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The central dogma

Where does variability come to play?
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What is sequencing?

Sequencing: (chemical or otherwise) procedure for reading the
sequence of constituents of a stretch of DNA (or a protein)

IMPORTANT 1: all DNA sequencing happens in short chunks
(from a few tens to a few tens of thousands bp)

IMPORTANT 2: mistakes are possible (depending on the
technology) but quality controls available (Phred scores)

IMPORTANT 3: some sequences are easier to sequence
(biases in the data)
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More than Moore

Source: National Human Genome Research Institute
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Now sequencing is easier?

Major technical advances + massive parallelisation, technology
started coming online around 2008. Throughput (most recent
versions) in the region 105Mb/hr.
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Sequencing everywhere

NGS can be ”prefaced” by any biochemical treatment

IMPORTANT: when doing that biases are often introduced/
becomes unclear how to compare samples
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scRNA-seq

Can do 100K cells in single experiment. High dropout rate, huge
variability in coverage. Dominant technology now.
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What single-cell ’omics look like

For each cell, we normally obtain ∼ 10K RNA fragments
mapped to the transcriptome → most genes are missed in
every single cell

We apply some pre-filtering criterion, e.g. discard genes not
measured in at least 50% of cells, cells with fewer than 100
non-zero genes

We end up with a gene expression matrix typically ∼ 6K rows
(genes) and a few thousands columns (cells)

A large fraction of the entries are zero, either genuine or
dropout
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The general problem of Data Science

We have noisy, high dimensional data

Several factors contribute to the variance we observe in the
data: experimental noise, intrinsic stochasticity, physiological
processes, disease processes

ALL of Data Science/ AI consists in partitioning this variance
and using this (implicit or explicit) decomposition for
predictions

The difference lies in the assumptions about what is an
important direction of variation
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Problem 1: Visualisation/ dimensionality reduction

Assumption: Only few degrees of freedom exist in the data

Dominant tool: UMAP (Uniform Manifold Approximation
(McInnes et al 2018)

Creates a nearest neighbour graph in gene space, then tries to
find points in low D such that the graph distances are
preserved

Usually prefaced by a linear dimensionality reduction step
(PCA)

Not easy to understand what UMAP directions mean
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Sub-problem 2: Pseudo-time

Assumption: the major direction of variation is along a
developmental direction

E.g., cells are collectively following a dynamical process
(development, differentiation, drug response) but individually
they are at slightly different stages of the process

Dimensionality reduction to 1D, either VAE or graph-based
(e.g. Diffusion Maps Haghverdi 2016)

Output: (partial) ordering of cells, identification of branching
events
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Problem 3: clustering

Assumption: the major variation is caused by the existence of
distinct groups of cells which are transcriptomically
homogeneous

Solution: clustering algorithms of various flavours

Often prefaced by dimensionality reduction

Generally multiple algorithms to reduce noise (e.g. SC3,
Kiselev et al 2017)
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Software packages

Both R and Python well used
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Uncovering dynamics: RNA velocity

scRNA-seq is destructive → static snapshots from a dynamic
process

IDEA (La Manno et al, 2018): use spliced/ unspliced reads to
derive rate of change of RNA levels

dxu
dt

= α− βxu
dxs
dt

= βxu − γxs
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Problems and solutions

Splicing signal is very noisy in single cells

No reason why timescale of splicing should be the relevant one

IDEA: Underlying (low dimensional) nonlinear dynamical
system should govern long-term evolution of cells’
transcriptomes

Spliced/ unspliced ratio gives a noisy measurement of
instantaneous rate of change

Couple the two components in the spirit of physics informed
machine learning
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Neural ODEs (Chen et al 2018)

Autoencoding structure in time. ODE in latent space with drift
parametrised by a NN. Efficient evaluation of gradients by
Pontryagin adjoint.
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A (somewhat contrived) example
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NeuroVelo (Idris Kouadri Boudjelthia)

L = MSE(X , X̂ ) +MSE(żs , βzu − γzs)

Because the encoding/ decoding is linear, the RNA velocity
equations apply also in latent space. Notice we need no
assumptions on the transcription rate function.
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Interpreting Neurovelo

NeuroVelo learns a low-dimensional nonlinear dynamical
system

Principal dynamics are given (locally) by the eigenvectors of
the Jacobian matrix

These eigenvectors can be decoded linearly to give a ranked
list of genes

The decoded Jacobian matrix gives itself a description of the
network of interactions between genes

Robustness is ensured by computing a stability index w.r.t.
multiple initializations
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Interpreting Neurovelo cont’d

Noise genes should have
ranks uniformly distributed
← Gaussian average

Relevant genes should have
consistently high ranks

Expect bimodal distribution
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NeuroVelo on HBM
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NeuroVelo on CRC
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Validating NeuroVelo: enrichment
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Validating NeuroVelo: multiome
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Conclusions

Single-cell ’omics provide a potential goldmine, but you need
the right pick-axe

Must go beyond simply plotting cells in latent space

Combining interpretability and nonlinearity is still a major
challenge

Interpretability is key to progress to the clinic!
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Thanks!
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