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Advancing technologies by materials innovation 

The advancement of many technologies 
important for our everyday life requires 

materials innova7on. 

Developing new materials is a difficult and 
7me consuming task. 

Identify new materials earlier on to begin the 
scale-up as soon as possible

Identify the strength and weakness of materials 
during the design process



Computational tools and digital data for accelerating 
materials innovation

20 years from the laboratory to the widespread adoption

Reducing the time and the costs of material discovery and 
deployment by computational tools and digital data



Ab initio calculations have become ubiquitous in material science 

ü availability of robust computer programs
ü increase of high performance computing (HPC)
ü appearance of curated materials databases

Materials design by high throughput calculations 

Solid 
interfaces
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Modeling materials function

Simulate materials with microscopic 
resolution in operando conditions

To improve materials 
functioning

Trial and error 
approach

Understand the 
microscopic mechanisms 

that govern material 
func8oning



Simulate materials with microscopic
resolu8on in operando condi8ons

To improve materials 
func8oning

Trial and error 
approach

Understand the 
microscopic mechanisms 

that govern material 
behavior

atomistic

Molecular
Dynamics

Modeling materials function



Molecular Dynamics (MD)

Impose the working condi2ons,  
Temperature, Pressure, External forces..

Solve the equa2on of mo2on for each 
atom in the system

a = F/m
F = - ∇E(R)

E(R1, R2, …RN) interac2on energy of the 
atoms

Pressure



E(R1, R2, …RN)

H 𝚿 = E 𝚿
solving the quantum mechanical 

equa2ons for the system electrons
☺ High accuracy

☹ High computa2onal cost

Ab initio MD
E = Sij v(rij)

E sum of parametric poten8als that 
mimic the effects of electrons
☺ High simula2on efficiency
☹ Ques2onable accuracy

Classical MD

E is the output layer of a neural network 
trained with ab ini&o data

☺ High accuracy
☺ High simula2on efficiency

Machine Learning MD
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• from the Greek word τρίβω meaning rubbing, literally tribology is the 
“science of rubbing”

• dictionaries define tribology as the science and technology of 
interacting surfaces in relative motion 

• tribology includes the study of friction, wear and lubrication

• understanding these phenomena requires knowledge from physics, 
chemistry, mechanics, materials science. Tribology is a truly 
interdisciplinary science.

• the word tribology is recent, it was coined by the Jost committee in 
1966, but the interest in tribology is much older

Tribology

https://en.wiktionary.org/wiki/%CF%84%CF%81%CE%AF%CE%B2%CF%89


the transportation of 
stone blocks and 
monuments required 
the know-how of 
friction and lubricants

records show the use wheel from 3500 BC: our ancestors 
were concerned with reducing friction in sliding motion

interest in tribology older than recorded hystory

during and after the Roman empire tribology principles were 
mostly used to design war machinery and fortification

the first recorded
tribologist (2000 BC)
is poring a liquid,
most likely water, into the 
path



• Da Vinci laws 200 years before Newton even defined what a force is 

• his work had no influence on subsequent studies, because his notes 
remained unpublished for hundred of years

Leonardo da Vinci: a precursor 

Leonardo da Vinci was the first to study friction 
systematically
two phenomenological laws of friction:

1. if the load of an object is doubled, its friction 
will also double

2. the areas in contact have no effect on friction
Da Vinci 
1452-1519



in 1699 Amontons rediscovered the two 
basic rules of friction:
1. F = µ FN Amontons’ law
2. F independent from the contact area

classical friction laws

Coulomb (1785) in the Theorie des machines 
simples made a distinction between static and 
kinetic friction

3. F=a+b·log(v) in the first hours of motion, then 
the friction force is independent from the sliding 
velocityCoulomb

1736-1806
4. friction due to 
interlocking of 
asperities

Amontons
1663-1705



For several centuries scientists believed that friction was
due to the roughness. Geometrical hypothesis of friction.

real area of contact

Desanguliers (1734) first proposed that adhesion as a key
element in the friction process. Tribologists rejected the idea
as it appeared to contradict the independence on the contact
area

Bowden 
1903-1968

Tabor 1913-
2005

Contradiction cleared up by the
introduction of the concept of
the real area of contact (1950)

"putting two solids together is 
rather like turning Switzerland 
upside down and standing it on 
Austria – their area of intimate 
contact will be small”



asperity contact

real area of contact 
made up of a large 
number of small 
regions of contact, 
asperities or junctions

Ar = S Ai
Strength of materials

Ar = FN/tY

tY Yield strength: the maximum 
resistance to plastic deformation

Ar increases with FN until the real area
of contact is just sufficient to support
the load. For plastic contacts:



adhesion theory of friction

Bowden and Tabor proposed that the friction force is necessary
to overcome adhesion at asperity contacts

F due to adhesion F = ts Ar

ts shear strength: maximum resistance to sliding

F = ts Ar = ts/tY FN, µ = ts/tY

consistent with the two Amontons laws…

…however things are more complicated:

• tY reduced by the shear force
• ts can depend on the contact pressure ts = t0 + a p
• for elastic contacts F ˜ (FN)2/3

• Archard (1953) load-dependent number of asperities in
contact -> no contradiction with the Amontons 1st law



nanotribology: the renaissance of friction

No progresses in the understanding of friction until ’80,
when an exciting era of renewed interest in tribology has
started. The fueling factors are:

1. advent of new experimental techniques that allow to
probe interfacial properties with atomic resolution

1986, Nobel Prize in Physics for 
scanning tunneling microscopy (STM)

Gerd Binnig Heinrich Rohrer



2.5 x 2.5 nm simultaneous 
topographic and friction 
image of HOPG. 

stick-slip



2. advances in computational methods and computer
power.
Atomistic simulations, molecular dynamics, to model
the asperity during sliding:

Areal = Nat Aat

Y. Mo, K. T. Turner 
and I. Szlufarska, 
Nature 457, 1116 
(2009) 

The surface roughness produced by 
discrete atoms leads to dramatic 
deviations from continuum theory.

B. Laun and M. O. Robbins, Nature 
435, 929 (2005) 



3. Nanotechnology

miniaturized devices 
with moving 
components, with 
high surface/volume 
ratio suffer problems 
of adhesion and 
friction

Micro-, nanoelectromechanical
systems (MEMS & NEMS) 

4. Energy saving

approximately 1/3 of the world’s energy is lost in frictional 
processes



• Friction and wear cause massive 

energy and environmental costs

Advancing the 

technologies to 

reduce friction:

Materials

CO2 reduction

energy efficiency

planet & human health

10% less friction in cars =  fuel saving (1011 lt/yr) & less CO2 emissions (1011 Kg/yr)         

K. Holmberg and A. Erdemir, FME Transactions 43, 181 (2015)

Impact of tribology on energy and environment



• Simulations can open a window on the 

sliding buried interface 

• Quantum mechanics essential to 

accurately describe asperity adhesion 

and tribochemical reactions at nanosized 

contacts

Ab initio MD to open a window on the buried sliding interface



• Simulations can open a window on the 

sliding buried interface 

• Quantum mechanics essential to 

accurately describe asperity adhesion 

and tribochemical reactions at nanosized 

contacts

ü Boundary 

lubrication:

“tribofilms” 

formed in situ by 

tribochemical 

reactions

ü Solid lubrication:

surface covered                 

by inert layers or 

thin films 

DLC

Ab initio MD to open a window on the buried sliding interface
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TRIBCHEM for high throughput calculations of solid interfaces

G. Losi, O. Chehaimi, and M.C. Righi,
Journal of Chemical Theory and Computation (2023)

New release coming soon!



work of adhesion

energy per unit area required to 
separate two surfaces from contact

Eadh= (E12 – E1 - E2)/A

stacking fault energy surface

potential energy surface (PES) for the 
sliding interface Eadh(x,y)

ideal shear strength

maximum restoring force

t = max | - Eadh (x,y) |

1

2

1

2

1
2

1
2

D
G. Zilibo, and M. C. Righi, 
Langmuir 27, 6862 (2011)

First principles calculation of adhesion and shear strength 



P. Restuccia, O. Chehaimi, G. Losi, M. Marsili and M.C. Righi
ACS Advanced Materials Interfaces 15, 19624 (2023)

Database for the adhesion of metallic interfaces



The sure independent screening and sparsifying operator (SISSO): 
- extracts effecNve materials descriptors out of a number of possibly correlated features
- idenNfies an analyNcal equaNon able to describe the descriptor relaNonship                                               

Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, and L. M. Ghiringhelli, Phys. Rev. Materials 2, 083802 (2018)

Screened descriptors:
e1,2 cohesive energy,  K1,2 bulk modulus, g1,2 surface energy, r1,2 atom density at surf., (e1-e2) electronegaNvity difference
their arithmeNc (AM) and geometric (GM) averages

P. Restuccia, O. Chehaimi, G. Losi, M. Marsili and M.C. Righi, ACS Advanced Materials Interfaces 15, 19624 (2023)

adhesion of metallic interfaces predicted by ML



G. FaK, P. Restuccia, C. Calandra and M. C. Righi
J. Phys. Chem. C 122, 28105 (2018)

Effects of surface chemical modifications on interfacial adhesion



coverage

• P, S and in particular F are the strongest adhesion reducers 

• B and C and sometimes N are the adhesion enhancers 

E. Poli, M. Cutini, M. A. Nosir, O. Chehaimi and M. C. Righi, Applied Surface Science (2024) 

E
adh

esion
(J/

m
2)

Effects of surface chemical modifications on metal/metal



2

• B and N act as adhesion enhancers à adhesion increasing of 172% and 33%, respectively
• S makes the Cu surface completely inert à adhesion reduction of 80%

E. Damiani, M. Marsili and M. C. Righi, to be published (2024) 

Effects of surface chemical modifications on covalent/metall
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diamond like carbon (DLC) 
used in automotive 
and racing to coat 
valves and part of 
the piston

Silicon dopants 
increase the surface 
hydrophilicity and 
reduce friction

Designing coatings



2D materials formed in situ by mechanochemistry



• Y. Long, A. Pacini, M. Ferrario, N. Van Tran, S. Peeters, B. Thiebaut, S. Loehlé, J.M. Martin, M.C. Righi, and M.I. De Barros 
Bouchet, Graphene-induced superlubricity through antiviral hypericin in glycerol. A new concept for green lubrication, in printing 
Carbon (2024)

• S. Peeters, G. Losi, S. Loehlé and M.C. Righi, Aromatic molecules as sustainable lubricants explored by ab initio simulations, 
Carbon 203, 717 (2023).

2D materials formed in situ by mechanochemistry

https://www.sciencedirect.com/science/article/abs/pii/S000862232200999X?via%3Dihub


hydrodynamic 
lubrication

boundary 
lubrication

Extreme pressure

Key elements for extreme-pressure
additives are sulfur and phosphorus

Limits have been imposed due to their
harmful effect on the environment

Microscopic understanding is essential to
design new compounds

Designing lubricant additives



Machine learning (ML) interatomic potentials

[M. Pinheiro, F. Ge, N. Ferré, P. O. Dral and M. Barba8, Chem. Sci., 12, 14396 (2021) 

describe atomic interactions with the accuracy of ab initio MD; 

simulate system evoluJon with the efficiency of classical MD;

Accuracy vs efficiency dilemma: 

Ab iniJo data are used to fit or to train the interatomic 
potenJals used in MD 



Machine learning (ML) interatomic potentials

[M. Pinheiro, F. Ge, N. Ferré, P. O. Dral and M. Barbatti, Chem. Sci., 12, 14396 (2021) 

accuracy vs efficiency dilemma: 

DeePMD-kit

• L. Zhang, J. Han, H. Wang, R. Car, 
and W. E, 

Phys. Rev. Lett. 120, 143001 (2018)

• Han Wang, Linfeng Zhang, Jiequn
Han, and Weinan E. 

Comp. Phys. Com. 228, 178 (2018).

• J. Zeng et al. J. Chem. Phys., 159, 
054801 (2023).

Describe atomic interacJons with the accuracy of ab iniJo MD; 

Simulate system dynamics with the efficiency of classical MD;

Deep learning 
models based on 
convoluJonal NN



DeePMD: method

Train the NN by minimizing the loss function:

Neural Network

Minimize the loss funcNon adjusNng the NN parameters

Train the Neural Network 
with ab initio data

Descriptors define the local atomic enviroment of each 
atom within a cutoff distance

Descriptors are in-layer of a NN which has as out-layer the 
local atomic energy. 

The total energy of the system configuraNon then 
obtained by summing up all the local energies.



NN is an interpolator: unphysical results can be obtained if not well trained !

NN it produces a reliable dynamics when the systems evolves in regions of the 
configura8on space sampled during the training

Known
configuraNon space

Unknown
configuration space in poorly explored 

regions
ML-MD becomes 

unstable 
producing unphysical

results 

In the tribological systems the configura8on space can vary a lot.
In these systems a straighJorward use of AIMD is not not sufficient



Active learning

Train 4 models from the same data set

ML-MD with one NN to generate configura4ons, energy, forces

If the devia4on is greater than a threshold 
the configura4on is selected to enlarge the 
dataset

Ab ini4o calcula4ons of energy and forces 
for selected candidates 
Dataset enlarged

Train 4 NNs with the new dataset.
Repeat the procedure until no candidates are found

ü Converged 

Dp-gen package coupled with Vasp

Yuzhi Zhang, Haidi Wang, Weijie Chen, 
Jinzhe Zeng, Linfeng Zhang, Han Wang, 
and Weinan E, Computer Physics 
CommunicaNons, 107206 (2020).

Calculate maximum force deviation produced by the four NN

Smart ConfiguraNon Sampling (SCS) 
sodware developed by our group and 
coupled with QE

A. Pacini, M. Ferrario, S. Loehlè, M.C. Righi, 
in prinNng The Eouropean Physical Journal 
Plus (2024)

the atomic configuraNons used for the training are generated by the ML-MD 
itself, which reduces a lot the exploraNon Nme with respect to AIMD.

An ini4al dataset is used to train four NN



NN potential for Gallate molecules at sling iron interfaces

Easily accessible 

Eco-friendly

High accuracy needed in 
DFT for training NN 
involving iron

PG BG OG LG

Anti-Oxidant

A. Pacini, M. Ferrario, S. Loehlè, M.C. Righi, 
ComputaNonal Materials Today 1, 100005 
(2024)



Measured friction and wear depend on the chain length 

Tribological experiments by M. I. De Barros Bouchet and J. M. Martin and at LTDS

à The longer the chain, the lower the COF and wear



• Gallates adsorpEon considering different orientaEons and coverages.
• DFT calculaEons using VASP package, projector-augmented wave (PAW) method, spin-polarized 

calculations, cutoff energy to 450 eV, GGA-PBE funcEonal, and vdw-D2 correcEons.
• AdsorpEon energy: Eads = Etotal – EBG – EFe

14.20 Å

12
.0

4 
 Å

4 Fe layers

Fe(110) surface
30 atoms peer layer,

Slabs of 4 layers

Parallel orientaPon
4 iniPal structures

Perpendicular orientation
4 initial structures

DFT calculations: Adsorption on Fe(110) surface



Results on molecular adsorp0on

(a)

(b)

(c)

(d)
(e) (f)

2 mol/cell 3 mol/cell 4 mol/cell 5 mol/cell 6 mol/cell



• Ini2al data: completely from AIMD
• 5 systems with different densi2es, chemical components, and temperatures
• AIMD simula2ons at 300, 500, 1000, and 3000 K

Data for training the initial NN 

Bulk Fe Gallate moleculesFe surface Molecules on surface Molecules at the tribo
interface

NVE

LOAD

v

FIXED

NVT

NVT



From DFT to NN and MD simulations
Ac#ve learning and Tes#ng MD – production run

Fe interf. + 6 molecules
(420 atoms)

Fe interf. + 72 molecules
(6480 atoms)

• 0.2 ns equilibration at T = 300 K followed by  1 ns of sliding
• Five different loads applied: 0.5 Gpa,  1.0 Gpa, 1.5 Gpa, 2.0 GPa, 2.5 Gpa
• Three different coverages: 100%, 66%, 50%
• Four different molecules: PG, BG, OG, LG



100% coverage, 2GPa
PG BG

OG
LG



66% coverage
PG

OG

PG

OG

50% coverage



Effect of chain length
explained

à The longer the chain, the higher the interfacial separation, the lower the friction force.

PG BG OG LG

100% coverage 66% coverage



Comparison with ReaxFF
ReaxFF NN  

ReaxFF  potenPal:  
• Y.K. Shin, H. Kwak, A.V. Vasenkov, D. Sengupta and A.C.T. van Duin ACS Catalysis, 2015, 5 (12), pp 7226-7236
• (Fe parameters idenKcal to  M. Aryanpour, van Duin and Kubicki, J Phys Chem A, 2015, 114, 6298-6307 )
• [QEQ charge equilibraKon (Rappe & Goddard) following Aktulga, Fogarty, Pandit, Grama, Parallel CompuKng, 2012, 38, 245-259]

28BG  at 0.5 GPa, 300 K

http://dx.doi.org/10.1021/acscatal.5b01766


The effect of chain length not captured by ReaxFF

NN
Sliding, 1 Gpa, 100 ps

Reax FF
Sliding, 1 Gpa, 100 ps

• Reaxff does not allow H detachment and molecular docking to the substrate
• RelaEve moEon of the molecules to the substrate
• No effect of chain length



1. Tribochemistry of silica-diamond interface
• Adhesion, Friction and Tribochemical reactions at the Diamond-

Silica Interface, Carbon 203, 601 (2023)
• Nanotribological Properties of Oxidized Diamond/Silica Interfaces: 

Insights into the Atomistic Mechanisms of Wear and Friction by Ab 
Initio Molecular Dynamics Simulations, ACS Applied Nano 
Materials 6, 16674 (2023)

3. Adsorption and dissociation of H2, H2O and O2 on diamond
• Ab ini&o insights into the interac&on mechanisms between H2, H2O, and O2 

molecules with diamond surfaces, Carbon 199, 497 (2022)
• Tuning the adsorpEon of H2O, H2 and O2 molecules on diamond surfaces by B-

doping, Surfaces and Interfaces 46, 104105 (2024)

2. Atomistic mechanisms of diamond wear
• Atomis&c Wear Mechanisms in Diamond: Effects of Surface Orienta&on, 

Stress, and Interac&on with Adsorbed Molecules, Langmuir 39, 14396 (2023)

Ab initio studies on diamond– silica interfaces



Active learning  with SCS (ongoing)
We use our in-house developed workflow, Smart Configura0on Sampling (SCS) to perform acJve learning

StarNng dataset

∼2000 ab ini&o
configuraPons

Final dataset

∼2500 ab ini&o
configuraPons (on-going)

Molecules

Silica Graphite

Diamond

Molecules
Silica Graphite Diamond

Silica-diamond interfaces



Effects of diamond orientation (on-going)

Calculated surface energies



ML-MD: effects of diamond orientation (on-going) 4800 atoms, surf area 0.25 nm2

𝐒𝐢𝐦𝐮𝐥𝐚𝐭𝐞𝐝	𝐭𝐢𝐦𝐞	1 ns
T= 300K, v= 50 m/s, Load 1 GPaC(110)

R-C(111)C(001)



ML-MD of a sliding asperity (on-going)

10850 atoms
𝐒𝐢𝐦𝐮𝐥𝐚𝐭𝐞𝐝	𝐭𝐢𝐦𝐞	𝟎, 𝟓 ns/day
Tip surface C(110)
T= 300K, v= 1 m/s, Load 400 MPa



• Accurate Interatomic PotenJals can be obtained by an AcJve Learning approach.

• We developed so[ware, SCS, which couples DeeP-MD, LAMMPS and Quantum Espresso 
for the acJve learning training of Neural Networks

• By means of ML-MD we were able to simulate key tribological systems, which are 
impossible to simulate ab ini0o

• Self assembled monolayers of large molecules

• AddiJves included in liquid media

• In silico AFM experiments

Conclusions



Simulating what happens in a reactor

EU Project “STructured unconventional reactors for CO2-free 
Methane catalytic cracking” (STORMING)

EUROHPC-JU 20 M core hours 
grant on Leonardo



Mauro Ferrario Huong Ta Thi Thuy Stefanos Giaremis Ma\eo Vezzelli
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