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Systematic collection, analysis and interpretation of data

- microbial/viral genomics
- human & wild animal mobility
- opinions on online social networks & media news

Early 
warning on 
pathogens

Quantifying 
the impact 
on society 

Predicting 
possible 

scenarios

Measure the 
effectiveness 

of control 
measures

Epidemiological surveillance: integrated approach



Digital health: 
social network (Twitter) data



Twitter network analysis
A VEO partner (Prof. M Salathè EPFL) was collecting Tweets of COVID-related keywords 
(Jan-May 2020: 270M tweets ENG language) to characterize the perception and the 
discussions around the theme

Our proposal: apply a network approach to these data
Result: directed weighted network with users as nodes (22.5M) retweets as links (176M)
Hierarchical structure: 0.1% top users have >77% retweets – ROLE OF INFLUENCERS

[Durazzi, ..., Remondini Sci Rep 2021]



Community structure
15 large communities (>100k users each, 98% network size)
user info to identify country of origin

Community localization
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Figure 1.  Retweet network of a randomly sampled connected component of 1M users, colored by community. 
Node size is proportional to node out-degree. In the table, the column “S” designates the color of the super-
communities used throughout this work, “C” lists the community color in the network layout and “Name” the 
respective community name. The “Dominant category” column specifies the most abundant user category in 
the community (excluding “Other”). “Size” denotes the ratio of users in the community with respect to the total 
number of users in the network.

Figure 2.  Clustering of communities into super-communities. The heatmap shows the Z-scores (i.e. 
standardized values) for seven chosen features. The four super-communities denote the emerging clusters.



Community structure
AI analysis of tweet text to characterize main topics within 
the communities
- strong association of topics and communities
- 4 super-communities
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Time evolution: community ”ecology”
4 time windows (Jan/Feb, Mar, Apr, May: ”early” ”peak” ”late” phases of 1st

COVID-19 wave)

Stable communities over time
Inter-cluster communication decreases over time 
(community SEGREGATION, very typical of social networks)
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i.e. the weighted out-degree of super-community i, normalized by its size. The international sci-health super-
community faces an increase in average attention per user in January and stabilizes at a higher level compared to 
other super-communities until the beginning of March. After a narrow peak in March, the political super-com-
munity plateaus in April at roughly three times the attention level of national elites and international sci-health.

We then split the total attention, i.e. the sum of all weighted edges W, for each super-community i into an 
internal and external component for every weekly network:

The external component aexti  represents the attention given to super-community i from the other super-com-
munities, while the internal component ainti  quantifies self-amplification. Figure 4d shows that the external 
attention component is decreasing overall, indicating a decrease in attention between super-communities. This 
is particularly true for the international sci-health super-community, which received broad attention in the very 
beginning of the pandemic, peaking again in mid-February, and then decaying in a monotonic way until the end 
of our sampling, while the pandemic was spreading to all the countries worldwide.

Figure 4e shows that the internal attention component is increasing overall, highlighting an increased self-
amplification within the network. We observe that this increase is mostly driven by the political super-community 
and to a lesser degree by the national elites, suggesting also an increase of political polarization within the 
retweets network, at the poles of which the antagonistic political communities lie. The international sci-health 
super-community, on the other hand, decreased internal sharing of content after March. Overall, we note that 
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Figure 4.  Evolution of weekly aggregated networks by super-community, with dotted lines corresponding 
to the statistics across all users. (A) Diagram representing the networks collapsed to the super-community 
level. Edge direction represents the flow of information via retweets, i.e. from retweeted to retweeting super-
community. (B) Size of the super-communities in terms of number of users. (C) Average attention per user. 
(D) External component of the attention toward super-communities. (E) Internal component of the attention 
toward super-communities. Indicated as a and b are the first and second peak in terms of network size, as shown 
in Fig. 4b.

Network evolution: attention shift
Growing concern: increase of users talking about COVID-19
Initial phase: much "talk" in scientific community and attention to them
Scientific community loses attention over time, and political community 
activity increases
- Possibly the debate shifts from "technical" to "political"



AI approaches:
from "geno" to "pheno"



Protein sequence "embedding" in vector space

Application of text AI – NLP – to protein AA symbolic sequences:
Each protein sequence is "transformed" into an N-dim (1024) vector 
Training: reconstruct sequence estimating missing aminoacid in the sequence
Calculate sequence "distances" (different from sequence alignment)
Grammaticality score: AA probability + "immune escape" (vector distance)

VIROLOGY

Learning the language of viral evolution and escape
Brian Hie1,2, Ellen D. Zhong1,3, Bonnie Berger1,4*, Bryan Bryson2,5*

The ability for viruses to mutate and evade the human immune system and cause infection, called
viral escape, remains an obstacle to antiviral and vaccine development. Understanding the complex rules that
govern escape could inform therapeutic design. We modeled viral escape with machine learning algorithms
originally developed for human natural language. We identified escape mutations as those that preserve viral
infectivity but cause a virus to look different to the immune system, akin to word changes that preserve a
sentence’s grammaticality but change its meaning. With this approach, language models of influenza
hemagglutinin, HIV-1 envelope glycoprotein (HIV Env), and severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) Spike viral proteins can accurately predict structural escape patterns using sequence data
alone. Our study represents a promising conceptual bridge between natural language and viral evolution.

V
iral mutations that allow an infection
to escape from recognition by neutral-
izing antibodies have prevented the
development of a universal antibody-
based vaccine for influenza (1, 2) or HIV

(3) and are a concern in the development of
therapies for severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) infection
(4, 5). Escape has motivated high-throughput
experimental techniques that perform causal
escape profiling of all single-residue muta-
tions to a viral protein (1–4). Such techniques,
however, require substantial effort to profile
even a single viral strain, and testing the es-
cape potential of many (combinatorial) muta-
tions inmany viral strains remains infeasible.
Instead, we sought to train an algorithm that

learns to model escape from viral sequence
data alone. This approach is not unlike learn-
ing properties of natural language from large
text corpuses (6, 7) because languages such as
English and Japanese use sequences of words
to encode complex meanings and have com-

plex rules (for example, grammar). To escape,
a mutant virus must preserve infectivity and
evolutionary fitness—itmust obey a “grammar”
of biological rules—and the mutant must no
longer be recognized by the immune system,
which is analogous to a change in the “mean-
ing” or the “semantics” of the virus.
Currently, computational models of protein

evolution focus either on fitness (8) or on func-
tional or semantic similarity (9–11), but we
want to understand both (Fig. 1A). Rather than
developing two separate models of fitness
and function, we developed a single model
that simultaneously achieves these tasks. We
leveraged state-of-the-art machine learning al-
gorithms called language models (6, 7), which
learn the probability of a token (such as an
Englishword) given its sequence context (such
as a sentence) (Fig. 1B). Internally, the lan-
guagemodel constructs a semantic representa-
tion, or an “embedding,” for a given sequence
(6), and the output of a language model en-
codes how well a particular token fits within
the rules of the language, which we call “gram-
maticality” and can also be thought of as “syn-
tactic fitness” (supplementary text, note S2).
The same principles used to train a language
model on a sequence of English words can
train a language model on a sequence of ami-
no acids. Although immune selection occurs
on phenotypes (such as protein structures),
evolution dictates that selection is reflected
within genotypes (such as protein sequences),
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Fig. 1. Modeling viral escape requires characterizing semantic change and
grammaticality. (A) Constrained semantic change search (CSCS) for viral escape
prediction is designed to search for mutations to a viral sequence that preserve
fitness while being antigenically different. This corresponds to a mutant sequence
that is grammatical (conforms to the structure and rules of a language) but has high
semantic change with respect to the original (for example, wild type) sequence.
(B) A neural language model with a bidirectional long short-term memory (BiLSTM)

architecture was used to learn both semantics (as a hidden layer output) and
grammaticality (as the language model output). CSCS combines semantic change
and grammaticality to predict escape (12). (C) CSCS-proposed changes to a news
headline (implemented by using a neural language model trained on English news
headlines) makes large changes to the overall semantic meaning of a sentence
or to the part-of-speech structure. The semantically closest mutated sentence
according to the same model is largely synonymous with the original headline.
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which language models can leverage to learn
functional properties from sequence variation.
We hypothesize that (i) language model–

encoded semantic change corresponds to
antigenic change, (ii) language model gram-
maticality captures viral fitness, and (iii) both
high semantic change and grammaticality help
predict viral escape. Searching for mutations
with bothhigh grammaticality andhigh seman-
tic change is a task that we call constrained
semantic change search (CSCS) (Fig. 1C) (12).
Our language model implementation of CSCS
uses sequence data alone (which is easier to
obtain than structure) and requires no explicit
escape information (is completely unsupervised),
does not rely on multiple sequence alignment
(MSA) preprocessing (is “alignment-free”), and
captures global relationships across an entire
sequence (for example, because word choice
at the beginning of a sentence can influence
word choice at the end) (supplementary text,
notes S2 and S3).
We assessed the generality of our approach

across viruses by analyzing three proteins: in-
fluenza A hemagglutinin (HA), HIV-1 envelope

glycoprotein (Env), andSARS-CoV-2 spike glyco-
protein (Spike). All three are found on the viral
surface, are responsible for binding host cells,
are targeted by antibodies, and are drug targets
(1–5).We trained a separate languagemodel for
each protein using a corpus of virus-specific
amino acid sequences (12).
We initially sought to understand the se-

mantic patterns learned by our viral language
models. We therefore visualized the semantic
embeddings of each sequence in the influenza,
HIV, and coronavirus corpuses using Uniform
Manifold Approximation and Projection (UMAP)
(13). The resulting two-dimensional semantic
landscapes show clustering patterns that cor-
respond to subtype, host species, or both (Fig. 2),
suggesting that the model was able to learn
functionally meaningful patterns from raw
sequence.
We quantified these clustering patterns,

which are visually enriched for particular sub-
types or hosts, with Louvain clustering (14) to
group sequences on the basis of their semantic
embeddings (fig. S1, A to C). We then mea-
sured the clustering purity on the basis of the

percent composition of the most represented
metadata category (sequence subtype or host
species) within each cluster (12). Average clus-
ter purities for HA subtype, HA host species,
and Env subtype are 99, 96, and 95%, respec-
tively, which are comparable with or higher
than the clustering purities obtainedwithMSA-
based phylogenetic reconstruction (Fig. 2, D
and F, and fig. S1D) (12).
Within the HA landscape, clustering pat-

terns suggest interspecies transmissibility. The
sequence for 1918 H1N1 pandemic influenza
belongs to the main avian H1 cluster, which
contains sequences from the avian reservoir
for 2009 H1N1 pandemic influenza (Fig. 2C
and fig. S1, A to C). Antigenic similarity be-
tween H1 HA from 1918 and 2009, although
nearly a century apart, is well supported (15).
Within the landscape of SARS-CoV-2 Spike
and homologous proteins, clustering proximity
is consistent with the suggested zoonotic
origin of several human coronaviruses (Fig.
2G), including bat and civet for SARS-CoV-1,
camel for Middle East respiratory syndrome-
related coronavirus (MERS-CoV), and bat and
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Fig. 2. Semantic embedding landscape is antigenically meaningful. (A and
B) UMAP visualization of the high-dimensional semantic embedding landscape of
influenza HA. (C) A cluster consisting of avian sequences from the 2009 flu
season onward also contains the 1918 pandemic flu sequence, which is
consistent with their antigenic similarity (15). (D) Louvain clusters of the HA
semantic embeddings have similar purity with respect to subtype or host species

compared with phylogenetic sequence clustering (Phylo). Bar height, mean; error
bars, 95% confidence. (E and F) The HIV Env semantic landscape shows
subtype-related distributional structure and high Louvain clustering purity. Bar
height, mean; error bars, 95% confidence. (G) Sequence proximity in the
semantic landscape of coronavirus spike proteins is consistent with the possible
zoonotic origin of SARS-CoV-1, MERS-CoV, and SARS-CoV-2.
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Dimensionality reduction: clustering by host

[Hie et al., Science 2021]



MFVF…A…LHYT
MFVF…K…LHYT

………
MFVF…E…LHYT

Language based 
Deep Learning 

model

The classical paradigm is to compare protein variants through phylogenetic distances 
based on sequence alignment and overlap

transform protein sequences into vectors (metrics)
these vectors can be used for ML/data analytics applications:
clustering & dimensionality reduction (visualization)
supervised classification & regression if ground truth available.

Unsupervised 
analysis / 
clustering

Classification / 
regression

AI-based embedding



Alignment vs embedding distance

Alignment-based (phylogenetic) 
distance: ratio of sequence overlap 
(variants, gaps)

Embedding distance: mathematical 
vector distance in abstract N-d space

Embedding distance not (always) proportional to sequence 
overlap. Even a small alignment distance (eg single AA substitution) 
can lead to a large embedding distance (depending on the 
"grammaticality" of the sequence)

The classical paradigm is to compare protein variants through phylogenetic 
distances based on sequence alignment and overlap



H3N2 HA1 HI assays: starting point

Antigenic map:
measure response of different 
sera to virus variants
[Smith et al Science 305 2004]

HI (Hemagglutinin Inhibition) 
assays represented as a map 
in 2-d space

OUR AIM: reproduce 
antigenic maps from protein 
sequence alone through 
protein AI embedding

[Durazzi, Fouchier, Koopmans, Remondini Sci Rep 2025]



H3N2 HA1 domain embedding with NLP
NLP Natural Language Processing (AI text tools)
"Words" = Aminoacids
"Sentence" = Protein

Learning the language of HA1:
biLSTM Recursive Network trained on approx 40k HA1 
sequences [Hie et al., Science 371 2021]

NOTE: same results with protBERT Deep Learning model

Comparison with:
- phylogenetic protein comparison
- ML based on physicochemical AA properties



Extracting info from embedding: 
regression to ground truth

Each HA1 sequence becomes a point in 1024-d space
Is antigenic map info contained in this embedding?

projection: 1024d to 2d



Geno-to-pheno: from HA sequences to AM
Linear (ridge) regression
Train error: 0.54 a.u.
Test error: 0.92 a.u.
Same cluster structure, also 
single-AA BE92-WU95 change



Phylogenetic distance regression

1024D MDS of Hamming 
distance between protein 
sequences
+
Ridge regression

Train error: 0.83 a.u.
Test error: 1.10 a.u. 

Single AA cluster shift not 
recovered

is rarely obvious if a branch or lineage belongs
to the same or a different antigenic cluster as its
neighbors, and from the genetic map, it is not
always possible to determine where one anti-
genic cluster ends and another begins. The most
striking example is the distance between the
Sichuan 1987 (SI87) and Beijing 1989 (BE89)
clusters, which are genetically closely related
but antigenically distinct. The difficulties with an
antigenic interpretation of genetic data include the
variation in the antigenic effect of amino acid
substitutions because of the particular amino acid
substitution, the location of the substitution, or the
interaction of multiple substitutions.

Surprisingly, a single amino acid substi-
tution, N145K (32), is the only cluster-differ-
ence substitution between the SI87 and BE89
and between the Beijing 1992 (BE92) and
Wuhan 1995 (WU95) clusters. This is sur-
prising because other cluster transitions are
characterized by multiple cluster-difference
substitutions and because, on average, a sin-
gle amino acid substitution causes only 0.37
units of antigenic change. Three pieces of
evidence, however, indicate that N145K has a
large antigenic effect and, thus, alone can be
responsible for a cluster transition. First,
there are 12 pairs of strains in the dataset that
only differ by N145K, and the average anti-
genic distance between these pairs in the
antigenic map is 4.0 units (SD 1.1). In con-
trast, other amino acid substitutions at the
same position (I145S, N145S), and the same
substitution at a different position (N92K),
each resulted in less than 1 unit of antigenic

change. Second, we took a strain from the
BE92 cluster and performed experimental
site-directed mutagenesis of position 145
from N to K, and this resulted in 2.6 units of
antigenic difference. Third, there were nine
strains in the genetic map for which the ge-
netic cluster did not correspond with the an-
tigenic cluster, and N145K was responsible
for the difference. These nine strains were
interdigitated between the BE92 and WU95
clusters: Five strains from the BE92 antigenic
cluster were genetically WU95-like but
lacked the N145K substitution [seen as pink
triangles in the green WU95 genetic cluster
(Fig. 3)], and vice versa, four strains from the
WU95 antigenic cluster were genetically
BE92-like but had the N145K substitution
[shown as green circles in the pink BE92
genetic cluster (Fig. 3)]. To exclude the pos-
sibility of laboratory errors, we resequenced
and regenerated the HI data for seven of these
interdigitated strains and obtained the same
results. These three pieces of evidence indi-
cate that a single amino acid substitution, in
this case N145K, can cause sufficient anti-
genic change to be responsible for a cluster
transition. Thus, although there is a remark-
able correspondence between the genetic and
antigenic evolution, there are exceptions that
have epidemiological significance of suffi-
cient magnitude that they require an update of
the vaccine strain.
Gradual genetic evolution, but punctu-

ated antigenic evolution. A season-by-sea-
son analysis of the clusters in the antigenic

map shows that in some seasons strains were
isolated from more than one antigenic cluster
(Fig. 4A). On average, clusters remained
dominant for 3.3 years (SD 1.9), with two
clusters being dominant for only one season
and one for eight seasons. In this dataset, we
see strains appear in a cluster up to 2 years
before, and 2 years after, the period in which
that cluster is the dominant cluster.

The corresponding season-by-season
analysis of ML tree distances (Fig. 4B) shows
that the rate of genetic change is relatively
continuous compared with the rate of anti-
genic change (Fig. 4A), which is more punc-
tuated. Because this relatively continuous
rate of change may in part be due to silent
nucleotide substitutions, we repeated the
analysis using the number of amino acid
substitutions between strains instead of the
ML tree distance (Fig. 4C) and found gaps
between some clusters, but still a gradual
accumulation of mutations, which is not re-
flected in the corresponding antigenic figure.
This finding suggests that some of these
amino acid substitutions have little antigenic
effect or an effect spreading the cluster side-
ways in relation to the distance from
A/Bilthoven/16190/68 antigen.

The average rates of evolution are given
by the slope of the best linear fit to the data in
Fig. 4, A, B, and C. The average rate of
antigenic drift calculated this way was 1.2
units per year, the average rate of amino acid
substitutions was 3.6 per year, and the aver-
age rate of change in ML distance was 0.0060
per year. Sometimes the rate of antigenic
evolution was faster than genetic evolution
and sometimes vice versa, as shown by the
deviations from the linear regression line in

Fig. 3. Detail of the genetic map (Fig. 2B)
showing the BE92 and WU95 clusters and how
a single amino acid substitution can determine
the antigenic cluster. Pink and green symbols
represent strains from the BE92 and WU95
antigenic clusters, respectively. Ovals are
drawn around the BE92 (circles) and WU95
(triangles) genetic clusters. Green symbols have
a lysine (K) at position 145, whereas pink sym-
bols have an asparagine (N) at 145. This single
N145K substitution can cause an antigenic
cluster change and warrant an update of the
vaccine. Two pink triangles are coincident thus
only four of the five can be seen. Grid and axes
are the same as for Fig. 2B.

Fig. 2. Comparison of antigenic and genetic evolution of influenza A virus. (A) Phylogenetic tree of
the HA1 nucleotide sequences, color-coded based on antigenic clusters of Fig. 1. Multiple trees
were built using a reversible site-dependent nucleotide ML method (37). There was good consensus
among trees, and the tree with ML is shown. (B) Genetic map of the HA1 amino acid sequences,
color-coded according to the antigenic clusters of Fig. 1. The vertical and horizontal axes represent
genetic distance, in this case the number of amino acid substitutions between strains; the spacing
between grid lines is 2.5–amino acid substitutions. The orientation of the map was chosen to match
the orientation of the antigenic map in Fig. 1. (C) The same antigenic map of influenza A virus
strains as shown in Fig. 1, except for a rigid-body rotation and translation of the pre-TX77 clusters
(fig. S2) to match the genetic map and except that virus strains are represented by colored circles
and antisera by open squares. Arrows indicate the two cluster transitions for which the amino acid
substitution N145K is the only cluster-difference substitution ( Table 1, fig. S1).

R E S E A R C H A R T I C L E S

16 JULY 2004 VOL 305 SCIENCE www.sciencemag.org374



CHV signature

(3x329=) 987D vectors of 
Charge-Volume-Hidropathy 
values for each AA
+
Ridge regression

Train error: 0.45 a.u.
Test error: 1.31 a.u. 

Single-AA shift not recovered



In-silico Deep Mutational Scan experiment

start from a real sequence 
in a cluster and predict the 
AM coordinates of the 20 
AA substitutions at specific 
sites
- rank the 140 substitutions 
(7 sites) combining 
grammaticality and 
antigenic distance from 
the sequence of origin



HK68: T155Y rank=86
EN72: Q189K rank=6
VI75: G158E rank=2 and D193N rank=7
TX77: K156E rank=56
BK79: Y155H rank=12
BK79: S159Y rank=9
BK79: K189R rank=15
SI87: N145K rank=1 and E156K 
rank=16
BE92: N145K rank=1
WU95: K156Q rank=14 and E158K 
rank=54
SY97: Q156H rank=17
FU02: K145N rank=9
CA04: K158N rank=2 and N189K rank=1
Avg. Rank=18

BiLSTM embedding



HK68: T155Y rank=8
EN72: Q189K rank=2
VI75: G158E rank=4 and D193N rank=5
TX77: K156E rank=26
BK79: Y155H rank=7
BK79: S159Y rank=9
BK79: K189R rank=13
SI87: N145K rank=1 and E156K 
rank=12
BE92: N145K rank=1
WU95: K156Q rank=34 and E158K 
rank=29
SY97: Q156H rank=35
FU02: K145N rank=4
CA04: K158N rank=12 and N189K 
rank=1
Avg. Rank=12

ProtBERT embedding



HK68: T155Y rank=104
EN72: Q189K rank=97
VI75: G158E rank=28 and D193N 
rank=123
TX77: K156E rank=106
BK79: Y155H rank=58
BK79: S159Y rank=68
BK79: K189R rank=106
SI87: N145K rank=30 and E156K 
rank=73
BE92: N145K rank=23
WU95: K156Q rank=139 and E158K 
rank=134
SY97: Q156H rank=122
FU02: K145N rank=29
CA04: K158N rank=71 and N189K 
rank=108
Avg. Rank=83 (median=97)

CVH embedding



Unsupervised clusters

Lineages

Good overlap between the 
clusters and lineages
One possible interesting cluster 
jump corrected a labeling error 

Other examples: SARS-COV2 GENOTYPING IN BOLOGNA



Leave-the future-cluster-out: BiLSTM

Remove last N clusters in time from the map, 
and try to predict if they would result as outliers 
with respect to the previous ones



BiLSTM embedding

how many samples are correctly predicted 
outside the last training cluster in time.

L1FO: 7/7 predicted outside (100%)
L2FO: 12/21 (57%)
L3FO: 26/30 (87%)
L4FO: 44/46 (95%)
L5FO: 8/72 (11%)
L6FO: 115/115 (100%) but 114 are in the 
second-last cluster



ProtBERT embedding

L1FO: 6/7 predicted outside (86%)
L2FO: 21/21 (100%)
L3FO: 26/30 (87%)
L4FO: 33/46 (72%)
L5FO: 31/72 (43%)
L6FO: 114/115 (99%) but 50 are in the 
second-last cluster



CVH embedding

L1FO: 4/7 predicted outside (57%)
L2FO: 20/21 (95%)
L3FO: 28/30 (93%)
L4FO: 42/46 (91%)
L5FO: 44/72 (61%)
L6FO: 114/115 (100%) but 82 are in the 
second-last cluster



Combining experiments 
and models in a 

"One health approach"



One Health initiative: VEO case study

Bologna metropolitan area monitoring:
- Microbiological data: urban wastewater 

microorganisms
- Clinical data: COVID, salmonella, campylobacter, 

shigella, ... cases
- Socioeconomic data: human mobility and traffic
- Demographic data: comorbidities, vaccinations
- Weather and climate data: rainfall, humidity, 

temperatures, pollution 
- Veterinary data: pets, livestock production, wild 

animals 
- Social data: monitoring Twitter on the keywords 

'COVID' and 'vaccines'



3-year monitoring of COVID-19 in Bologna 
metropolitan area 2021-2023

Epidemiological 
mathematical model 
adjusted on clinical data

Sars-CoV-2 in urban 
sewage

SARS-CoV-2 genomic 
tracing of lineage 
evolution over time

Road traffic time series Vaccination coverage of 
the population



last phase: hospitalizations & 

new cases decline even when 

viral load increases (r = 0.73)

why?

Sars-Cov-2 in wastewater + cases



The model: epidemics evolution

(with Prof A. Bazzani, G. Colombini, E. Lunedei et al.)
ODE system to describe epidemics spread
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Fig. 1: Compartmental model scheme, describing equations in (1).

multiplicative factors (s and ⌧), we disentangle infectivity and sociability, and explic-
itly consider the role of social activities that change during the pandemic due both to
social restriction measures introduced by the government and people behavior.

The compartmental model is defined by the delay di↵erential equations (see model
scheme in Fig.1)
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multiplicative factors (s and ⌧), we disentangle infectivity and sociability, and explic-
itly consider the role of social activities that change during the pandemic due both to
social restriction measures introduced by the government and people behavior.

The compartmental model is defined by the delay di↵erential equations (see model
scheme in Fig.1)
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İ(t) = ↵

Z 1

0
�S!E(t� TE � ⌧)⇢(⌧ ;TU ,�U ) d⌧

� ↵

Z 1

0
�S!E(t� TE � TI � ⌧)⇢(⌧ ;TU ,�U ) d⌧
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Susceptible
Exposed
Unreported + Isolated
Recovered

Virus spread = virus (intrinsic) infectiveness 
+ human sociability (contacts)



Sociability and mobility

Sociability parameter: estimated on a weekly basis 
to fit the model output (#hospitalizations) with the 
clinical observations

Mobility: measures of road traffic in Bologna 
metropolitan area



Sociability and mobility: relations

Pink regions: lockdowns and curfews

Blue regions: holidays



Additive shift to re-normalize 

mobility and sociability

• High correlation (r=0.76)

• Mobility can be used as a 

proxy to parametrize 

sociability in the model for 

short periods (2-3 M)

• Shifts related to difference between protected and unprotected social interactions

• Negligible shift at first phase (still not much protection) and summer 2021           

• Larger shifts during periods of increased sensitivity to control measures (distancing, facial masks)

Mobility as a proxy for sociability



Mathematical 
& network-based 

approaches to 
metagenomic data 

of wastewater samples



Activities within VEO

European 
Wastewater Cities 

Project

Bioinformatic Pipelines
for high-volume, complex 

metagenomics 

Tailored Data Analysis 
Statistical and network

approaches for NGS

Times series (2y) of metagenomic (bacterial population) data in 7 Eu cities



Bray–Curtis metrics 
(left) emphasizes 
dominant species

Aitchison metrics 
(right) reveals subject 

stratification

From Physics to Compositionality: A Metric Dilemma

Metagenomics data are compositional: positive and constant-sum (like pdf)



Inferring Microbial Associations pipeline

mgnet

Developed a pipeline for the analysis of compositional metagenomic data:
- processing (CLR) & filtering
- calculation of correlation & network construction
- network community identification & visualization
- mgnet R toolbox



Entire pipeline developed and run on the VEO collaborative platform.

~1 month of computation 🤯



Results: 2,332 Reconstructed genomes —
Many Still Unknown

• ~65% of MAGs are 
unclassified species

• Genomic diversity reflects 
the complexity of urban 
wastewater

[Becsei, Fuschi, ..., Remondini, et al. Nature Communications 2024]



Microbial Community Dynamics

Some communities oscillate in abundance 
with surprisingly precise 365-day cycles.



Detecting Human-Associated Communities

• Strong correlations with CrAssphage
abundance suggest human origin.



Conclusions

VEO EU project was a great opportunity to develop good research 
and to apply several physical and analytic methods thanks to:

- project design (clear aims, experiment planning)
- data availability (generated within the consortium & publicly 

available)
- interdisciplinary collaboration (concepts, terminology, methods)
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Path Through VEO: From Physics to Metagenomics

🕒 2022 

Starting the PhD

• NGS data challenges
• Compositionality 
• New metrics & tools

🧪 2023 

Bioinformatics & Biology

• Understanding sequencing 
& biological meaning

• DTU visiting

📈 2024

Analysis & Publication

• Statistical & network 
analysis



Learning Genomics: Not so Easy 

Applied physics background 📐
equations, models and coding 

Genomics language shock 🤯
What is coverage? Depth? fragment counts? assembly?


