjg) Reference (2jjg)

d H.
Vina: -6.5 Sim:0.27 Vina:-6.7 Sim: 0.24 Vina:-6.6 Sim: 0.21 Vina: -6.5 Sim:0.27 Vina:-6.3 Sim: 0.19 Vina:-6.4 Sim:0.19 Vina: -5.9 Sim: 1
QED: 0.49 SA:0.43 QED:0.63 SA:0.35 QED:0.54 SA:0.27 QED:0.44 SA:0.29 QED:0.53 SA:0.35 QED:0.21 SA:0.35 QED:0.56 SA:0.78

Conditional (3kc1 Inpainting-Ca (3kc1) { Reference (3kc1) ‘

)-\.8-(

Vina: -8.1 Sim: 0.4 [Vina: 7.2 Sim: 0.50 [Vina: -8.5 Sim:0.40  Vina:-6.9 Sim: 0.40 Vina:-6.9 Sim: 0.32 Vina:-6.4 Sim:0.23 | Vina: 6.5 Sim: 1

QED: 0.70 SA:0.45 EED: 0.65 SA:0.45)JQED:0.63 SA:0.35 QED:0.15 SA:0.36 QED:0.67 SA:0.27 QED:0.45 SA:0.40 .QED: 0.72 SA:0.66

50,




DiffSBDD: Results

Conditional-Ca (6c0b) Inpainting-Ca (6c0b)

|27

Reference (6¢0b)

Q ) { [
’ \ 7 \/\/\/v\/\/\/\n/"‘
- . C 3 0 A U
Vina: -12.8 Sim: 0.05 Vina: -11.9 Sim: 0.12 Vina: -11.5 Sim: 0.06

Vina: -12.4 Sim: 0.07 Vina: -12.3 Sim: 0.07 Vina: -12.2 Sim: 0.12  Vina: -8.40 Sim: 1
QED: 0.74 SA:0.45 QED:0.66 SA:0.25 QED: 0.68 SA:0.25

QED: 0.76 SA:0.24 QED:0.85 SA:0.25 QED:0.63 SA:0.34 QED:0.36 SA:0.89



DiffSBDD: Results

Table 1. Evaluation of generated molecules for targets from the CrossDocked test set. * denotes that we re-evaluate the generated ligands
provided by the authors. The inference times are taken from their papers.

Vina Score (kcal/mol, |) QED (1) SA (1) Lipinski (1) Diversity (1) Time (s, })
Test set —6.871 £ 2.32 0.476 £+ 0.20 0.728 +0.14 4.340 £ 1.14 —_ —
3D-SBDD (AR) (Luo et al., 2021)* —5.888 +1.91 0.502 £0.17 0.675+0.14 4.787 £ 0.51 0.742 £ 0.09 19659 £+ 14704
Pocket2Mol (Peng et al., 2022)* —T7.058 £ 2.80 0.572+0.16 0.752+0.12 4.936 +£0.27 0.735+£0.15 2504 £+ 2207
GraphBP (Liu et al., 2022) —-4.719 £ 4.03 0.502 £ 0.12 0.307 £ 0.09 4.883 £0.37 0.844 £0.01 10.247 = 1.08

DiffSBDD-inpaint (10) —7.340 = 2.55 0.535+0.14 0306 +0.10 4.831£0.43 0.758 £0.05




