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Learning objectives

* To understand dynamic nuclear polarization and sodium magnetic
resonance imaging, and their potential uses

* To appreciate the challenges and opportunities involved in
metabolic MRI
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MRI signal

Nuclear Magnetic Resonance (NMR) is a physics ‘phenomenon’.
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Conventional MRI




MRI (11.7T)

High resolution
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Metabolic MRI

* 'TH Magnetic Resonance Spectroscopy
 Signal is based on static pools of 'H labelled metabolites
* Signal <<< less than water

* Requirements to suppress background signals from fat/water
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Exogeneous tracer MRI
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Imaging cerebral metabolism

Low contrast + metabolic information Low SNR + spatial coverage




Hyperpolarisation

Remember.... Signal in MRI is proportional to:

Concentration of NMR active nucleus, gyromagnetic ratio, field strength, sample
temperature
N, hyB,

N - P

)

Carbon-13 is 1% natural abundance, so it is very difficult to detect!
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Hyperpolarisation by DNP

N, hyB,
TR A

) How can we beat Boltzmann?

Electrons + microwaves

Huge, transient, increase in signal —decays with flip angle and T,



Hyperpolarised 'SC MRI

Pyruvate + '3C atom
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But it decays...
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To consider when acquiring signal..

Spectral information Spatialinformation Temporal
information

T,/T, of the isotopic label

Concentration Perfusion Reaction speed



Pyruvate

Q
-
©
-—
Q
©
-

'H FLAIR Bicarbonate

[1] Hyperpolarized 13 C MRI data acquisition and analysis in prostate and brain at
University of California San Francisco, NMR in Biomed, 2020
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There are some confounders...
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Example heart metabolic imaging

. TN ™ ;

[1] Rapid multislice imaging of hyperpolarized 13C pyruvate and bicarbonate in the

heart, MRM, 2010



f Model

Kinetic Mapping — Types o
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The potential...

Axial T, image #% T, image + RH spectral grid T, image + LH spectral grid




The future...

Tracer Name Potential Use

[1-13C] Pyruvate

LDH/PDH Activity

[2-13C] Pyruvate

TCA Intermediates

[1-13C] lactate

Lactate metabolism

[2,4 — 13C] Fumarate

Cellular Necrosis

[1-13C] Bicarbonate

pH Mapping

[1-13C] Urea

Perfusion




Sodium - why should we be interested?

* Sodium is a key ion in multiple biological processes

* The homeostatic regulation of sodium (intra vs extracellular) is
heavily dependent on ATP.

* An alteration in cellular energetics is a common feature of a
number of pathologies — from cancer to neurology and beyond.
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What if we have more than spin 727
The quadrupolar effect for sodium

Increase in energy states leads to a two-

: l component state for T,*
I
I
’l" * Onecomponentis fast (~3ms) and the
/ other slow (~20ms)
_l
‘“ * This can be readily measured using
\\\ ‘ multi-echo approaches fitting the
‘\ - following equation:
\
LI TE TE )

Aexp(_TZ*'f ast) + Bexp(_TZ*,Slow



ow can we travel faster around k-space?

KZ




Example total sodium imaging




Example total sodium imaging




What are those tubes?

* MRl signal is inherently non-quantitative.

Ratio MR Signal Intensities (23Na/1H)

* Signalis proportionalto 1% T,, My, Temperature
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 But what if we put calibration standards that have similar
relaxation properties to tissue into the field of view?
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What if we want to estimate intracellular

sodium?

Fluid sodium

A RF Rectangular pulse - Tl = 29 ms
50 :
0 _rleal((i;)) .
= ==«iMa
= 30 et
- 20|
)
10|
GO 5 10 15 20 25 30 35 40 45 50
Time (ms)

Magnetization evolution for 'I'1 =43 ms and T; =20 ms

Magnetization

0 5 10 15 20 25 30 35 40 45 50
Time (ms)

Cartilage sodium

B RF Rectangular pulse - Tl =29 ms
50 - . . =
40[ —Real(B,)
---Imag(B
S 30 mag(8,)
~ 20|
o
10
00 5 10 15 20 25 30 35 40 45 50

Time (ms)

Magnetization evolution for T1 =26 ms and T; =5ms

c

5 M

= . —_M_ T

N - — z

= -

(]

s

o

©

= _ : _ \ : |
20 25 30 35 40 45 50

Time (ms)







Advanced MRI

Paediatric and Adult studies possible

Early therapeutic response Detecting chronic
inflammatory responses

Providing novel imaging
information for big data
analysis

Measuring cellular health



Summary

* Metabolic MRl is a powerful tool to explore beyond structural
Imaging

* There are challenges involved in implementation, acquisition, and
reconstruction of metabolic data

* A combination of physics, radiology, and clinical expertise is
required to ensure studies are well run
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