

Exploring advanced functional imaging

Dr James Grist 09/07/2025

Learning objectives

- To understand dynamic nuclear polarization and sodium magnetic resonance imaging, and their potential uses
- To appreciate the challenges and opportunities involved in metabolic MRI

Nuclear Magnetic Resonance (NMR) is a physics 'phenomenon'.

the field give us our signal in MRI

Conventional MRI

High resolution MRI (11.7T)

Metabolic MRI

- ¹H Magnetic Resonance Spectroscopy
- Signal is based on static pools of ¹H labelled metabolites
- Signal <<< less than water
- Requirements to suppress background signals from fat/water

¹H MRS

Exogeneous tracer MRI

Downsides Low SNR Expensive Time consuming Low spatial resolution

Imaging cerebral metabolism

Low contrast + metabolic information

Low SNR + spatial coverage

Remember.... Signal in MRI is proportional to:

Concentration of NMR active nucleus, gyromagnetic ratio, field strength, sample temperature

$$\frac{N_+}{N_-} = \exp(-\frac{\hbar\gamma B_0}{kT})$$

Carbon-13 is 1% natural abundance, so it is very difficult to detect!

Hyperpolarisation by DNP

 $\frac{N_+}{N} = \exp(-\frac{\hbar\gamma B_0}{kT})$

How can we beat Boltzmann?

Huge, transient, increase in signal – decays with flip angle and T_1

Hyperpolarised ¹³C MRI

But it decays...

To consider when acquiring signal..

Spectral information Spatial information Temporal information

 T_1/T_2^* of the isotopic label

Concentration

Perfusion

Reaction speed

Example brain metabolic imaging

[1] Hyperpolarized 13 C MRI data acquisition and analysis in prostate and brain at University of California San Francisco, NMR in Biomed, 2020

<u>There are some confounders...</u>

Example heart metabolic imaging

pyr

[1] Rapid multislice imaging of hyperpolarized 13C pyruvate and bicarbonate in the heart, MRM, 2010

Kinetic Mapping – Types of Model

AUC

TTP

Lactate

ρ

The potential...

The future...

Tracer Name	Potential Use
[1-13C] Pyruvate	LDH/PDH Activity
[2-13C] Pyruvate	TCA Intermediates
[1-13C] lactate	Lactate metabolism
[2,4 – 13C] Fumarate	Cellular Necrosis
[1-13C] Bicarbonate	pH Mapping
[1-13C] Urea	Perfusion

<u>Sodium – why should we be interested?</u>

- Sodium is a key ion in multiple biological processes
- The homeostatic regulation of sodium (intra vs extracellular) is heavily dependent on ATP.
- An alteration in cellular energetics is a common feature of a number of pathologies from cancer to neurology and beyond.

What if we have more than spin ½? The quadrupolar effect for sodium

- Increase in energy states leads to a twocomponent state for T_2^*
- One component is fast (~3ms) and the other slow (~20ms)
- This can be readily measured using multi-echo approaches fitting the following equation:

$$Aexp^{(-\frac{TE}{T2*,fast})} + Bexp^{(-\frac{TE}{T2*,slow})}$$

How can we travel faster around k-space?

Example total sodium imaging

Example total sodium imaging

What are those tubes?

• MRI signal is inherently non-quantitative.

- Signal is proportional to T_2^* , T_1 , M_0 , Temperature
- But what if we put calibration standards that have similar relaxation properties to tissue into the field of view?

What if we want to estimate intracellular sodium?

Advanced MRI

Paediatric and Adult studies possible

Early therapeutic response

Detecting chronic inflammatory responses

Measuring cellular health

Providing novel imaging information for big data analysis

- Metabolic MRI is a powerful tool to explore beyond structural imaging
- There are challenges involved in implementation, acquisition, and reconstruction of metabolic data
- A combination of physics, radiology, and clinical expertise is required to ensure studies are well run