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The questions and the data

The central dogma
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Where does variability come to play?
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The questions and the data

What is sequencing?

@ Sequencing: (chemical or otherwise) procedure for reading the
sequence of constituents of a stretch of DNA (or a protein)

o IMPORTANT 1: all DNA sequencing happens in short chunks
(from a few tens to a few tens of thousands bp)

e IMPORTANT 2: mistakes are possible (depending on the
technology) but quality controls available (Phred scores)

o IMPORTANT 3: some sequences are easier to sequence
(biases in the data)
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The questions and the data

More than Moore

Cost per Raw Megabase of DNA Sequence
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The questions and the data

Now sequencing is easier?

Major technical advances + massive parallelisation, technology
started coming online around 2008. Throughput (most recent
versions) in the region 10°Mb/hr.
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The questions and the data

Sequencing everywhere
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@ NGS can be "prefaced” by any biochemical treatment

o IMPORTANT: when doing that biases are often introduced/
becomes unclear how to compare samples
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The questions and the data

scRNA-seq

Single Cell RNA Sequencing Workflow
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Can do 100K cells in single experiment. High dropout rate, huge

variability in coverage. Dominant technology now.
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Problems in single-cell 'omics

What single-cell 'omics look like

@ For each cell, we normally obtain ~ 10K RNA fragments
mapped to the transcriptome — most genes are missed in
every single cell

@ We apply some pre-filtering criterion, e.g. discard genes not
measured in at least 50% of cells, cells with fewer than 100
non-zero genes

@ We end up with a gene expression matrix typically ~ 6K rows
(genes) and a few thousands columns (cells)
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Problems in single-cell 'omics

single-cell "omics look like

@ For each cell, we normally obtain ~ 10K RNA fragments
mapped to the transcriptome — most genes are missed in
every single cell

@ We apply some pre-filtering criterion, e.g. discard genes not
measured in at least 50% of cells, cells with fewer than 100
non-zero genes

@ We end up with a gene expression matrix typically ~ 6K rows
(genes) and a few thousands columns (cells)

@ A large fraction of the entries are zero, either genuine or
dropout
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Problems in single-cell 'omics

The general problem of Data Science

@ We have noisy, high dimensional data

@ Several factors contribute to the variance we observe in the
data: experimental noise, intrinsic stochasticity, physiological
processes, disease processes
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Problems in single-cell 'omics

The general problem of Data Science

@ We have noisy, high dimensional data

@ Several factors contribute to the variance we observe in the
data: experimental noise, intrinsic stochasticity, physiological
processes, disease processes

@ ALL of Data Science/ Al consists in partitioning this variance
and using this (implicit or explicit) decomposition for
predictions

Sanguinetti ML for scRNA-seq



Problems in single-cell 'omics

The general problem of Data Science

@ We have noisy, high dimensional data

@ Several factors contribute to the variance we observe in the
data: experimental noise, intrinsic stochasticity, physiological
processes, disease processes

@ ALL of Data Science/ Al consists in partitioning this variance
and using this (implicit or explicit) decomposition for
predictions

@ The difference lies in the assumptions about what is an
important direction of variation
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Problems in single-cell 'omics

Problem 1: Visualisation/ dimensionality reduction

@ Assumption: Only few degrees of freedom exist in the data
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Problems in single-cell 'omics

Problem 1: Visualisation/ dimensionality reduction

@ Assumption: Only few degrees of freedom exist in the data

e Dominant tool: UMAP (Uniform Manifold Approximation
(Mclnnes et al 2018)

@ Creates a nearest neighbour graph in gene space, then tries to
find points in low D such that the graph distances are
preserved

@ Usually prefaced by a linear dimensionality reduction step
(PCA)

@ Not easy to understand what UMAP directions mean
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Problems in single-cell 'omics

Sub-problem 2: Pseudo-time

@ Assumption: the major direction of variation is along a
developmental direction

e E.g., cells are collectively following a dynamical process
(development, differentiation, drug response) but individually
they are at slightly different stages of the process
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Problems in single-cell 'omics

Sub-problem 2: Pseudo-time

@ Assumption: the major direction of variation is along a
developmental direction

e E.g., cells are collectively following a dynamical process
(development, differentiation, drug response) but individually
they are at slightly different stages of the process

@ Dimensionality reduction to 1D, either VAE or graph-based
(e.g. Diffusion Maps Haghverdi 2016)

@ Output: (partial) ordering of cells, identification of branching
events
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Problems in single-cell 'omics

Problem 3: clustering

@ Assumption: the major variation is caused by the existence of
distinct groups of cells which are transcriptomically
homogeneous

@ Solution: clustering algorithms of various flavours
o Often prefaced by dimensionality reduction

@ Generally multiple algorithms to reduce noise (e.g. SC3,
Kiselev et al 2017)

Sanguinetti ML for scRNA-seq



Problems in single-cell 'omics

Software packages
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NeuroVelo: dynamics from scRNA-seq

Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process
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NeuroVelo: dynamics from scRNA-seq

Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process

e IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels

dxy dx.
dt:a_ﬁxu 75:/8XU_’YXS
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NeuroVelo: dynamics from scRNA-seq

Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process

e IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels
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NeuroVelo: dynamics from scRNA-seq

Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process

e IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels
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NeuroVelo: dynamics from scRNA-seq

Uncovering dynamics: RNA velocity

@ scRNA-seq is destructive — static snapshots from a dynamic
process
e IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels
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NeuroVelo: dynamics from scRNA-seq

Problems and solutions

@ Splicing signal is very noisy in single cells

@ No reason why timescale of splicing should be the relevant one
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NeuroVelo: dynamics from scRNA-seq

Problems and solutions

@ Splicing signal is very noisy in single cells
@ No reason why timescale of splicing should be the relevant one

e IDEA: Underlying (low dimensional) nonlinear dynamical
system should govern long-term evolution of cells’
transcriptomes

@ Spliced/ unspliced ratio gives a noisy measurement of
instantaneous rate of change
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NeuroVelo: dynamics from scRNA-seq

Problems and solutions

@ Splicing signal is very noisy in single cells
@ No reason why timescale of splicing should be the relevant one

e IDEA: Underlying (low dimensional) nonlinear dynamical
system should govern long-term evolution of cells’
transcriptomes

@ Spliced/ unspliced ratio gives a noisy measurement of
instantaneous rate of change

@ Couple the two components in the spirit of physics informed
machine learning
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NeuroVelo: dynamics from scRNA-seq

Neural ODEs (Chen et al 2018)
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Autoencoding structure in time. ODE in latent space with drift
parametrised by a NN. Efficient evaluation of gradients by
Pontryagin adjoint.
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NeuroVelo: dynamics from scRNA-seq

A (somewhat contrived) example

EHADRESSEEAARRNREEE
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NeuroVelo: dynamics from scRNA-seq

A (somewhat contrived) example

EHADRESSEEAARRNREEE

Latent trajectories
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PCA-1
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NeuroVelo: dynamics from scRNA-seq

NeuroVelo (Idris Kouadri Boudjelthia)

(Input Training Output )

Shared
Linear
Encoder

Linear

Decoder

L = MSE(X, X) + MSE(2s, 8z, — 72s)
Because the encoding/ decoding is linear, the RNA velocity
equations apply also in latent space. Notice we need no

assumptions on the transcription rate function.
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NeuroVelo: dynamics from scRNA-seq

Interpreting Neurovelo

@ NeuroVelo learns a low-dimensional nonlinear dynamical
system

@ Principal dynamics are given (locally) by the eigenvectors of
the Jacobian matrix

@ These eigenvectors can be decoded linearly to give a ranked
list of genes

@ The decoded Jacobian matrix gives itself a description of the
network of interactions between genes

@ Robustness is ensured by computing a stability index w.r.t.
multiple initializations
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NeuroVelo: dynamics from scRNA-seq

Interpreting Neurovelo cont'd

@ Noise genes should have
ranks uniformly distributed
+ Gaussian average

@ Relevant genes should have
consistently high ranks

@ Expect bimodal distribution

0 1000 2000 3000 4000 5000 6000
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NeuroVelo: dynamics from scRNA-seq

NeuroVelo on HBM
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NeuroVelo: dynamics from scRNA-seq

NeuroVelo on CRC
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NeuroVelo: dynamics from scRNA-seq

Validating NeuroVelo: enrichment

AKT->MEK resistant
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NeuroVelo: dynamics from scRNA-seq

Validating NeuroVelo: multiome
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Conclusions and perspectives

Conclusions

@ Single-cell 'omics provide a potential goldmine, but you need
the right pick-axe

@ Must go beyond simply plotting cells in latent space

@ Combining interpretability and nonlinearity is still a major
challenge

@ Interpretability is key to progress to the clinic!
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Conclusions and perspectives
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Conclusions and perspectives
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