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Preface

These are the lecture notes of a one-semester course Advanced Analysis I
taught for several years. Since the students come from different universities
and different countries, and have different backgrounds, the material partially
overlaps with that of courses taught at the Bachelor level at Unibo. However,
exercises are on average more challenging than the ones many students were
assigned in earlier courses. Each topic in the notes was covered, as it is in the
notes, or otherwise, in one of the years I have taught the course. Honestly,
covering the whole material with all the proofs would require more than one
semester.

Sources for these notes include:

e Rudin, Walter Real and complex analysis. Third edition. McGraw-
Hill Book Co., New York, 1987. xiv+416 pp. ISBN: 0-07-054234-1

e Folland, Gerald B. Real analysis. Modern techniques and their
applications. 2nd ed. Pure and Applied Mathematics. A Wiley-
Interscience Series of Texts, Monographs, and Tracts. New York,
NY: Wiley. xiv, 386 p. (1999).

e Real Analysis for Graduate Students, version 5.0, by Richard F.
Bass (2024). The paper version is here: Real Analysis for Graduate
Students, version 2.1 (2014)

e An Introduction to Measure Theory (a draft) by Terence Tao. The
definite version is An introduction to measure theory by Terence
Tao, 2011; 206 pp; hardcover ISBN-10: 0-8218-6919-1 ISBN-13: 978-
0-8218-6919-2 Graduate Studies in Mathematics, vol. 126.

Other references are given in the text. I am the only responsible, of course,
for the mistakes, for unnecessarily long arguments, etcetera.

There is an expanded version of these lecture notes, which includes a
number of supplements and more topics. If you are interested, write me at
nicola.arcozzi@unibo.it and I will send you the file.

I wish to thank students, and colleagues (Annalisa Baldi, Nikolaos Chal-
moukis, Giovanni Dore, Davide Guidetti, and many others), with whom I
have discussed the material of the course over the years. Especially precious
was the work of Dr. Nicola Zavatta, who went through much of the notes,
pointed out mistakes, suggested improvements.

Bologna 2025


https://zbmath.org/0925.00005
https://zbmath.org/0925.00005
https://zbmath.org/0924.28001
https://zbmath.org/0924.28001
https://zbmath.org/0924.28001
https://zbmath.org/0924.28001
https://sites.google.com/site/rbass444
https://sites.google.com/site/rbass444
https://www.amazon.it/Real-Analysis-Graduate-Students-version/dp/1502514451/ref=asc_df_1502514451?mcid=a8742ec440803210a3626174114ada63&tag=googshopit-21&linkCode=df0&hvadid=700884046713&hvpos=&hvnetw=g&hvrand=718654826084220924&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-1408682733009&psc=1&gad_source=1
https://www.amazon.it/Real-Analysis-Graduate-Students-version/dp/1502514451/ref=asc_df_1502514451?mcid=a8742ec440803210a3626174114ada63&tag=googshopit-21&linkCode=df0&hvadid=700884046713&hvpos=&hvnetw=g&hvrand=718654826084220924&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1008141&hvtargid=pla-1408682733009&psc=1&gad_source=1
https://terrytao.wordpress.com/wp-content/uploads/2012/12/gsm-126-tao5-measure-book.pdf
https://terrytao.wordpress.com/books/an-introduction-to-measure-theory/
https://terrytao.wordpress.com/books/an-introduction-to-measure-theory/
nicola.arcozzi@unibo.it

Contents

Preface

Chapter 1. A review of metric spaces

1.1.  Generalities on metric spaces

1.1.1. Definition and basic examples

1.1.2. Normed linear spaces

1.2.  Complete metric spaces

1.2.1.  The completion of a metric space

1.2.2. Banach spaces

1.2.3.  Metric and topology

1.2.3.1. Bounded continuous functions as a metric space
1.2.4. Banach Fixed Point Theorem

1.3. Compact sets

1.3.1. Equivalent definitions of compactness.

1.3.2.  The Cantor set

1.4.  Continuous functions

1.4.1.  Spaces of continuous functions

1.4.2.  Some spaces of complex valued continuous functions
1.5.  Compactness: equicontinuity and the Ascoli-Arzela Theorem
1.5.1.  Spaces of functions defined by their derivatives
1.6.  Continuous functions with prescribed properties
1.6.1. Urysohn Lemma

1.6.2. Locally compact spaces and partitions of unity
1.6.3. Tietze Extension theorem

1.7. More exercises

1.8.  Summary

1.8.1. Some function spaces

Chapter 2. Abstract measure theory

2.1.  Motivation

2.1.1. Riemann’s integral

2.1.2.  Lebesgue’s definition of integral

2.2. Basic measure theory

2.2.1. o-algebras, measures, and measurable functions

iii

— e
—

— O 1O k= Wi~ ==

RO T I R N N N e e S O
SAE XN H = OO~ W

W W W NN N
W W= © O O



iv CONTENTS

2.2.1.1. Properties of measurable sets and functions

2.2.1.2.  Sup and limsup of measurable functions, and approximation
by simple functions

2.2.1.3. Properties of measures

2.2.2. The Lebesgue integral of a function

2.3.  Limit theorems for integrals

2.3.1.  Monotone Convergence Theorem

2.3.2. Fatou’s Lemma

2.3.3. Dominated Convergence Theorem

2.4. Some example of measures

2.4.1. Discrete measures

2.4.2. Measures defined by integrals

2.4.3. The Lebesgue measure

2.5.  Some applications

2.5.1. Derivatives under integral sign

2.5.2.  The Severini-Egorov Theorem

2.5.3. LP spaces; definition

2.6. Some integral inequalities

2.6.1.  Jensen, Holder, and Minkovski

2.6.1.1.  Jensen inequality

2.6.1.2. Holder’s inequality

2.6.1.3. Minkowski’s inequality

2.7. More on LP spaces

2.7.1.  Completeness of LP spaces

2.7.2.  Elementary, but useful

2.7.2.1. Series as integrals

2.7.2.2. Inclusions of LP spaces

2.8. Signed measures

2.8.1.  Absolutely continuous and mutually orthogonal measures

2.8.2. Definition and basic properties

2.8.3. The Hahn decomposition theorem

2.8.4. The Jordan decomposition theorem

2.9. The Radon-Nikodym theorem

2.9.1. Orthogonality and absolute continuity for signed measures

2.9.2. The Radon-Nikodym theorem

2.9.3. Application: the existence of the conditional expectation

2.9.4. Application: the dual space of LP for 1 < p < oo

2.10.  Summary

Chapter 3. Product measures

34

36
38
39
40
40
41
42
43
43
44
45
45
45
46
47
48
48
48
49
o1
52
52
o4
o4
95
95
95
56
o7
o8
99
59
61
65
66
69

71



CONTENTS v

3.1. o-algebras on product spaces, product measures and Fubini’s

Theorem 71
3.1.1.  Product o-algebras 71
3.1.2. The Monotone Class Lemma 72
3.1.3. Product measures and Cavalieri Lemma 74
3.1.4. Fubini Theorem 76
3.2.  Some applications 7
3.2.1. Minkovski integral inequality 7
3.3.  Convolution and Young’s inequalities 7
3.3.1.  Convolution 7
3.3.2.  Young’s inequality 79
3.3.3. Supplement: a more general Young’s inequality 80
3.4. Some properties of convolution 81
3.4.1.  Convolutions and continuity 81
3.4.2. Derivative of a convolution 82
3.4.3. Approximate identities 82
3.4.4. The smooth Urysohn lemma 83
3.4.4.1. Some consequences 83

3.4.4.2. The closure of the unit ball of C'*[0, 1] in the uniform norm 84

Chapter 4. Constructing measures 87
4.1.  Outer measures and Carathéodory’s Extension Theorem 88
4.1.1.  Outer measures 88
4.1.2. Carathéodory Extension Theorem 91
4.1.2.1. The outer measure associated to a measure 93
4.2.  Radon measures 94
4.2.1. Riesz Representation Theorem 95
4.2.2. Regularity and approximation theorems. 100
4.2.3. Lusin’s Theorem 102
4.2.4. The Fundamental Lemmas of the Calculus of Variations 103
4.3. The dual of Cy(X) 105
4.4. The Lebesgue measure and some of its variations 108
4.4.1. Lebesgue measure 108
4.4.2. Lebesgue-Stieltjes measures 110
4.4.3. Signed Lebesgue-Stieltjes measures and function of bounded

variation 113
4.4.4. More on increasing functions and Borel measures on R 115
4.4.4.1. Distribution functions of Borel measures 115
4.4.4.2. Cantor’s function 116
4.4.4.3. Generalized Cantor sets 117

4.4.5. Weak derivatives of increasing functions 118



vi

CONTENTS

4.5. Riemann integration vs. Lebesgue integration

4.5.1. Riemann’s integral and oscillations

4.5.1.1. Partitions and oscillations of a function

4.5.1.2. The defition of the Riemann integral

4.5.1.3. Riemann sums

4.5.2. A characterization of Riemann integrable functions

Chapter 5. Hilbert spaces

5.1. Basic geometry of Hilbert spaces and Riesz Lemma

5.1.1.  Definition and basic properties

5.1.2.  L? as a Hilbert space

5.1.3. Projections onto subspaces

5.1.4. F. Riesz representation in Hilbert spaces

5.2.  Orthonormal systems

5.2.1.  Orthogonal vectors

5.2.2. Spectral analysis and synthesis

5.2.3. Orthonormal basis in separable Hilbert spaces

5.2.3.1.  Gram-Schmidt algorithm

5.2.3.2.  The classification of separable Hilbert spaces

5.2.4.  Supplement: orthonormal basis in general Hilbert spaces

5.2.4.1. Existence of o.n.b.

5.2.4.2. The dimension of a Hilbert space

5.3. The trigonometric system and Fourier series

5.3.1.  The trigonometric system

5.3.2.  The Poisson kernel

5.3.3. The trigonometric system and basic properties of Fourier
series

Chapter 6. Banach spaces

6.1. Zorn’s lemma and some of its consequences

6.2. The Hahn-Banach Theorem and some of its consequences
6.3. The dual of a Banach space

6.4. Weak and weak® topologies, and the Banach-Alaoglu theorem
6.4.1. The weak and the weak* topologies

6.4.1.1. The weak topology

6.4.1.2. The weak™ topology

6.4.2. Two versions of the Banach-Alaoglu theorem

6.4.2.1. Tychonoft’s theorem

6.4.2.2. Banach-Alaoglu theorem: the topological form
6.4.2.3. Banach-Alaoglu theorem: the sequential form

6.5. Baire’s Theorem and the uniform boundedness principle
6.5.1. Banach space-valued holomorphic functions

119
120
120
121
122
123

127
127
127
129
129
132
133
133
134
135
135
136
137
137
137
138
138
139

143

147
147
151
154
158
158
158
159
160
160
162
163
164
166



6.6. The Open Mapping Theorem and the Closed Graph Theorem

6.7.

CONTENTS

Integrals of continuous, Banach space valued functions

Chapter 7. Tempered distributions and Fourier transforms

7.1.
7.1.1.
7.1.2.

Tempered distributions

The Schwartz class: definition, topology, and basic operations

Tempered distributions and the basic operations on them

7.1.2.1. The order of a distribution
7.1.2.2.  Derivative of a tempered distribution
7.1.2.3.  Some more operations

7.2.
7.2.1.
7.2.2.

The Fourier transform in S(R) and in §'(R)
The Fourier transform in S(R)
Extension of the Fourier transform to L' and L?

7.2.2.1. Fourier transform in L'
7.2.2.2. Fourier transform in L?

7.2.3.
7.3.

7.3.1.
7.3.2.
7.4.

7.4.1.
7.4.2.
7.4.3.
7.4.4.

Fourier transforms of tempered distributions
The support of a distribution

Distributions supported at the origin

Positive distributions having compact support
Convergence of tempered distributions

More on the convolution in §

The convolution of a distribution in §&” and a function in S

The density of S in &'

The topology on &’ by means of cylinder sets

vii

171
172

177
178
178
182
183
185
186
188
188
193
193
195
195
198
200
202
203
203
205
208
212






CHAPTER 1

A review of metric spaces

A basic problem in mathematics and its applications is measuring how
much two points in space, or two point configurations, or two functions,
signals, etc., are close to each other. A way to do this is by means of a
distance function. A more flexible and general way to do the same is by
introducing a topology. In most of these lectures, however, we will deal with
distance functions only, and this chapter contains the basic results which are
needed in the sequel.

We will soon see that we can define meaningful and useful distances be-
tween functions, which brings us straight away into the world of functional
analysis (" functions of functions”).

1.1. Generalities on metric spaces

1.1.1. Definition and basic examples. A metric space (X,d) is a set
X endowed with a distance function d: X x X — [0,00) satisfying, for all
x,y, 2z € X,

(i) d(z,y) = 0 if and only if x = y;

(ii) d(z,y) = dly, z);
(iii) d(z,y) < d(z, z) + d(z,y), the triangle inequality.

EXERCISE 1.1. Let (X,d) be a metric space and let ¢: [0,00) — [0,00) be concave,
strictly increasing, ¢(0) = 0. Define d(x,y) = ¢(d(x,y)). Show that § is a distance on X.

If ¢ is continuously differentiable, you can use integrals to provide a slick
proof.
Some examples of metric spaces are:

(i) X =R" or X = C" with the distance

n /p |
max;—1__,|r; —y;| ifp=o0
We will see that each d, satisfies (i-iii). The proof of the triangle

inequality depends on Minkowsky’s inequality, which we will discuss
later.
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The distance d is called Euclidean distance. Forn =1, d,(z,y) =
|z —y| for all 1 <p < occ.

(ii) X = Ca,b], the space of the functions which are continuous on the
interval [a, b], with the distance

<Mﬁ@:{<ﬁﬁ@%ﬂwwymﬁ1<p<w

max,< < | () — gla)] i p = oo

(iii) If (X,d) is a metric space and Y C X, then (Y,d|y) is a metric
space. Here, d|y is the restriction of d to Y. Unless it leads to
ambiguities, we simply write (Y, d) = (Y, d|y).

(iv) Let X be a set and defined d(z,y) = 1 in  # y, and d(z,z) = 0.
Then, (X, d) is a metric space.

(v) If (X, d) and (Y, 0) are metric spaces, then X x Y becomes a metric
space under the distance

D((z1,11), (x2,y2)) = max{d(z1, x2),0(y1,42) }-

There are several useful ways to produce new metric spaces from old ones:
(v) being just one of them. Also, metric spaces arise in a number of contexts.
A notable class is that of Riemannian manifolds, which we will not discuss.

EXERCISE 1.2. Show the triangle inequality for d, when p = 1,2, 00.
EXERCISE 1.3. Draw in R? {(z,y) : d,((z,y),(0,0)) =1} for p=1,2, cc.

EXERCISE 1.4. (1) Show thatlimy, o dp(z,y) = doo(z,y) and that limy, o 0,(f, g) =
doo(f5 9)-

(ii) Let X, = {f € C(0,1] : 6,(f,0) < oo}. Show that () ¢)coo Xp 2 Xoo-
(iii) Show that for all 1 < p < oo there is f € X, such that f ¢ X, for all ¢ > p.

A subset Y of a metric space (X, d) is dense in X if for all z in X and
all € > 0 there is y in Y such that d(z,y) <.

1.1.2. Normed linear spaces. An especially important family of met-
ric spaces is that of the normed linear spaces. A normed linear space is a
vector space X over C (or over R) endowed with a norm: a function

|- 1]: X' = [0, 00),
satisfying the properties:
(i) ||z|| = 0 if and only if x = 0;
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(ii) || x|l = |||l if z € X and X € C;
(iif) flz +yll < lzll + [lyll-

In practice, when we introduce a perspective norm on some concrete vector
space X, we have to verify that it has a finite value for each x in X, and we
have to verify the conditions above, (iii) being sometimes subtle.

A normed linear space becomes a metric space when endowed with the
distance

d(z,y) = [lz — yl|.
In addition to (i-iii), this distance satisfies properties linking it with the
algebraic structure.

(iv) d(Az, A\y) = |M|d(z,y) if z,y € X and X € C;

(v) diz+a,y+a) =d(z,y) if z,y,a € X.
The map x +— Az is a (complex) homothety, and = — = + a is a translation.

EXERCISE 1.5. Show that if a metric d on a vector space X satisfies (iv-v), then
||| := d(z,0) defines a norm, and that d(z,y) = ||l — y||.

The distances in examples (i) and (ii) in Section 1.1.1 come from a norm.
For a continuous function f: [a,b] — C we define:

b 1/p
||f||m=< / If(:c)lp) for 1 < p < 0o, the I norm,

11l = muax [ )] = sup [(@)], the wniform norm.
z€[a,b]
They make (Cla,b],| - ||zr) and (C[a,b], || - ||.) into normed linear spaces.

1.2. Complete metric spaces

A basic problem in applications is the convergence of a sequence of objects
to an object. Consider for instance the convergence of an algorithm. This
notion can be formalized as the convergence of a sequence of points to a point
in a metric space. Often, however, the nature of the objects in the sequence
is clear, but so is not that of the limiting object. Think of the approximation
of v/2 by means of decimal (or binary) numbers having finitely many digits.
The notion of ”familiar” objects converging to a "nonfamiliar”, ”ghost” one
is encoded in the notion of Cauchy sequence. The conceptual tool to make

"ghosts” into "real” objects is the completion of a metric space.

A sequence {z,}>° | in (X, d) converges to the limit a € X, lim,, o ©,, =
a, if for all € > 0 there is n(e) > 0 such that if n > n(¢), then d(z,,a) < €.
The sequence {x,}52, is Cauchy if for all € > 0 there is n(e) > 0 such that if
n > n(e) and j > 0 one has d(z,, z,4+;) < €
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EXERCISE 1.6. Show that, if lim, o0 ©, = x and lim, ooy, = = in (X,d), then
limy, o0 d(@n,yn) = d(x,y) exists in R in the usual sense.

All convergent sequences are Cauchy, but the opposite implication gener-
ally fails. The space (X, d) is complete if all Cauchy sequences in it converge.

For instance, if @ C R is the set of the rational numbers and {z,}5°, is
a sequence in Q converging to v/2, then (with respect to the usual distance
function d(z,y) = | — y|) the sequence {x,}°, is Cauchy, but not conver-
gent, in Q. Familiar examples of complete metric spaces are R and C, with
respect to the distance d(z,y) = |y — z|.

1.2.1. The completion of a metric space. Any metric space can be
canonically imbedded in a complete one.

THEOREM 1.1. Let (X, d) be a metric space. Then there exists a complete
metric space (X, d), the completion of (X, d), and an injective map i: X —
X such that:

(i) d(i(),i(y)) = d(,y);
(i) i(X) is dense in X.

The completion is unique in the following sense. For any other complete
metric space (Z,0) endowed with an injection j: X — Z satisfying properties
(i) 6(5(x),7(y)) = d(z,y), and (ii) j(X) is dense in Z, there is a unique map

F: X — Z which is a surjective isometry, §(F (&), F(§)) = d(Z, 7).

PROOF. We start with the construction of (X, d). Let C' be the set of all
Cauchy sequences in X and for {z,},{y,} € C set

{z,} ~{yn} & lim d(x,,y,) =0.
n—oo

The relation ~ is an equivalence relation (check it!). Write [{z,}] for the
equivalence class of the Cauchy sequence {x,}, and let X = C/ ~, be the
corresponding quotient space. Define

(o)), ) = lim d(z,,p,)

It is easy to see that d is well defined, and that it defines a distance on X.
(check that it is independent of the representatives). Finally, for x € X
set i(z) = [{z, = x}], the class of the corresponding constant function.
Properties (i) and (ii) are easily verified (exercise). Some work is needed to
prove completeness, using a diagonal trick.
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Let {#,}, #, = [{2™ }2°_,], be a Cauchy sequence in X. For k > 1 select
integer n(k) > n(k — 1) (if n(k — 1) was already selected) such that, for
n >n(k) and j > 1,

o P Cz(fim fin—i—j) = nlbl_r)noo d(zy,, x:bjj)‘

Select then m(k) > m(k — 1) such that, for i = 0,1, m > m(k), and j > 1,

(*) d(xn(k-l—z') N(k+i))< 1

m » Ym+j X 2_k’

which we can ask because each {z" }°°_, is Cauchy, and

2
n(k n(k+1
() d('rm((k))’xm((k) )< ok

which we can ask because 2% > (j(izn, Tpy;). Set then ay = :L’Z(éck))

The sequence {a;}72, is Cauchy in X:

n(k n(k+1
d(ay, ag+1) = d(xm((k))’xm((kil)))
n(k) n(k+1) n(k+1) n(k+1)
< Ay Ty ) F ATy Do)
< 2 1
S ity

by (%) and (**), and, by geometric sums, d(ax, ar+;) < 5. Let a = [{ax}].

We want to prove that (j(in(k), a) — 0. Using the fact that lim,, . d(zy, y,) =
lim,;, 00 d(25,,, Yk,,) for all subsequences {j,,} and {k,,} of the positive inte-
gers, provided the initial sequences {z,} and {y,} are Cauchy (check it), we
have

T~ . k n(l
d(Tnry,a) = llgglod(ffﬁ(aia%f(z)))
. n(k) n(k) . n(k) _n(l)
< hrlri)igp AT ys Toniy) T lliglo AT ) Toniy)
1 6
< oF + oF

by (*) and the fact that {a; = mnm(flg))} is Cauchy (the precise value 6 is indeed
unimportant).

We now come to uniqueness. Let (Z, ), j as in the hypothesis, and let
i = [{z, : n>1}] be an element in X, where {z,,} is a Cauchy sequence in
X. Then, {i(z,) : n > 1} is Cauchy in X and {j(z,) : n > 1} is Cauchy
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in Z. Define F(Z) = lim,_, j(z,), which exists because Z is complete. The
definition is well posed, since for two equivalent Cauchy sequences {z,}, {y,}
in Z we have

0(j(n), §(Yn)) = d(Tn, yn) — 0 as n — oo,

hence, they have the same limit in (Z,5). Moreover, for & = [{z,}] and
y=U{yn}] in X,

o(F(2,9)) = o(F({zn}]), F({ya}]))
= 0(lim j(z,), lim j(yn))
= lim 6(j(n), j(yn)) = lim d(zn,yn) = lim d(i(xn),i(yn))
= d(&,7).

The equalities from second to third, and third to fourth line, follow from
Exercise 1.6 applied to § and d, respectively.

The isometry F': X & Zis surjective. If z € Z, by hypothesis there is
a sequence {z,} in X such that §(j(x,),z) — 0, so that {z,} is Cauchy in
X. Hence, {i(z,)} is Cauchy in X and lim,_, F(i(2,)) = limy_s0 j(2,) =
z. 0J

1.2.2. Banach spaces. A normed linear space is a Banach space if it is
complete with respect to the distance induced by the norm.

Let (X,]| - |) be a normed linear space, and let (X, d) be its completion
with respect to the distance d(z,y) = || — y|| on X. We want to introduce
on (X,ci) a structure of normed, linear space, in such a way that X be-
comes a Banach space. To this aim, we define algebraic operations between
equivalence classes of Cauchy sequences,

Hznd] + Hynd] o= Han +yn], Al{zn}] = {Aza}];

and of the norm:

Iz}l = lim [z,

PROPOSITION 1.1. Sum, multiplication times scalar, and norm are well
defined, and make X into a normed linear space. Moreover, if z,w belong to
X, then .

d(z,w) = ||z —w],

so that, in particular, (X, || - ||) is a Banach space. Also, the imbedding map
12 X — X 15 linear.

PROOF. The statement can be split in a number of statements, whose
proof is left to the reader.
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(a) About the sum, we have to show that (i) {z,+y,} is Cauchy if {z,}
and {y,} are; (i) that [{2, + yn}] = [{z0 + wa}] if [{2n}] = [{z0}]
and [{yn}] = {wn}]

(b) Similar statements must be verified for the product of a vector with
a scalar.

(¢) We have to verify that for [{z,}] in X, lim,_ ||2,]| exists and does
not depend on the particular representative.

(d) For z,w in X, d(z,w) = ||z — w]|.
(e) The imbedding i is linear.
U
EXERCISE 1.7. Prove the assertions above.

1.2.3. Metric and topology. In a metric space (X,d) the open ball
with center x € X and radius r is B(z,r) = {y € X : d(x,y) <r}. A subset
O of X is open if for each of its points, it contains an open ball centered at
it. More generally, a point a of a subset £ of X is an interior point of E
if it is contained in E together with a ball centered at a, so that E is open
exactly when all its points are interior points. A neighborhood N of x € X
is a subset of X containing an open ball centered at z. A subset F' of X is
closed if and only if X \ F' is open.

An important and useful fact is that, in metric spaces, many topological
notions can be equivalently expressed in terms of sequences. A point a € X
is a limit point of a subset F' of X if each neighborhood of a intersects F'.

PROPOSITION 1.2. A subset F' of X is closed if and only if it contains all
its limit points. Equivalently, if and only if any sequence {x,} in F which
has limit, has limit in F.

PROOF. Suppose F' is closed and {x,} is a sequence in F' converging to
some a in X \ F', which is open. Then there is 7 > 0 such that B(a,r) C X\ F.
Thus, d(x,,a) > r for all n, which is absurd.

In the other direction, suppose that F' is not closed. Hence, there is
a € X \ F (which is not open) such that for all integer n > 1 there is z,, € F'
with d(z,,a) < 1/n. Thus, F 3z, - a ¢ F. O

COROLLARY 1.1. Let F C X, (X,d) being complete. If F is closed, then
(F,d) is complete.

PROOF. Let {z,} be a Cauchy sequence in F, hence in X. Then the
limit lim,,_,o x, = a exists in X. But F' is closed, hence a € F. O
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EXERCISE 1.8. Let (X, d) be a metric space.
(i) Let 7 ={0O C X : O is open}. Then, T is a topology:
(a) X,0€r;
(b) if O1,...,0, €7, then O1N...NO, € 7;
(¢) if {Oataca is a family of elements of T, then UycaOq € T.

(ii) Moreover, the topology is Hausdorff: for x # y in X there are disjoint open
sets Oy, Oy containing x,y, respectively.

(iii) Furthermore, the topological space (X, T) is first countable: for each x in X
there is a countable family on neighborhoods N,(x) of = such that any other
neighborhood N of x contains some N, (x).

It is natural to ask whether for any first countable, Hausdorff topological
space (X, 7) there is a metric d on X having 7 as the class of its open
sets. The answer is negative, but the good news is that a characterization
of metrizable topological spaces exists (Smirnov’s metrization theorem), and
that a simple sufficient condition was proved by Urysohn. See e.g. the lecture
notes Metrizability theorems by Marius Crainic.

It follows from (c) and the definition of closed set that, if {F,}aer is a
family of closed subsets of X, then N,erF, is closed. For a subset F of X
we define its closure to be

E = mFQE7 F closed F.
EXERCISE 1.9. Let (X, d) be a metric space (but the assertions hold for any topological
space).

(i) Show that E O E, E is closed, and in fact it is the smallest closed subset
containing E: if H DO E is closed, then H O E.

(ii) Show that E=E.
(iii) Show that E = {a € X : I{w,} in E such that a = lim, o Ty, }.

A function f: X — Y between metric spaces (X,dx) and (Y,dy) is
continuous at a € X if for all € > 0 there is § = §(a, €) > 0 such that

if dx(z,a) <6, then dy(f(x, f(a))) <e.

This is the same as requiring that for each neighborhoods N(f(a)) of f(a)
there exists a neighborhood N (a) of a such that f(N(a)) € N(f(a)).

If f is continuous at all x in X, we simply say that it is continuous and
write f € C(X,Y). We write C(X) to denote the class of the continuous
functions having values in R (or, when it is clear from the context, in C).

PROPOSITION 1.3. Let f: X — Y a function between metric spaces.
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(a) [Sequential definition of continuity at a/ f is continuous at a € X if
and only if for all x, — a in X, we have that f(z,) — f(a) in Y.

(b) [Topological characterization of continuity on X | f is continuous if
and only if, for any O open in'Y, f~1(O) is open in X.

PRrROOF. (a) [Only if] Let {z,} be a sequence converging to a in X, fix
e > 0, and let 6 > 0 such that dy(f(z), f(a)) < € if dx(z,a) < . For
n > n(e) we have that dx(x,,a) < d, hence that dy (f(z,), f(a)) < e. [If] If
f is not continuous at a, there is some ¢y > 0 such that, for all n > 1, there
is x, in X with dx(x,,a) < 1/n, yet d(f(z,), f(a)) > €. This exhibits a
sequence {x,} which fails the test of sequential continuity.

(b) [Only if] Let a € f~1(0), let ¢ > 0 be such that B(f(a),e) C O,
and § > 0 such that for dx(z,a) < ¢ one has that dy(f(z), f(y))e. Then,
Bx(a,8) C f~1(O). [If] Let a be a point in X and € > 0. By hypothesis
F~YB(f(a),€)) is open in X, hence, it contains a ball B(a, ). O

EXERCISE 1.10. Show that f: X — Y is continuous at a € X if and only if for all
open O > f(a) inY there is A > a open in X such that f(A) C O (i.e. AC f71(0)).

Preimages of open sets under continuous maps are open, but so is not for
images.

EXERCISE 1.11. Find a map f: R — R which is continuous, yet there is an open
subset O in R such that f(O) is not open.

The basic properties of continuous, real valued functions of a real variable,
continue to hold in the general framework of metric spaces, with the same
proofs.

olf f: X - Y and g: Y — Z are maps between metric spaces, f
is continuous at a, and g is continuous at f(a), then g o f, their
composition, is continuous at a.

e Constant functions are continuous.

e If X is a metric space and f,g: X — R (or C) are continuous at a,
the f+g, A\ f, f-gand f/g (if g(a) # 0) are continuous at a.

EXERCISE 1.12. Prove these properties.

1.2.3.1. Bounded continuous functions as a metric space. A subset A C
X of a metric space (X,d) is bounded if there is a number R > 0 such that
for all =,y in A we have that d(x,y) < R. This is the same as asking that
there are a € X and @ > 0 such that d(a,z) < @ for all z in A. The set
Cy(X,Y) contains the functions in C'(X,Y) which are bounded, i.e. such that
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f(X) is bounded in (Y, d). As in the case of continuous functions defined on
an interval, we can define the uniform distance d,, in C,(X,Y") by

du(f,g) =supd(f(x),g(z)).

rzeX

Observe that here we use the supremum instead of the maximum, because
the maximum might not exist. Below, we will study continuous functions on
metric spaces in some detail. Here we just need the following.

THEOREM 1.2. Let (X,d) and (Y,0) be metric spaces. If (Y,0) is com-
plete, then (Cy(X,Y),d,) is complete.

The proof consists of a simple a ”3e-argument”.

PROOF. Suppose {f,} is a Cauchy sequence in Cp(X,Y) and fix z in X.
Since 0(fn(z), furi(z)) < du(fn, futj), we have that {f,(x)} is Cauchy in Y,

hence, it converges to some f(x) because Y is complete. We only have to
show that lim,, o dy(fn, f) = 0 and that f € C,(X,Y’). The first statement
is clear,

(£ (), Sul)) = T 5(fu), fu()) < limsup dul f, f) < €

m—r00

provided n > n(e), because {f,} is Cauchy. Passing to sup on the left,

dy(f, fn) < eif n > n(e).
We now show continuity. Fix € > 0. Then,

0(f(x), () < 0(f(x), ful2)) + 0(ful(2), fuly)) + 6(fuly), f(y))
< du(f, fn) +0(fnl2), f. (y)) +du(fn, f)
< e+ o(fal2), fuly)) +
if n is chosen to be greater than n(e) as above
< 3e
if d(x,y) <6 = d(e), since f, is continuous at . O

The first part of the proof can be formalized as a general statement.

EXERCISE 1.13. Let X be a set, and (Y,d) a complete metric space. Then, B(X,Y),
the set of the bounded functions f: X — Y, is complete metric space with respect to the
distance d,,.

In particular,

COROLLARY 1.2. Cy(X,C) is Banach with respect to || - ||, and B(X,C)
is Banach with respect to the norm || f||, = sup,ex | f(2)]-
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In the case of the bounded functions, we used the label u (uniform). We
did so to avoid any confusion with the L* norm we will meet in measure
theory, where the supremum is taken on ”almost all” points in X, allowing
a "negligeable” set of exceptions.

The second part of the proof shows that the following holds.

COROLLARY 1.3. If (X,d) and (Y,d) are metric spaces, f, € C(X,Y)
forn>1, and f, — f uniformly on X, then f is continuous.

1.2.4. Banach Fixed Point Theorem. It is an old and fruitful idea
writing an equation, e.g.

(1.2.1) 2 —x—1=0,

in the form of a fixed point problem,
1
(1.2.2) r=f(x)=1+—,

and observe that (1.2.2) implies that

S
T L

1
(1.2.3) r=14+—-—=1+
T

suggesting to turn the equation into a recursive scheme,

(1.2.4) Tpi1 = f(z,) =1+ i, n > 0.

If we are smart enough in choosing xy, we might hope that lim,, .., x, = a €
R, and the continuity of f and (1.2.2) imply that = a is one of two solutions
to (1.2.1). Of course, there are problems: (i) there are many ways to turn
the equation into a fixed point problem (x = g(z) = 2? — 1 would work as
well); (ii) we have to choose ¢ in such a way that z,, belongs to the domain
of f for all n > 05 (iii) it can be shown that for almost all admissible choices
of zo the recursive scheme (1.2.4) will converge to the positive solution of
(1.2.1) (which is an attractive fived point of f), unless we are so lucky to
choose x = 1_2\/5, the negative solution (which is a repulsive fized point of f).
The study of the dynamics of functions f: X — X is an enormously vast
subject. We consider here one of its simplest instances.

Let (X,d) be a metric space. A map f: X — X is a contraction
if d(f(z), f(y)) < Ad(z,y) for some 0 < XA < 1 independent of z,y in
X. A contraction is continuous, in the sense that if lim,,_,. z,, = x, then
lim, o f(x,) = f(x). In fact, if d(z,,x) — 0, then

d(f(xy), f(x)) < Md(zp,z) — 0.
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THEOREM 1.3. [Banach Fized Point Theorem/ Let f: X — X be a con-
traction on a complete metric space (X, d). Then, there exists a unique point
x in X such that f(x) = x.

PROOF. Uniqueness is clear, since for two fixed points z, y we have d(z,y) =
d(f(z), f(y)) < Ad(z,y), so d(x,y) = 0. About existence, let zy be any point
in X and inductively define z,, 11 = f(z,). We want to show that {z,}° is
a Cauchy sequence. In fact, forn >0 and 7 > 1,

d(f(xn—l—&—j)a f(xn—l))

)\d(mn—l—i-j; xn—l)

)\nd(l'j, l‘o)

AN'd(xj, x5-1) + -+ d(21,70)]

NN TE e+ X 4 1d(, m)
A"

md(fﬂla o) — 0

d(xn-i-ja xn)

VAVARVARVANSI

IN

as n — oo. Hence, x = lim,,_,, =, exists in X, by completeness. Also,

r = lim z, = lim f(z,_1) = f(lim x, 1) = f(x).
n—00 n—00 n—0o0

O

The examples T(z) = z + 1 on R, or T(e*) = ¢/**V on the torus (or
unit circle) T := {e" : ¢ € [0,27)} C C, which are 1-Lipschitz and have no
fixed point, show that the hypothesis 0 < A < 1 can not be relaxed. The
starting example, (1.2.2), does not wholly fall within the scope of Banach’s
theorem: we have two fixed points. However, after restricting the domain of
the function f(z) =1+ %, Banach’s theorem applies.

EXERCISE 1.14. Show that there exist p < # < q such that f(x) =1+ % is a
contraction of [p, q] into itself. Find two explicit values of p and q.

The hypothesis in Banach’s theorem can be usefully relaxed.

EXERCISE 1.15 (Banach’s fixed point theorem for power-contraction). Let (X.d) be a
complete metric space, and let f : X — X be a continuous map such that f°" = fo...f,

the composition with itself n times, is a contraction. Then, f has a unique fixed point in
X. Hint. Use continuity to show that the fized point of f°" is a fized point of f.

1.3. Compact sets

Basically, and imprecisely, a metric space (X, d) (or, more generally, a
subset K of X) is compact if it "looks like” a finite set at all metric scales.
The following properties of a set X are obviously equivalent:

(a) X is finite;
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(b) any sequence {z,}>°, in X takes a value a infinitely often (”pigeon’s
principle”);

(¢) X has finitely many subsets;
(d) the intersection of nested, nonempty subsets of X is nonempty.

In this section we see four useful equivalent characterizations of compact sets
which somehow mirror (a-d): that a metric space (X, d) is sequentially com-
pact (b); that the intersection of nested, nonempty closed sets is nonempty
(d); that it is totally bounded and complete (a); that it is compact in the
topological sense (c). It is nice that many simple properties of finite sets
and functions defined on them have counterparts in the context of compact
metric spaces. For instance,

(i) "if f: X — Y and X is finite, then f(X) is finite in Y (but ¥ might
be finite, and X infinite) becomes "if f: X — Y is a continuous
function between metric spaces and X is compact, than f(X) is
compact in Y (but Y might be compact, and X not);

(i) "if f: X — R and X is finite, then f has a maximum value” becomes
Weierstrass Theorem.

(iii) ”if f: X — R, the value at any point x is well defined” might be
read as ”if f: X — Y is a continuous function between metric spaces
and X is compact, then f is uniformly continuous”.

Indeed, this intuition, like all intuitions, has to be used with care. Any
uniformly bounded sequence of functions f,: X — R defined on a finite set
X has a subsequence converging to a function f: X — R. If we replace
"finite” by ”compact” and ”function” by ”continuous function”, however,
the statement is false. We will see in the next section that we also need
”equicontinuity”, a notion which is hard to detect without leaving the finite
set case.

1.3.1. Equivalent definitions of compactness. The easiest to ma-
nipulate notion of compactness says that no sequence in a compact can ”fade
away”. A metric space (X, d) is sequentially compact if all sequences {x, }>2
of X admit a converging subsequence {z,,}52,, limj,, z,; = a for some a in
X. We say that (X, d) is totally bounded if for all € > 0 there a finite e-net:

a sequence a, ..., a,, such that X = U}”le(aj, €).

LEMMA 1.1. Let (X,d) be totally bounded and Z C X. Then, (Z,d) is
totally bounded.
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PROOF. Fix € > 0. By assumption, X = B(x,€)U---U B(x,,€), hence,
Z = Ujej={j: B(a;enz+0} (B(x;,€) N Z). For each ball in the last union, pick
z; € B(zj,e) N Z, so that, for x € B(zj,¢€), d(z;,x) < 2e. Thus, {z;: je€ J}
is a 2e-net in Z. 0

THEOREM 1.4. A metric space is sequentially compact if and only if it is
totally bounded and complete.

PROOF. Suppose X is sequentially compact and let {z,,} be a Cauchy
sequence. Then it has a converging subsequence {z,,} converging to some a
in X and it is easy to see that the whole sequence {z,} converges to a, so X
is complete.

Suppose that X is not totally bounded: there is an € > 0 such that no
finite family of balls B(x, €) covering X. Pick 21 € X. There is x5 € X such
that d(x1,z2) > €, otherwise X is covered by B(xy,¢€) alone. Inductively we
find z1,29,...,2,,... such that d(z,,z;) > € for j < n: this sequence does
not have converging subsequences.

Viceversa, suppose that X is totally bounded, and let Sy = {z,} be a
sequence in X and consider a finite 1/2-net. There is some a; in the net so
that B(ay, 1/2) contains an infinite subsequence Sy = {x}} of S. Set y; = z}.
Since B(ay, 1/2) is itself totally bounded, it has a finite 1/2%-net, and so there
is ay in the net so that B(as, 1/2%) contains an infinite subsequence Sy = {23}
of Sy: choose in it y, which comes after y; in the original sequence. Iterating,
we find a subsequence {y,,}>°_,, which satisfies

d(ym—b ym> S d(ym—h CLm—l) + d(am—h ym)
< 1/2mtg/omt = 4/2m,

It follows that {y,,} is a Cauchy sequence,
Ay o) < 4(1L/2" + ... 1/277) < /27,
which converges to some b in X because X is complete. ([l
A subset A of a metric space (X, d) is sequentially precompact if its closure

A is compact.

EXERCISE 1.16. Assume that (X,d) is complete. The subset A of X is sequentially
precompact (each sequence in A has a subsequence converging to some point of X ) if and
only if it is totally bounded.

THEOREM 1.5. A metric space (X, d) is sequentially compact if and only
if, given a decreasing sequence I, C F,,_1 of closed subsets of X, the family
{F,}5°, has nonempty intersection.
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PROOF. Suppose X is sequentially compact, and pick a sequence {z,}
with z, € F,. It ha a subsequence {,,} converging to some a in X. Since
{xn,} definitely lies in F},, for each m, and I}, is closed, then a belongs to
all sets of the sequence.

Viceversa, suppose that the intersection property holds, and let {z,} be
a sequence in X. Set F,, = {x,, : n>m} C F,,_;. By hypothesis there is
some a contained in the intersection of the F},’s. Since a € F}, we can choose
n; such that d(w,,,a) < 1/2. Then, as a € F,,,, we can choose ny > n; such
that d(a,,,a) < 1/2%. Iterating, we find a subsequence {z, } converging to
a. U

LEMMA 1.2. [Lebesque Lemma/ Let (X, d) be sequentially compact, and
let X = UyerAg be a covering by open sets. Then, there is € > 0 such that,
for all x in X, B(x,e) C A, for some a.

PROOF. Suppose the thesis does not hold, and construct a sequence as
follows. For n > 1, find x,, such that B(x,,1/2") is not contained in any
Aq. If X were sequentially compact, a subsequence {z,,} would converge
to some a in X: ¢; = d(z,;,a) — 0 as j — oo. By the triangle inequality,
B(a,ej +1/2") 2 B(xy,,1/2"), which is not contained in any A,. But this
means that a is not contained in any A,, (if it were, it would be together with
an open ball centered at it), hence the A,’s do not cover X. Il

A metric space (X, d) is compact if for every open covering { A, : « € I} of
X, X = UaerA,, thereis a finite subcover {A,, : i =1,...,n}, X = U | A,..

THEOREM 1.6. A metric space (X, d) is sequentially compact if and only
iof it is compact.

Proor. If X be compact, we show that it has the intersection property,
hence that it is sequentially compact. By contradiction, let {F,, : n > 1}
be a decreasing sequence of nonempty closed subsets of X and suppose that
their intersection is empty. Then, G,, = X'\ F}, defines an increasing sequence
of open subsets of X, and

UnGn = U (X \ F,) = X\ (N, F,) = X.

By compactness, for some n, X = G1U---UG,, =G, = X \ F,,, hence F}, is
empty, contradicting our assumption.

Viceversa, suppose X is sequentially compact and consider an open cover
{A, : a € I}. By total boundedness, for all € > 0 there are points z1, ..., x,
such that B(x;)U---U B(x,,€) = X. On the other hand, if € is chosen as in
Lebesgue Lemma, there are A, in the cover so that B(z;,¢) C A,,;. Hence,
X =A,U---UA,,. O
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EXERCISE 1.17. Prove Weierstrass Theorem. If f € C(X,R) and X is compact, then
f has mazximum and minimum on X.

EXERCISE 1.18. Show that any compact metric space is separable: it has a countable,
dense subset.

EXERCISE 1.19. Prowve that the image of a compact set under a continuous map between
metric spaces is compact. In fact, you might provide a different proof for each of the four
equivalent definitions of compactness we have surveyed.

1.3.2. The Cantor set. The Cantor set is the simplest example of a
"fractal”: a set having a rich structure, but which is at the same time highly
irregular. In the case of the Cantor set, the irregularity consist in the fact that
it is totally disconnected; but its structure is rich enough to contain copies
similar to itself at any small scale. These properties make it the standard
example of what "decent” sets which are intermediate between a discrete
family of points and a union of intervals might look like. We will meet it
again when we discuss measures on the real line.

The Cantor set C' C R is defined through the following algorithm, which
is best understood by drawing pictures. Let Cy = I° = [0,1]. Removing
the "middle third” (1/3,2/2) from it, we are left with C; = I} U I}, where
I; =1[24/3,2j/3+1/3]. Remove now the middle thirds from I and Ij. What
is left is C* = Uj, j,e01315,;,, Where

251 2js 21 2755 1

The expression j;jo denotes here a binary string, which might be 00, 01, 10,
11.
We iterate the procedure, and obtain Cy D C; D ...C,, where

(1.3.1) Cn = U, gn)efoyn I,

J1j2--Jn?

with

(1.3.2)

]1]2 Jn

25 2]1
S5 Dot FRI}
The Cantor set is C' = N2, C,.

We denote N, = N\ {0} ={1,2,...,n,n+1,... }.

LEMMA 1.3. The map ¢ : {0,1}N+ — C defined by
(1.3.3) U ({dntnz) = ntidfig s

1s a bijection. In particular, C is uncountable.
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Moreover, the map 1 can be written in the form

(134 V(Ui =D 2

n=1

Elements in {0, 1} might be interpreted as infinite binary strings jija . . . jn - - - -

PROOF. Given a binary string j;Js . . w13, # 0, and it can not
contain more then one element because the dlameter of [T, 4 is1/3" =0

as n — oo. Different binary strings clearly produce disjoint intersection sets,
hence the map is injective. We show surjectivity. Given ( € C, for each
n > 1 there is I3 . containing it, and I 5. D 1f ., so we have a
sequence ji ... jn ... such that ¢ € N, I3 . W(ji.. . jn...) =C.

The set of the infinite binary strings is uncountable, hance so is C.

The expression (1.3.4) immediately follows from (1.3.2) and (1.3.3). O

EXERCISE 1.20. The set of the endpoints of the intervals I}, ; is countable: "most”

of the points of the Cantor set are not endpoints of intervals! In fact, endpoints of intervals
correspond to binary strings whose digits which are definitely 0 or 1.

PROPOSITION 1.4. The Cantor set is (i) compact; (ii) any of its points
is an accumulation point for it; (i) totally disconnected.

PROOF. (i) C is the intersection of compact sets, hence it is compact.
(ii) If ¢ = ¥(jijz--.), then the set of the endpoints of the intervals I7
contains infinitely many points different from ¢, which belong to C' and that
can be arranged in a sequence converging to (. (iii) Suppose ¢ < &, and let n
be largest so that both belong to the same connected component of C),. The
interval [, €] is not contained in C,, 1, hence in C'. a

1.4. Continuous functions

1.4.1. Spaces of continuous functions. Let {f,} be a sequence of
functions on a set f,: X — Y, with X a set and (Y,dy) a metric space.
We say that f, — f uniformly if for all € > 0 there is n(e) > 0 such that
dy (fn(x), f(x)) < € for all z in X and n > n(e). With notation introduced
earlier,

im b (fo, f) = 0.

If Y = C, endowed with the Euclidean metric, We can phrase uniform con-
vergence in terms of the uniform norm. A sequence {f,} of complex valued
functions on a set X converges uniformly to a function f if and only if
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A function f: X — Y between metric spaces (X,dyx) and (Y,dy) is
uniformly continuous if for all € > 0 there is 0 > 0, only depending on ¢, such
that dy (f(x), f(y)) < € whenever dx(z,y) <.

THEOREM 1.7. Let f: K — Y be continuous on K, a compact metric
space. Then, f is uniformly continuous on K.

PROOF. Fix e > 0 and for each z in K find §, > 0 such that if dyx(x,y) <
3d., then dy(f(z), f(y)) < e. By compactness there exist x,...,z, such
that K = Uj_, B(x;,0,,). Let 0 = min{d,,,..., 0, }.

Let x,y € K, and find z; such that dx(z,z1) < d,, and dx(y, z2) < 0s,.
If dx(z,y) < 0, then dx(z1,22) < 0z + 0 + 0z, < 3max{d,,,d,,}, so that
dy (f(z1), f(z2)) < €. Hence,

dy (f(x), f(y)) < dy(f(x), f(21)) +dy (f(21), [(22)) + dy (f(22), [ ()
< ete+e

[
The space Co(X,R) is the space of the continuous functions f such that,
for all € > 0, there is a compact set K such that |f(z)| < € for all 2z € X'\ K..

EXERCISE 1.21. If f € Co(X,R), then f is uniformly continuous.

EXERCISE 1.22. If (Y,dy) is complete, then the space (Co(X,Y),0s) is complete.
Hint. 1t suffices to show that the uniform limit of functions in Co(X,Y) belongs to
Co(X,Y), then using the fact that a closed set of a complete space is complete.

EXERCISE 1.23. Show by examples that the previous properties do not hold if we just

require pointwise convergence.

1.4.2. Some spaces of complex valued continuous functions. Let
(X,d) be a metric space. We define here some spaces of real (or complex)
valued functions on X.

(i) We have already met Cy,(X), the space of the bounded continuous
functions, endowed with the uniform norm || fl, = sup,cx | f(2)]-

(ii) By narrowing the definition just above, we have introduced Cy(X) C
Cy(X), the space of the functions f : X — C which vanish at infinity:
for all € > 0 there is a compact set K in X such that |f(z)| < € if
re X\ K.

(iii) Recall that the support of a function f: X — C is

supp(f) = {z € X : f(z) # 0}.

The space C.(X) contains those f € C(X) which have compact
support in X.
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It is clear that C.(X) C Cy(X) C Cp(X).
EXERCISE 1.24. (i) Show that X is compact if and only if 1 € C.(X), if and
only if 1 € Cy(X).
(ii) Find f € Cy((0,1)) which is not uniformly continuous.

(iil) Show that real valued functions in Co(X) attain mazimum and minimum on X .

After we prove Urysohn lemma, we will see that C.(X) is in fact dense

in CD(X)
1.5. Compactness: equicontinuity and the Ascoli-Arzela Theorem

A family F of functions in C'((X,dx), (Y,dy)) is equicontinuous if for all
xz in X and € > 0 there is 0 > 0 such that for all f in F and all y in X, if
dx(x,y) <0, then dy(f(x), f(y)) < e. It is uniformly equicontinuous if § is
independent of x.

THEOREM 1.8. [Ascoli-Arzela] Let F be a uniformly equicontinuous fam-
ily of functions f: X =Y from a compact space (X,dx) to a compact space
(Y,dy). Then F is precompact in C(X,Y).

In particular, if {f.} is a sequence in F, then there exists a subsequence
{fn.} which converges uniformly on X.

Proor. We show that F is totally bounded in the uniform norm.

Fix € > 0 and let § = d(e) > 0 as in the definition of equicontinuity.
Cover X by finitely many balls of radius d, and Y by finitely many balls of
radius e,

X = B($1,5)UB($M75),
Y = B(y,e)U...B(yn,e€).

To each f € F we associate a map ¢¢: {1,...,M} — {1,..., N} as follows.
For i = 1,...,M, f(z;) belongs to some ball B(y;). Choose one, and let
pr(i) =J.

Suppose that ¢ = ¢, = ¢, and let * € X and suppose that € B(z;, ).
Then,

dy(f(z), 9(x)) dy (f (x), f(@:)) + dy (f(2:), 9(:)) + dy (g(x:), g(x))
€ +dy(f(xi), g(xi)) + €

2¢ + dy ( (), Yo(i)) + dy (Yp(i)» 9(4))
4e.

ANVARVARVAN

Thus, F is covered by a number of 4e-balls in the uniform metric which does
not exceed the number of functions ¢: {1,..., M} — {1,..., N}, ie. no
more that N™ of them. O
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1.5.1. Spaces of functions defined by their derivatives. We con-
sider here some spaces of real (or complex) valued functions defined on the
interval [0, 1], endowed with the uniform norm.

(i) C0,1] is the space of the continuous functions.

(ii) Lip[0,1] is the space of the Lipschitz functions,

[f (@) = fly)] < Lz —yl,

where L > 0. The Lipschitz norm of f is

| fllLip = max (supM

xFy lz —yl

suwlfo)]).

(iii) C'[0,1] is the space of the differentiable functions with continuous
derivative, normed by

1Fller = max{|[ f{lu, [1f}-

Clearly C''[0,1] C Lip[0, 1] C C[0,1].
EXERCISE 1.25. (i) Let B = {f € C[0,1] : ||flla < 1}. Show that B is not
compact in C[0,1].
(ii) Let By = {f € C*0,1] : || fllcx < 1}. Show that B is not compact in C1[0,1].

(iii) Show that C[0,1] is complete with respect to || - ||c1. Hint. You have to show
that if fn — f and f], — g uniformly on [0,1], then g = f’. You might use
the fundamental theorem of calculus, or Lagrange mean theorem. At the end of
the proof, you will realize that you just need the assumptions f,(a) — b at some
point a € [0,1] and f!, — g uniformly on [0,1] to deduce that there is f € C1[0,1]
such that f' = g and f, — [ uniformly (which is a stronger result).

(iv) Use the Ascoli-Arzeld theorem to show that By is precompact in C|0, 1].

(v) Show that By is not closed in C[0,1]. Hint. Find an explicit example of a
sequence {fn} in B’ which converges in the norm of C to a Lipschitz function
which is not in C1.

(vi) Show that the closure of By in C[0,1] is contained in the unit ball of Lip[0,1].

(vii) Use Ascoli-Arzela therem to show that the unit ball of Lip[0,1] is closed in the
unit ball of C[0,1].

In fact, one could prove a stronger version of (vi). See theorem 3.9.
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1.6. Continuous functions with prescribed properties

Our function spaces are defined by imposing conditions, hence ”rigidity”,
on the functions belonging to them. Sometimes it is not clear if these spaces
contain many functions, and there have been cases where a function space was
studied, before it was found that it only contained few functions, sometimes
just the zero constant. In applications as in theory, it is often important to
prove that the functions in the space can perform some tasks. For instance,
assuming specified values at specified points. We will see below some results
of this kind, which will be extensively used later on.

1.6.1. Urysohn Lemma. Let (X,d) be a metric space and E C X,
nonempty. Define

dg(z) =d(z, FE) = inf{d(z,y) : y € E},
the distance function associated to F.
ProprosITION 1.5. If K is compact in X, then the infimum is achieved.

Proor. Pick {y,} in K so that d(yx,z) — d(K,z). Find a converging

subsequence y,, — y € K. Then, d(z,y) = lim; d(x, y,,) = d(z, K). O
EXERCISE 1.26. (i) Suppose that E is closed. Show that dg(x) = 0 if and only
ifexe E.

(ii) Let A C X and let A be its closure. Show that da = d.

THEOREM 1.9. If E C X and x,y € X, then |dg(x) — dg(y)| < d(z,y).
In particular, dg is continuous.

PROOF. For all z in F we have:
d(z, ) < d(z,z) < d(z,y) + d(y, 2),

and passing to inf on z, d(z, E) < d(z,y) + d(y, E). Exchange the roles of =
and y to obtain the desired inequality. U

THEOREM 1.10. [Urysohn Lemma in Metric Spaces| Let B,C be closed,
disjoint subsets of X, not both empty. Then, there is f € C(X,]0,1]) such
that f(z) =0 forx € B and f(x) =1 for f € C.

PROOF. If both sets are nonempty, set f(x) = %. It has

all desired properties provided the denominator does not vanish. But if
d(x,B) =0=d(z,C), then x € BN C, contradiction. O
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1.6.2. Locally compact spaces and partitions of unity. A metric
space (X, d) is locally compact if each point = has a compact neighborhood
K,.

LEMMA 1.4. Show that this is the same as asking that for each x there s
ry > 0 such that B(x,r) is compact for all 0 < r < r,.

PRrROOF. Suppose X is locally compact and let K be one of its compact

neighborhoods, z € B(z,r) C B(x,r) C K for some r > 0. Since B(z,r) is
a closed subset of a compact, it is compact. 0]

Let K and V be respectively a compact and an open subset of X. We
write f < V if f € C.(X) has support supp(f) = {z € X : f(z) # 0}
contained in V, and 0 < f(2) < 1on X; and K < fif f € C.(X) satisfies
flz)y=1forze Kand 0 < f(z) <1on X.

LEMMA 1.5. Let K €V, K compact and V' open in a locally compact
metric space. Then, there exists U open with U compact, such that K C U C

Ucv.

~_ PROOF. For each x in K choose B, an open ball with compact closure
B, CV One can cover K by finitely many such balls,

K C B(xy,r)U---UB(x,,1,) = U CU = B(x1,r) U---UB(xp,7,) CV,
and U is compact. 0

THEOREM 1.11. [Urysohn Lemma in locally compact metric spaces] Let
K CV, K compact and V open. Then, there exists f € Co(X) such that
K<f=<V.

PrRoOOF. Let U be as in the preceding Lemma, and apply Urysohn’s
Lemma to the closed sets K and X \ U. U

EXERCISE 1.27. Let X be a locally compact, but not compact space. Show that C.(X)
is not complete with respect to the uniform norm || - ||c. Hint. Do it first with X = R.

EXERCISE 1.28. Show that, if X is locally compact, then the closure of Co(X) in Cp(X)
18 Co (X)

THEOREM 1.12. [Partition of unity in metric spaces| Let K be compact,
K CViU...V,, where each V; is open. Then, there exist h; < 'V; such that

Bt by =1

on K.
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PROOF. For each x consider a ball B, centered at x and having compact
closure, z € B, C B, C V;, for some V; (pick first a ball, it has intersect
some V;, pick a smaller ball with closure contained in V}). By compactness,
KCB,,U---UB,, . Set

Hy =Up, cvBs, € Vi,
so that K C U;H;. By Urysohn Lemma there are H; < ¢; < V;. Observe that

lon U; H;
1—(1—g)(1—gy)...(1—g,) =
(1=g)(I—=g2)...(1—gn) {OOnX\uM.

Set now
hi=1=g1)...(1—gi1)g
It is easy to verify that h; < V;. On the other hand,

1-1=-g1)...0=gn) = 1=(1—=¢g1)... (L =gn_1)+ hy
= hi+...hp,
proving the theorem. U

1.6.3. Tietze Extension theorem. Tietze extension theorem is a far
reaching generalization of Urysohn lemma. The proof below only depends on
the lemma itself: the statement is valid in all topological spaces where the
Urysohn lemma holds.

THEOREM 1.13. [Tietze Extension Theorem] Let X be a metric space (or,
more generally, a locally compact, Hausdorff topological space), let A C X
be closed, and f € C(A,[0,1]). Then, f has an extension F' € C(X,][0,1]),
F(z) = f(x) on A.

PRrROOF. The idea is recursively using step functions to approximate f,
extending them by means of Urysohn Lemma to obtain F' in the limit.
Step I Let h: A — [0, k] be continuous, and let B = {x € A : h(x) € [0, k/3]}
and C' = {x € A: h(z) € [2k/3, k]}, which are closed and disjoint in A, hence
in X. By Urysohn Lemma, there exists g € C(X, [0, k/3]) such that g(z) =0
on B and g(x) = k/3 on C. In case both B and C' are empty, set g = 1/2,
constant. By considering the possible, different cases, h—g € C(A, [0,2/3k]).

Here, g should be considered a rough approximation of h on A, which is
defined and continuous on X.



24 1. A REVIEW OF METRIC SPACES

Step II We see now how the gain in control from h to h — g develops under
iteration.

ho == f:A—10,1]=]0,(2/3)",

g0 € CX, [071/3( /3)°D);

hi = hy— A-)[,(Q 3)]
g€ O [0 1/3(2/3)']),

h, = h,—1— gn—1 A— [O, (2/3)”],
gn € C(X,[0,1/3(2/3)"]),

Step III Construction of F. Set s, = go+ -+ + goo1 € C(X), so that
hn=f—=(g0+ -+ gn1) =f— s, € C(A). We have the estimate

< lgnlle + lgnsalle + -+ ||gn+j—1||c
< 1/3[(2/3)" - 4 (2/3)"H T
< K(2/3)" — 0 as n — oo,

||3n+j - Sn”C

showing that {s,} is Cauchy in C'(X), hence it converges to F' > 0 with

IFlew) < 5 D22/ = g5 =1
and
I = Fllewy < lm |1 = sullocy = lm [[hulloey < lim (2/3)" =
as wished. U

EXERCISE 1.29. Let (X, d) be locally compact, K C X compact, and V 2 K be open.
Let f : K — [a,b] be continuous. Show that there exists F € C.(X, [a,b]) extending f, and
such that supp(F) C V.

1.7. More exercises

EXERCISE 1.30. (a) Let d be the Euclidean metric in the plane R?. Find a
subset E of R? such that (i) the metric space (E,d) is locally compact, and (i)
there is a disc B(z,r) in (E,d) such that B(x,r) C{y € E: |z —y| <r}.

(b) Find E,z,7 as in (a), such that neither {y € E : |z —y| <r} nor B(x,r) are
compact.

(¢) Let (X,d) be a locally compact metric space. Show that for each x in X there is
ry > 0 such, that for 0 <r <r,, B(x,r) is compact.
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EXERCISE 1.31. (i) Show that the closed unit ball in C[0,1], B={f € C[0,1] :
£l < 1}, is not pre-compact. Hint. Show that B is not totally bounded.

(ii) Do the same for the unit ball B’ in
C0,1] :={f: [0,1] = R : f is differentiable and f' € C[0,1]},

with || fller := [l + [1f |-

(iii) Use Ascoli-Arzela Theorem to show that B’ is precompact in C[0,1] (although,
by (i), is not precompact in C*[0,1]: we say in these cases that the immersion
C10,1] € C[0,1] is compact).

(iv) Find an explicit example of a sequence {fn} in B’ which converges in the norm
of C, but with no converging subsequence in that of C*.

EXERCISE 1.32. Show that Q with the Euclidean metric is not locally compact.

EXERCISE 1.33. Show that, if X is locally compact, then the closure of Co(X) in Cp(X)
18 C()(X) .

1.8. Summary

This chapter provides an introduction to metric spaces with a strong
bias towards real analysis and its applications. In §1.1, we define a metric
space and, as special, but relevant cases, normed linear spaces. Among the
examples of metric spaces in the section, some are spaces of functions. That
is, the "points” of the space are functions defined on points of other spaces.
For instance, a point in C10,1] is a continuous, complex valued function
x +— f(x), which is, in turn, defined on points x of the interval [0,1]. A
distance on C10, 1] measures how far two functions are. This circle of ideas
is the basis of functional analysis.

The fundamental notion of completeness is considered in §1.2. A metric
space is complete when all Cauchy sequences in it converge. To wit, all
convergent algorithms living in the space, converge to an element of the
space. By Theorem 1.1 in §1.2.1, any metric space (X,d) can be ”densely
and isometrically imbedded” in a complete metric space (X , ci), and, §1.2.2,
any normed linear space can be densely and isometrically imbedded in a
Banach space (linear, normed, and complete). Useful as it is, the metric
completion of a metric space provided by the theorem is not very explicit;
its points are equivalence classes of Cauchy sequences: not the most visible
objects in mathematics. In concrete situations, it is relevant deciding whether
a metric space is already complete and, if it is not, to have a good "model”
for its completion, possibly one on which it is easy to perform calculations.
In §1.2.3, together with some topological notions, we find some complete
function spaces.

A special instance of the principle ”convergent algorithms do actually
converge” is provided by Banach’s Fixed Point Theorem in §1.2.4.
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In §1.3 we introduce the other topological notion which is foundational in
real and functional analysis, that of compactness. Four relevant, equivalent
definitions of compactness are introduced.

Continuous functions and their spaces are further studied in §1.4. There
we see that uniform convergence preserves continuity (which is the basis for
completeness of spaces of continuous functions with the uniform norm); that
continuous functions on compact sets are in fact uniformly continuous, and
that this property extends to functions in Cy(X), ”vanishing at infinity”.

The main result of the section, however, is the compactness theorem of
Ascoli-Arzela in §1.5, which shows that an equicontinuous family of contin-
uous functions from a compact metric space to a compact metric space, is
pre-compact: it contains a sequence which converges uniformly.

In §1.6 we consider locally compact metric spaces. The function distance
to a set is introduced. It is a very interesting object on its own, but here
it is just used to provide a quick proof of Urysohn’s Lemma, which is a
central tool in the approximation of characteristic functions of sets by means
of continuous functions. Urysohn’s Lemma, in turn, provides the main step
in the proof of the Partition of Unity.

Extending functions from a smaller to a larger set without changing their
main properties is a recurrent theme in mathematics. In §1.6.3 we present
as an example Tietze’s Theorem on the continuous extension of continuous
functions.

1.8.1. Some function spaces. We have seen a number of linear spaces
of functions f: X — R based on a metric space (X, d):

(i) B(X), the space of the bounded functions, with norm | f|, =
sup,cx |f(z)|, which is a Banach space;

(ii) Cp(X) € B(X), the space of the bounded, continuous functions,
with the same norm, which is closed in B(X), hence complete, with
respect to the same norm;

(iii) when X is locally compact, C.(X), the space of functions with com-
pact support, which is not complete with respect to || - ||, (unless X
is compact, in which case C.(X) = Cy(X) = C(X), the space of all

continuous functions);

(iv) when X is locally compact, Cy(X), the space of functions vanishing
at infinity, which is the completion in C(X) of C.(X) with respect
to || f||.; hence, it is a Banach space;

(v) the space C'[0,1] is complete with respect to the norm | f]lcr =
max(|| flu: [|.f]]w);



1.8. SUMMARY 27

(vi) intermediate between C[0,1] and C*[0, 1], we introduced the Lips-
chitz class Lipl[0, 1].

We also saw an interesting phenomenon on which we will return later. The

closed unit balls in (C[0,1],] - ||.) and (C*[0,1],] - ||c1) are not compact
(hence, they are not pre-compact) in the respective norms; but, by Ascoli-
Arzela, the closed unit ball of (C*[0,1],] - ||c1) is pre-compact with respect
to the uniform norm || - |[,.

The definitions of the spaces and the properties they satisfy extend with-
out effort to complex valued functions, once we have observed that the com-
plex valued function f = u + v is continuous if and only if v and v are.






CHAPTER 2

Abstract measure theory

In this chapter the reader finds the basic facts of ”abstract” measure
theory. The abstraction here mostly consists in the fact that we will not
have interesting measures to work with until the next chapter, unless the
reader already had an early exposure to Lebesgue measure on the real line.
Actually, the choice of developing the abstract theory with little examples
to work with is based on the hope that most advanced undergraduates and
early graduate students are typically familiar with Lebesgue measure. In any
case, we will provide below a motivation for the theory we are going to see.

While in the previous chapter we had a set X with metric structure,
(X,d), here we will deal with a set X measurable structure, (X,F), where
F C 2% is a set-algebra which is closed under countable unions (a o-algebra).
We will also be interested in measurable functions f : X — Y, where Y is a
metric space. Finally, we will consider measures on X, which will be used to
integrate positive, measurable functions f, and more. These two structures
will come together in the next chapter, where we start investigating in some
depth Borel measures, which are defined on the (”Borel”) o-algebra generated
by the open sets of a metric space X.

2.1. Motivation

2.1.1. Riemann’s integral. Riemann’s definition of integral is based
on finer and finer partitions of the x-axis. We recall its definition here, in a
version which is equivalent to the usual one, but notationally less cumber-
some.

Let f: [0,1] — R be a bounded function, e.g. assume 0 < f(z) < 1. For
n > 1 set

on on
1
Sn(f) = su r)— > S, = inf xr)—.
() ;:pe[(jl)/g",jﬂ”} f )2” ) ;xd(a‘—l)/?”,j/?"] # )2”
One readily verifies that for all m.n > 1,
Sn(f) = Sns1(f) = sma(f) = sm(f),

29
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hence that the upper and lower integrals of f on [0, 1] are well defined,

A}mw:hm&m>hm% /j

n—o0 n—oo

The function f is Riemann integrable when fo x)dr = fo x)dxr = fo

a number which we call the Riemann integral of f. (The definition of Rle—
mann integral allows for more freedom in the choice of the intervals, but it
turns out to be equivalent to the one we have given here).

It is easy to see that continuous functions are Riemann integrable, and
that so are monotone, bounded functions, which can have a dense set of
discontinuities. In general, in order to be Riemann integrable, a function
must not oscillate "too much, too often”. Define the oscillation of f on a
closed interval f to be

Osc(f,I) :=sup f(x) — inf f(z).

zel zel

Then, f is Riemann integrable if and only if

OZJE;H%U)—&Aﬂ]—JE;—-E:Oﬂf [(G = 1)/2",3/2"]).
Riemann integrability is equivalent, that is, to the vanishing of the average
oscillation which appears on the right.

A desired feature of integrals is that they exhibit some stability with
respect to the integrand,

fn — [ in some reasonable sense implies / folz)dz — / f(z)dz in R.
I I

Riemann’s definition of integral, motivated by his research on trigonometric
series, was a major leap, but a host of troubling examples showed some of
its limitations. A famous one is Dirichlet’s function,

D(x) = 0ifx €[0,1]\ Q,
(z) = Lifz e [0,1NQ,

which is not integrable since f_ol (x)dr =1>0= fo x)dx. The embar-

rassing point here is that D is not especially exotic: it is the monotone limit
of a sequence of Riemann integrable function (with vanishing integral). Let
{@.}52, be an enumeration of the rationals in [0, 1], and set

D) = {0 ifz 0,0\ g, ),

lifze{q,...,q}
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Then, each D, < D, is Riemann integrable with fol D, (z)dx = 0, but
lim,_, D, = D is not.

EXERCISE 2.1. Here we want to find continuous functions 0 < f; < --- < f, <
frnt1 < -+ <1 such that f:=lim,_, o frn is not Riemann integrable.

(i) Forn =1,2,... let ¢: R = [0,1] be a function supported in [—l,,l,], whose
graph is an isosceles triangle having base [—l,,1,] and ¢, (0) = 1.

(ii) Let i, : [0,1] — R be the sum of translates of ¢y,
on
Yo () = Z¢n($ —3/2"),
j=0

and show that if the numbers I, are small enough, then 0 < ¢, (z) < 1.
(iii) Let fn(x) = max{y1(x),...,Yn(x)} < fng1. Verify that 0 < f, <1 and f, is

continuous.
(iv) Let f(z) = limy oo fn(x), f:[0,1] — [0,1]. Show that, for some choice of the
parameters {l,,},

s 1
/Of(z)dle, but/of(:c)dxgl/z

Similar examples and the need of ”passing the limit under the integral
sign” which emerged in many different situations, led to various attempts to
extend the notion of integral on the one hand, and to find characterizations
of the functions which could be integrated in Riemann’s sense on the other.
These two lines of research were intertwined, as we will see in the chapter on
the construction of measures, where Lebesgue’s full definition of integral is
given, and the comparison with Riemann’s integral is analyzed in detail.

Some starting readings on the history of the subject:

e Principia Mathematica Historallis Integratus, by Saul Foresta and
Lawrence Goldman,

e Review by William Dunham of Lebesgue’s Theory of Integration:
Its Origins and Development by Thomas Hawkins,

2.1.2. Lebesgue’s definition of integral. Henri Lebesgue turned things
upside down and gave a definition of integral by taking finer and finer par-
titions of the y-axis instead. As above, let f: [0,1] — [0,1] and for n > 1,
j=1,...,2" consider

Enj={ze|0,1]: (j—1)/2" < f(x) <j/2"},


https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.5435
https://www.maa.org/press/maa-reviews/lebesgues-theory-of-integration-its-origins-and-development
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and consider the corresponding approximations from below and above of f,
27L . 2TL

(o) o= S0 L (1) < () < Sulw) = 3 v, (o)

J=1 j=1

Clearly s, < spy1 < Spir < 5, for all m,n. Both s, and S, are simple
function, i.e. they have the form

where Ay, ..., Ay, are subsets of [0, 1]. To each set A; we associate its ”length”
(the ”measure of A;”) m(A;) > 0, and define the integral of g to be the

obvious one: ) .
/ g(x)dr = Z a;m(A;).
0 i=1

Going back to our approximations, we have:

/01 Sm(x)dx < /01 Sy(z)dz

for all m,n. We can then define lower and upper (Lebesgue) integrals as in
Riemann’s theory:

1 1
/f(x)dx = lim Sm(x)dx < lim S z)dr =: /f

The function f might be called ”Lebesgue mtegrable if lower and upper
integral coincide (we will have different terms to express this concept). The
nice thing is that oscillations are not a problem anymore:

! ! 1 & 1
0§/ Sn(x)dx—/ sn(x)dx:—Zm(Enj ) < 5> —0asn— oo,
; ; o T

ie. fo r)dr = fo x)dr. Here we used the ”intuitive” fact that the sum
of the lengths of dlSJOlnt subsets is no more than the length of their union,
which is less than the length of [0, 1], m([0,1]) = 1.

All of this is very nice and convincing, but (and that’s the elephant in the
room) we do not yet have a definition of "length” for general subsets of the
real line, such as the E,, ; can be. A theory of ” vanishing length” had been
developed by Borel, Lebesgue and others to characterize which functions are
Riemann integrable. Its development was the basis of Lebesgue integration
theory. The main obstruction, we will see, is that we can not assign a length
to all sets, if we want to preserve the properties of length we need to work
with integrals.
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2.2. Basic measure theory

In order to make sense of the definition of integral, the class of the "mea-
surable” subsets of the line, those for which a ”length” can be defined, must
be closed under a number of Boolean manipulations. We develop this in a
general, abstract setting.

First, we introduce some algebraic convention on the use of oo which turns
to be adequate to the theory of integration. We keep the usual conventions
in place in the theory of limits, plus +o00-0 = 0, which is not here considered
indefinite. All other indefinite expressions, such as +o0o — 0o, remain such.

2.2.1. o-algebras, measures, and measurable functions. A o-algebra
on a set 2 and F be a family of subsets of {2 such that:

(i) 0,Q e F;
(ii) if A € F, then Q\ A € F;
(iii) if {A,}22, is a sequence of sets in F, then U° | A, € F.

By (i) and (ii), the countable intersection of elements in F belongs to F,
too. We say that (€, F) is a measurable space and the elements of F are
measurable sets.

A (positive) measure on € is a map pu: F — [0, +00] defined on a o-
algebra F, satisfying p(0) = 0 and, for any family {A,}°°, of disjoint sets
in F,

w(UX Ay = Z,u(An) (countable additivity).
n=1

We further require a non-degeneracy condition: if u(A) = oo, then there is
B C A such that 0 < pu(B) < oo (there are no atoms of infinite mass). We
say that (Q, F, i) is a measure space.

In order of increasing generality, the measure p is a probability measure if
() =1, it is finite if pu(Q) < oo, it is o-finite if Q@ = U ,Q,, with X,, € F
and p(§2,) < oco.

A function f: 2 — X defined from a measurable space (2, F) to a metric
(or just topological) space X is measurable if f~'(A) € F is measurable for
all open sets A in X. Recall that collection of all open subsets of X is called
the topology of X. By definitions, it follows that if f: £ — X is measurable,
and g: X — Y is continuous (2 measurable, X and Y topological), then g o
f: € — Y is measurable: the preimage of an open subset in Y is measurable

in €.
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2.2.1.1. Properties of measurable sets and functions. Given a family A of
subsets of €, the power set 2 is a o-algebra containing 4. On the other
hand, the intersection of an arbitrary family of o-algebras is a o-algebra
(Exercise: verify this), hence there is a smallest o-algebra F(A) containing

A:
FA) =6

GoOA

where G ranges among the o-algebras in Q. We call F(A) the o-algebra
generated by A.

An important case is when (X, 7) is a topological space with topology
7. In this case, we call F(7) =: B(X) the Borel o-algebra of X (assuming a
topology 7 on X was chosen, of course). If X, Y are topological spaces, and
f: X — Y is measurable with respect to the Borel g-algebra in X, then we
say that f is Borel measurable.

PROPOSITION 2.1. If f,g: Q@ — R are measurable and ®: R?* — R is
continuous, then ®(f,g): Q@ — R is measurable.

PROOF. It suffices to show that (f, g): Q — R? is measurable. Let (a, b)x
(¢,d) be an open rectangle in R*: x € (f,g)"'((a,b) x (¢,d)) if and only if
(f(x),g9(x)) € (a,b) x (¢,d), if and only if f(x) € (a,b) and g(x) € (b, ¢), i.e.
z € f~((a,b)) Ng~((c,d)), which is measurable, since it is the intersection
of two measurable sets.

Any open subset A of R? is the union of countably many rectangles R,
n =1,..., hence (f,g)"'(A) = U%,(f,9) ' (R,) is measurable, as wished.

0

EXERCISE 2.2. Show that any open set in R™ is the countable union of open squares
(hence, of open rectangles).

COROLLARY 2.1. (i) Ifu,v: Q — R are measurable, then u+iv:  —
C 1is measurable.

(i) If f = u+iv: Q — C is measurable, then u,v,|f|: @ — R are
measurable.

(iii) Constant functions are measurable. If u,v: @ — R are measurable,
then u + v, uv: 0 = R are measurable.

(iv) Let E C Q. Then E is measurable as a set if and only if xg is
measurable as a function.

(v) If f: Q@ — C is measurable, then there ezists a measurable oc: Q@ — C
such that |a(x)| =1 for all z and f = alf].



2.2. BASIC MEASURE THEORY 35

EXERCISE 2.3. Prove the corollary (i-iv).

PROOF. of (v). The set E = f~1({0}) is measurable, since it is the
preimage of a closed set. Define

f
o= Xp+ mXX\E‘-

The image of « is contained in the unit circle. The preimage through «

of an open disc in C coincides with the preimage of an open circular arc
I={e": a<t<b},at(D)=a*(I), and

al()={z: f(x)€{re": r>0,t€l}}UF,

where F' = f~'({0})if 1 € I, and F = () if 1 ¢ I. In both cases, a~'(I) is
measurable. O

Given a o-algebra F on Q and f:  — X, the o-algebra f.(F) on X is
the set of those F C X such that f~1(E) € F.

EXERCISE 2.4. Show that f.(F) is in fact a o-algebra.

PROPOSITION 2.2. Let (0, F) be a measurable space, and X be a topo-
logical space.

(i) If f: Q — X is measurable, then f~'(E) € F for all Borel measur-
able £ in X.

(ii) Ifh: Q — [—00, +00], then h is measurable if and only if h~'((—o0, a])
1s measurable for all real a.

(iii) If f: Q@ — X is measurable and g: X — Y is Borel measurable,
where Y is another topological space, then go f: Q) — Y is measur-

able.

PROOF. (i) By definition of Borel measurable function, f.(F) con-
tains all open subsets of X, hence it contains the Borel g-algebra
B(X). ie., if F is Borel in X, then f~'(FE) is measurable in €.

(i) The "only if” follows by the definition. Viceversa, if h™1((—oc, a])

is measurable for all real a, then

(a,b) = (a, +00] N (U[R\ (b— %,—i—oo]]) ,

n>1
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then
-1 -1 -1 1
A ((0,0) = K ((a, +oc) 7 (U S () +oo])]) ,
n>1
which belongs to F.

(iii) Use (i).
d

2.2.1.2. Sup and limsup of measurable functions, and approximation by
simple functions.

THEOREM 2.1. Let {f,}52, be a sequence of measurable functions f,,:  —
[—o0, +00]. Then,

sup fn, inf f,, liminf f,, and limsup f,

are measurable.

PROOF. Fix a € R. Then,
sup fo(z) >a <= 3n: fu(x) >a

= zelJf (a0,

and the latter is measurable. Same holds for sup,, f,. As a consequence,

limsup f(z) = inf(sup fo(z))

n>m
is measurable. O

For a sequence {A,}52, of subsets of €, one defines by analogy

limsup A, := ﬂ (U An> , liminf A,, := U (ﬂ An> )
oo k>1 \n>k e k>1 \n>k
EXERCISE 2.5. Prove the following.

(i) We have that x € limsup,, A,, if and only if there are infinitely many n’s such
that x € A, (we say that x € A, infinitely often).

(ii) We have that x € liminf, A, if and only if there exists n(x) such that x € A,
for alln > n(x) (we say that x € A,, definitely).

(iii) liminf,, A, Climsup,, A,.
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As a reward for all this effort, we have a useful approximation procedure
for measurable functions. A simple function s: 2 — C is one having the
form

s(z) = ZanEd’
j=1
where Fq,...,E, CQand aq,...,a, € C.

THEOREM 2.2. (i) Let f: Q — [0,4+00] be a measurable function.
Then, there exist measurable, nonnegative simple functions 0 < sg <
oS < Spy1 < ..., such that f(x) = sup,, fo(z) for z € Q.

(i) Viceversa, if so < s1 < --- < s, < ... is a sequence of measurable
simple functions on Q, then f(x) := sup,, f.(x) defines a nonnega-
tive, measurable function on €.

PRrROOF. Part (ii) follows from Theorem 2.1. Let f be as in (i) and, for
n>0and1<j<n2" set E,; ={zr: (j—1)/2" < f(z) < j/2"}. Then,

n2" ] 1
Sn = Z on XEn.
j=1

has all desired properties. O

EXERCISE 2.6. Show that the functions defined in the proof of (i) in fact satisfy that
sup,, sp(z) = f(x) on Q.
What about approximations from above?

EXERCISE 2.7. Let f like in Theorem 2.2 (i), and suppose, more, that f < C. After
choosing n(C) such that n(C)2™¢) > C, for n > n(C) define, with the same E, ; as in
the proof of the theorem,

n2™ ]
Sp = Z QTXEn.j'
j=1

Show that Sp41 > Sy > f, and f(z) = inf,, S, (x).
We will use without mention the following fact.

PROPOSITION 2.3. Let s = Y7, a;xg; be a (measurable) simple function.
We can find measurable, disjoint sets Fy, ..., Fy and numbers by, ..., by such
that s = Zf\il bixr,. Here, N = N, only depends on n.

PROOF. The property is clear for n = 1. If it holds for n — 1, then

n Np—1
E ajXE; = E biXF + anXE,
j=1 =1
Np—1 Np—1

= Z biXF\E, + Z (bt + an)XFnE, + anXEn\U;an—lFl-
=1 =1 -
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Incidentally, in the worst case scenario this gives Ny =1 and N, = 2N,,_; +
1. O

2.2.1.3. Properties of measures.

PROPOSITION 2.4. Let (2, F, 1) be a measure space.

(i) If Aq,..., A, are disjoint, measurable sets, then pu (U?Zl /L(Aj)) =
> (Ay).

(ii) If A,B € F and A C B, then u(A) < u(B).

(iii) If Ay € --- C A, C A1 C ... are measurable, then p(J, An) =
lim,, u(A,) = sup,, u(Ay).

(iv) If Ay 2 --- D A, D Ay O ... are measurable and p(A;) < oo,

PROOF. Statement (i) follows from countable additivity: set A,.; =
Apo =---=10. For (ii), use AU (B\ A) = B. About (iii),

K <U An) = N(Al) + ZM(An+1 \ An)

and the two series both converge, or both diverge. In both cases, u(4,,)
(U, An). (iv) Similarly, since all terms are finite (including the series):

K (ﬂAn> = :u(A1>_

= pu(An) — Z (A \ Anta),

n=m

so that ji(An) N (N, An). O

(A \ Anpr)

WE

n=1

EXERCISE 2.8. Show that the non-degeneracy condition on the measure u is equivalent
to requiring that, for A € F, u(A) =sup{u(B): BC A, Be F, u(B) < co}.
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2.2.2. The Lebesgue integral of a function. From now on, when we
talk of simple functions, we assume them to be measurable unless otherwise
stated. Let (€2, F, 1) be a measure space, and let s: 2 — C be a measurable,
simple function, s = Y"1 | a;xg,. Its integral is

/QSdN = ZaiN(Ei)-
i=1

and let f > 0 be a measurable function. Then,

/ fdp :=sup {/ sdp s with 0 <s < f Simple} .
Q Q

EXERCISE 2.9. Show that for a simple function the two definitions agree. That is,
using notation I(s) = > a;u(E;), show that

I(s) =max{I(o) : with0 <o <s simple}.

EXERCISE 2.10. Let f,g > o be measurable. Prove the following.
(i) If0 < f < g, then [, fdu < [, gdp.
(ii) If X >0, then [, Afdp =X [, fdpu.

We say that a measurable function f > 0 is integrable if fQ fdu < oo.
When f is real valued, we split it f = f, — f_ with f, = max(f,0) and
f- = max(—f,0), and we define [, fdu = [, f+dp— [, f-du, provided one of
the two summands on the right is finite. We also have that |f| = fy+f_, and
we say that f is integrable if |f| is. Similarly, for f = u 4+ iv complex valued,
the integral is defined componentwise, [,(u + iv)dy = [, udp + i [, vdpu.
provided both summands on the right are finite. The L' norm of f is

111 = / fld.

/Q fdu’ < /Q fldp.

EXERCISE 2.11. Prove (2.2.1). Hint. There is o € C such that | [, fdu| = o [, fdp.

We have the inequality

(2.2.1)

With our definition of a complex integral, we have that, if f € L! and
A € C, then

(2.2.2) )\/Qfdu:/g)\fdu.

EXERCISE 2.12. Prove (2.2.2).
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2.3. Limit theorems for integrals

The raison d’étre of Lebesgue’s theory of integration is that, under rather
general assumptions, we can pass limits under the integral sign.

2.3.1. Monotone Convergence Theorem.

THEOREM 2.3. [Monotone convergence theorem] Let 0 < f; < fo < -+ <

fo < far1 < ... be a sequence of measurable functions on (2, F,u). Then,

n—o0

lim fndu—/ lim f,du.
0 Qn—ﬂ)()

PROOF. The expression lim,, o, f,(z) = f(x) defines a function f: Q —
[0, +00] which is measurable. Since f,, < f, the inequality < is obvious.

In the other direction, let 0 < @ < 1, and 0 < s = > a;xz;, simple,
such that s < f and let E,, = {z : f,(z) > as(z)} C E,4;. Observe that
Q=UX E,: if0<as(z) < s(z) < f(x), then f,(z) > as(x) for some n,
and if s(z) = 0, then f,(z) > s(x), hence z € E,,. Thus,

/andu > /nas(a:)d,u(a:)

= « Z a;u(l; NE,)
i=1

v aZam(l}) = &/gzs(x)du(x) as n — 0o,

i.e.
i [ udn = o [ sta)duta)
holds for all @« < 1 and 0 < s < f, hence, lim,, . fQ fndp > fQ fdp. U

EXERCISE 2.13. Use Monotone Convergence Theorem and approximation by simple
Junctions to show that [(f +g)du = [, fdu+ [ 9dp if f,g > 0 are measurable.

EXERCISE 2.14. Find a sequence {fn} of measurable, nonnegative functions such that
fu(x) = f(x) converges pointwise, but

lim /Q fudpt # /Q Fd.

THEOREM 2.4. Let f, > 0 be a sequence of measurable functions, and
f=>0"1 fn. Then, f is measurable and

/Q (gf"> dn = g/gfndu.
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PROOF. By iterating Exercise 2.13 we have that 0 < s, = >°7 | f; <

Sn+1 /‘ f? and
S [ = [ sudn 2 [ i
o /e Q Q
by Monotone Convergence. Il

2.3.2. Fatou’s Lemma.

THEOREM 2.5. [Fatou’s Lemma] Let {f,} be a sequence of nonnegative
measurable functions. Then,

(2.3.1) /Qliminffn(x) <hm1nf/fn Ydp(x

n—oo

PROOF. Since for a real valued sequence {a, : n > 1} the associated
sequence {inf, {a, : n > m}: m > 1} is increasing (use this in the first line),
and inf{f,(x) : n > m} < f,(x) for n > m (use this for the inequality in
the second), we have:

hminf/fnd,u = lim inf/fnd,u
Q

n— 00 m—00 n>m

> lim [ inf f,(z)du(x)

m—oo [o n>m

= lim inf f,(x)du(z) by MCT

Q M—0o0 n>m

— /thmffn(x)du(ﬂ?%

n—oo

as wished. O

EXERCISE 2.15. Find an example of a sequence f,, defined on Q with u(Q) =1 such
that strict inequality holds in Fatou’s Lemma.

THEOREM 2.6. Let f: Q0 — C be measurable. Then,

< /Q fldp.

PROOF. For some complex o with || = 1,

/Q fdu‘ - / Fu = / ofdp
= | Retapyin < [ Jaridn

= [ 17idn

fdp
Q
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Given a measure p on ) and f > 0 measurable, we can define a new
measure v by

v(E) = [ fdu
E
We also write
dv
2.3.2 = —.
(23.2) =

EXERCISE 2.16. Use Monotone Convergence to show that v defines, in fact, a measure.

2.3.3. Dominated Convergence Theorem.

THEOREM 2.7 (Dominated Convergence Theorem). Let {f,} be a se-
quence of functions with values in R, with lim, . f,(x) = f(x) point-
wise, and suppose that |f,(z)| < g(x), with the dominating g integrable,
Jq 9dp < co. Then,

i [ 1 Jldn = .

n—o0

In particular,

lim [ fu.dp= / fdpu.
PROOF. By assumption, 0 < 2g — |f,, — f], hence, by Fatou’s Lemma,

2 [gdn = [tmintieg -1, ~ Sl
< timint {29 17, - fllds

n— oo
= 2/gdu—limsup/\fn—f!du,
n—oo
from which we deduce limsup,, . [ |f. — fldu <0, as wished. O]

We say that a property P(x) holds p-almost everywhere on Q2 (i — a.e.)
if
p({z: P(x) does not hold}) = 0.

e.g. we write f = g p — a.e. if f,g: 0 — C only differ on a set of measure
zZero.

EXERCISE 2.17. Prove the series version of Dominated Convergence. If > [ |faldp <

00, then f(zn fa)dp =73, f fndp.
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2.4. Some example of measures
2.4.1. Discrete measures. Let X be a set. The counting measure f on
X is defined on 2%,
(2.4.1) #(A) = (the number of the elements of A) € NU {co}.

Let a € X. The unit mass at a (or, Dirac’s delta at a), d,, is as well defined
on 2%,

(2.4.2) 5(A) = { LiEa e,
Oifa ¢ A.

These measures are related,

§A) = 3 6,0X).

aceX

A measure p is discrete if singletons are measurable and, for all measurable
A

)

(24.3) p(A) =" p({a}).

acA

Equivalently, a discrete measure on a measurable space (X, F) is a (possibly
infinite) positive, linear combination of Dirac’s deltas,

= Z a(a)d,,

aeX

where a(a) > 0.

An interesting family of discrete measures can be obtained by selecting
(i) a countable set {x,}22, in R, then, (ii) a summable sequence {a,}>°; in
(0,400), >, o, = 00. The measure

n= i Oy,
n=1

is defined on all subsets of R, in particular on its Borel o-algebra. If {x,} is
dense in R, then u(a,b) > 0 for all (nonempty) open intervals (a, b).
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2.4.2. Measures defined by integrals. Let ; be a measure on a mea-
surable space (X, F), and let E C X be measurable. Then,

(2.4.4) puep(A) = pu(EnNA)
defines a measure on (X, F), the restriction of pu to E.

More generally, if ;1 is a measure on (X, F) and f > 0 belongs to L!(u),
then

(2.4.5) v(A) ::/Afdu

defines a measure on (X, F).

PROPOSITION 2.5. The set function v defined by (2.4.5) is a finite mea-
sure. Moreover, if u(A) =0, then v(A) = 0.

PRrOOF. Let {E,}2, be a family of disjoint, measurable sets. Let f,, =
f Z?zl XB;, = Xur_, B f. By monotone convergence,

v(U B, = / fdu = li_)m fdu
UpZ 1 Bn e Jur B
= lim Y w(Ej) =) v(E,).
n—oo
j=1 n=1

If 4(A) = 0 and s is a simple function such that 0 < s < fx4, then fX sdy =
0, hence, v(A) = [, fxadu =0. O

When v(A) = [, fdu as above, with f € L'(u), we write dv = fdpu, or

dv
(2.4.6) f= an
This is a special case of the Radon-Nikodym derivative of a measure v with
respect to another measure .

If p, v are measures on the same measurable space (X, F), and v(A) =0
whenever p(A) = 0, we say that v is absolutely continuous with respect to
1, and write v < p. The converse of the proposition above holds: if v < u
and v(X) < oo, then dv = fdu for a unique f > 0 in L'(x). In order to
prove this fact, we need a theorem on the existence of the Radon-Nikodym
derivative.
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2.4.3. The Lebesgue measure. At some point, we will prove the fol-
lowing.

THEOREM 2.8. There exists a unique measure m on B(R), the Borel o-
algebra of R (endowed with the Fuclidean distance), such that m((a,b)) =
b—a for all a < b in R.

The measure m is called the Lebesgue measure on R.

There are good reasons to define measures on g-algebras, and not on all
subsets. One reason is that often, e.g. in the theory of stochastic processes,
o-algebras encode ”available information”. An even more stringent one is
that, as we show below, the Lebesgue measure can not be defined on 2%. In
order to do that, we use the Axiom of Choice.

EXAMPLE 2.1. On [0, 1], consider the equivalence relation x ~ y if t—y €
Q is rational. The relation ~ is clearly an equivalence one. Let E C [0,1]
be a set containing exactly one point from each equivalence class. Observe,
next, that

01c |J (E+gcl-1.2:

q€QN[-1,1]

each point x in [0,1] has the form x = xg + q for some xy ~ x, and q €
[—1,1]. Also, the sets E + q are disjoint (because just one element for each
equivalence class was selected), and there is a countable number of them.
Also, m(E) = m(E + q) by translation invariance.

o If m(E) = 0, then 1 = m([0,1]) < >° m(E + q) = 0, which is
absurd.

o If m(E) > 0, then 3 = m([-1,2]) > > m(E + q) = oo, which is
equally absurd.

2.5. Some applications

2.5.1. Derivatives under integral sign. An extremely useful, and in
fact used, fact is that we can take the derivative under the integral sign.

THEOREM 2.9. Let (X, F, u) be a measure space, and F': (a,b) x X — R
such that:

(i) for each x in X, t — F(t,x) is differentiable on (a,b);
(i) for each t in (a,b), x — F(t,x) is measurable on X;

(it) f(x) == supyeap) |0 F(t, )| defines a function in L' (u).
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Then,

(2.5.1) Z—/ (t,x)du(z / O F (t, x)dp(x)

exists for all t in (a,b).

PROOF. Let I(t) = [ F(t,x)du(z) and J(t) = [ O F(t, x)dp(x), and
let R > h,, — 0. Then

[(t+h;;2—l(t) _J — /X<F(t+hn,2—F(t,x> _&F(t’xo 1)

= / (O F(t + Ohy,x) — O, F(t,)) du(z),

with © = ©(x,t, hy,) € [0,1], by Lagrange theorem. The integrand is domi-
nated in absolute value by 2f(z), and it tends to zero as n — oo for each z,
hence we can apply Dominated Convergence:

I(t h
lim(+ /8t (t,x)dp(z).
n—oo
Since this holds for all sequences h,, — 0, I'(t) = J(¢). O

This statement has many variants, which are useful for different problems,
with proofs which are generally variations on the one here provided.

2.5.2. The Severini-Egorov Theorem. Almost everywhere, point-
wise convergence is a weak notion. In 1910 Carlo Severini, and independently
in 1911 Dmitri Egorov, showed that outside a set of small measure conver-
gence is in fact uniform; a fact which is crucially useful in the proof of many
important theorems (see e.g. Lusin’s Theorem in the next chapter).

THEOREM 2.10. [Severini-Egorov] Let {f, : n > 1} be a sequence of
measurable functions defined on a finite measure space, u(X) < oo, with
values in R (or, in fact, in any separable metric space), and suppose that
lim,, 00 fn(x) = f(2) for a.e. x in X. Then, for all e > 0 there exists B C X
such that p(X \ B) <€ and f, converges uniformly on B.

PrRoOOF. For n, k > 1, let
E.r={x e X : |fu(x)— f(z)] > 1/k for some m > n} DO E, 1.

Observe that © € N, E,  if and only if | f,,,(z)— f(x)| > 1/ for infinitely many
values of m; in particular, { f, ()} does not converge. Hence, p (N, E, ;) = 0.
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By dominated convergence applied to {XEn,k T n> 1}, then, u(E, ;) — 0 as
n — oo for each fixed k. Fix € > 0 and, for each k£ > 1, select n; such that
(E,, 1) < ¢/2%. Finally, let B = Uy E,, &, so that u(B) <.

For x € X \ B =N;(X \ E,,;), and m > k, we have that

| fm(2) = f(x)] < 1/k
because © € X \ E,, x, hence we have uniform convergence. O

EXERCISE 2.18. Consider the real line with the Lebesque measure. Show that the
functions fn = X[nnt1] Provide a counterexample to the version to the Severini-Egorov
Theorem in spaces of infinite measure.

2.5.3. L? spaces; definition. Recall that L'(u) is the space of the
absolutely integrable functions,

(2.5.2) L'wsf:25C < |floew ::/nyydu < 0.

In L' (i), we identify two functions which are equal a.e. (you might want to
prove that being equal a.e. is an equivalence relation).

EXERCISE 2.19. In a measure space, the relation f = g p— a.e. defines an equivalence
relation.

To be precise, then, L'(u) is a space of equivalence classes of functions.
Once a measure y is fixed, viewing instead the elements of L'(u) as functions,
with the clause that we identify two of them if they coincide a.e. does not
cause any problem. One has to be careful, however, when working simul-

taneously with a family of different measures, since the equivalence relation
involves a specified measure only.

EXERCISE 2.20. (i) Show that if f >0 and [, fdu =0, then f =0 a.e.

(ii) Show that, for a complex valued function, if ‘f fd,u‘ = [|f|dp, then there exists
complex o with |a] = 1 such that af(x) > 0 for a.e. x.

More generally, for 1 < p < oo we define

1/p
T (/ﬂ|f|”du) ,

and LP(u) = {f : |[fllzr < co}. We will show shortly that || - ||z» defines
a norm on LP(u), which is a vector space. The only subtle point is proving
Minkovski’s inequality: || f + gll» < [[fllze + |9l zs-

Define the essential supremum of a real valued function which is measur-
able on () as

(2.5.3) ess-supf(z) :=inf{A e R: u({z: f(z) > A}) =0},
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where as usual we set inf () = +o00.
The L*°-norm of a measurable f: 2 — C is

[ fl| 2wy = ess-sup,|f ()]
As above, L*(u) = {f : [[fll= < oo}

EXERCISE 2.21. Show Minkovski’s inequality for p = 1,00. When do we have equality?

EXERCISE 2.22. For 1 < p < oo, u = 0 if and only if LP(u) contains the constant
function only.

2.6. Some integral inequalities

Integral inequalities play a prominent role in analysis and its applications.
Norms are often defined in terms of integrals, as in the case of the LP spaces,
and the triangle inequality in L? is an integral inequality. Integral inequalities
often appear when we consider the problem of comparing two norms || - ||;
and || - ||z on the same function space, or when we study the boundedness
of operators, in Partial Differential Equations, and in many other contexts.
The classic and still inspiring monograph on the subject is G. H. Hardy, J.
E. Littlewood, G. Pdlya, Inequalities, Cambridge UP, 1934.

2.6.1. Jensen, Holder, and Minkovski. In this subsection, we con-
sider three classical, and, in real analysis, foundational, integral inequalities.
Jensen’s inequality might be seen as a reformulation of the notion of convex-
ity, and the other two inequalities can be easily derived from it.

2.6.1.1. Jensen inequality. A function ®: I — R defined on an interval 1
of the real line is convex if

@(tlxl + tQIQ) < th)(l’1> + tg@(l’g)

whenever x1,x9 € I and t1,t5 > 0, t; + t = 1, and concave if the opposite
inequality holds. By induction (exercise) we can show that this is equivalent
to requiring that for z{,...,x, € [ and ty,...,t, > 0 with t;, +... 4+, =1,

one has
j=1 j=1

THEOREM 2.11 (Jensen’s inequality). Let ®: [0,4+00) — [0,+00) be an
increasing, convex function, and let (X,pu) be a probability space: p is a
positive measure on X and u(X) = 1. Then, for all measurable f: X —

0, +00),
<1>( / fdu) < [ atu
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PROOF. Let 0 < s = > 7, sjxg, be a simple function with the Ej’s
measurable and disjoint, and Uj_; E£; = X. Then,

P </X Sdﬂ> =0 (i Sju(Ej)> < iq)(sj)u(Ej) = /X‘I’(S)du-

j=1

For general, measurable f > 0 we have, denoting by s a generic simple
function, using monotonicity and continuity of ® from first to second and
from third to fourth line,

@(/ fdu) = @(Sup / sd,u)
X 0<s<fJ X
= sup ¢ </ sd,u>
0<s<f X

< sup/CID(s)d,u.
X

0<s<f

<Aﬁmw.

Actually, in third to fourth line we have equality: why?

EXERCISE 2.23. Suppose ® is strongly convex, ®(t1x1 + toxs) < t1P(x1) + to2P(x2) if
1 # To and t1,ta # 0. Then, equality holds in Jensen’s inequality if and only if f is a.e.
equal to a constant function.

COROLLARY 2.2. Let 1 < p < q < oo and let (X, pu) be a probability
space. Then, for measurable f: X — [0, +0o0],

[fllze < [ f]lLa-

PROOF. The case ¢ = oo is clear. If ¢ < 0o, since t — t9/? is convex on
[0,00), by Jensen’s:

(LMWQW<LWWWWZAUWM

2.6.1.2. Holder’s inequality. Let 1 < p < oo. The conjugate exponent is
1 < p' < oo satisfying 5 + Z% =1.

g



50 2. ABSTRACT MEASURE THEORY

THEOREM 2.12 (Holder’s inequality). Let f,g: X — [0,+00] be measur-
able, and 1 < p < p/ < oo be conjugate exponents. Then, if f € LP and
geL¥, fge L' and

me<wmwmu

Moreover, equality holds if and only if the functions fP and ¢* are a.e.
linearly dependent; i.e. there are A\, u € [0,00), not both zero, such that

AP = pg” a.e.

We consider ¢ as fixed, and build a probability measure around it, so that
Jensen’s inequality can be applied.

Proor. If ||g||;»» = 0, there is nothing to prove. Otherwise, let £ = {z :
g(x) # 0}.

/ g d,u /
[ todw = [ 59 L
X lgll?,
1/p
T /
< ( [ gy ) ol
E ||g||Lp’

/

9" dp .
because ———is a probability measure on E

91",
and ¢ — t* is convex

N 1/p plipi/
o —p Y+’

= (/E fpg( p')p pd,u) ||g||Lp/ P
< Al llgll o

because (1 —p)p+p =0 and p’ — % — 1.
Since t +— 17 is strongly convex, we have equality when fg'™? = (f?/g?)/?
is a.e. equal to a constant. [

EXERCISE 2.24. Show that Hélder’ s inequality holds with more than two exponents.
pr—ll + 4 pi =1, 1 < p; < oo, then, for measurable f1,..., fn: X — [0,00],

/f1 - Ia@)dp(z) < I fillzon - fullon

Write down “continuous” versions of this inequality, with f = f(x,t), t € Y, where (Y, \)
is a measure space.

COROLLARY 2.3 (Cauchy-Schwarz inequality for integrals). Let f,g € L?,
with values in R or C. Then,

L/mfgdu‘séﬂfHL2HgHLz
X
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EXERCISE 2.25. Provide another proof of Cauchy-Schwarz inequality by expanding the
square in

[ [ @) - st ) auta)auto).
You will have to change order of integration (Fubini’s Theorem,).

Holder’s inequality can be used to give a useful characterization of the L”
norm.

THEOREM 2.13. Let u# 0 and 1 < p < oo. For f € LP(u),

[ o] Nl =1}
X

PROOF. In (2.6.1) > follows from Hélder’s inequality.

For the opposite inequality, we consider the case 1 < p < oo, and we can
assume || f||z» > 0, otherwise any g € L? with ||g||,,» = 1 would give equality.
Let E={z: f(z)# 0} and g = fIf x| fllL.", so that [ fgdp = | f]zs,
while

(2.6.1) | fll» = sup {

/ I 1— /
gl = / PO g (|57 < 1.
We have then [ fgdp = | f||%,- O

We deduce a useful ”linearization” of the P norm of a function.

COROLLARY 2.4. Let u # 0 and let f > 0 be measurable. Then,

1l = sup{

/ fgdu‘: 6>0, gl =1} & [0, 0]
X

EXERCISE 2.26. Prove inequality < in (2.6.1) for p =1 and p = oo.

EXERCISE 2.27. Prove corollary 2.4.
2.6.1.3. Minkowski’s inequality.
THEOREM 2.14. Let 1 <p < oo. Then, if f,g € LP(u),

(2.6.2) 1+ 9gllerqy < 1 llzrw + Nlgllze-

Proor. If u = 0, there is nothing to prove. Otherwise, let i +1 =1

p
By Theorem 2.13, we can "linearize” the nonlinear inequality:

/ (f+9)hd/t‘ il =1}
< p{\ JEE Ighl)du' bl =1}

If+gllrqwy = SUP{
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< sup{\ / |fh|du\: ||h||Lp/=1}

+Sup{‘/ Ighldu‘ ) e = 1}
X
= [[fllzeq + gl 2o -

2.7. More on L? spaces

2.7.1. Completeness of L” spaces. We have seen that for 1 < p < oo
Minkowski’s inequality holds,

(2.7.1) \f+gllee < | fllee + gl e

Hence, I” is a normed space w.r.t. linear operations on functions, and the
LP-norm.

THEOREM 2.15. Let (2, 1) be a measure space. For 1 <p < oo, LP is a
Banach space.

PrOOF. We consider the more difficult case 1 < p < oo first. Let {f,}
be a Cauchy sequence in LP, and construct a subsequence {f,, } as follows:

e pick ny such that ||f, — fuijllr < 3 for n > ny and j > 1;

e iterate by choosing nj, > ny_; such that || f, — futjllze < 2% for
n>n; and j > 1.

Consider then the function series
(2.7.2)

Sm(2) = Z [fry () = froy s ()] Lo (2)] 7 $00(), where foy (2) = fi(2).

By our choice of the n;’s,
Jswllzr = Jim_flsnllr by MCT

< nll_{noo Z | fr;, = fr,_i e + || fillz» by Minkowski’s inequality
=1

1
< 305+ U = Al + I filles < oo,

J=1
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hence sy () < 0o a.e. A fortiori, the telescopic series
(2.7.3) F@) = foy (@) = fa,a (@) + fuol@) = lim_f,,, (),
j=1

converges a.e., and we have a candidate limit function f. In fact,

If = falle < I = fojllze + 1fn; = fullze

Jr
< Z”fk—i—l — fallzr +1/27 if n > n;
k=j
400 . .
< Zl/2k+1/2]20/2j—>0asj—>oo,

k=j
Case p = co. If {f,, : n > 1} is Cauchy in L, then for each ¢ > 0 there is
n(e) > 0 so that, for n > n(e) and j > 1,

(2.7.4) ess-SUp,c x| frtj(x) — fu(z)| < e

Set fo = 0 and for m,n > 0 consider the sets E,,, = {v € X : |f.(z) —
fm(x)| > ess-sup,cx|fn(x) — fi(z)|}. Each of them has zero measure, and
(2.7.4) holds for all z in X; := X \ U nEp,. Hence, for z € X; we have
that {f.(z) : n > 1} is Cauchy in C, hence it converges to some f(z) for
n — oo, uniformly on X; because

fale) = f(@)] = lim [fux) ~ (@) <e

provided n > n(e), with n(e) as above. Hence, ||f — fullz< — 0 as n — oo.
Also, f € L™ because

[f(@)] < [f(2) = (@) + [ful@)] < NF = falleee + [[fallze < 00

(a priori, if n is chosen large enough; but a posteriori any f, will do). Il

As a byproduct of the proof we obtain a useful result on pointwise con-
vergence.

THEOREM 2.16. Let 1 < p < oo. If {f.} is a sequence in LP, con-
verging to f in LP-norm, then there it has a subsequence {f,;} such that

lim;_,o fn,(7) = f(z) a.e.
PrOOF. It follows from (2.7.3). O

We state and prove a useful fact that we will use several times.
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THEOREM 2.17. For 1 < p < oo, the simple functions are dense in LP.

PROOF. Suppose 0 < f € LP and let 0 < s,  f be a sequence of
simple functions. Also observe that |f — s,[P < 2?|f[P € L'. By Monotone
Convergence Theorem, || f —s,||z» — 0. For the general case, split f into real
and imaginary parts, and each of them in positive and negative part. 0

2.7.2. Elementary, but useful.

2.7.2.1. Series as integrals. It is an interesting exercise translating the
objects and theorems we have seen so far in the case where X is a set (the
cases in which X is finite or countable are especially important), the o-
algebra is F = 2%, and the measure is the counting measure #, where f(A)
denotes the cardinality of A. We have then the following facts:

(i) For f: X — [0,00), [ fdi = > ,.cx fx) = SUP Ac x. ﬁ(A)<oof($)-
Moreover, if >~ _ f(x) < oo, then {x € X : f(x) # 0} is at most
countable.

(i) Monotone Convergence. If 0 < f,(z) < fo41(x) for all x in X
and n > 1, then,

lim Y fu(x) =) lim fo(a).

rzeX rzeX

(iii) Fatou’s Lemma. If f,(z) > 0 for all z in X and n > 1, then

> liminf f,(2) < liminf Y  f(),
reX zeX

and examples show that strict inequality can occur.

(iv) Dominated Convergence. If there is a summable function g > 0
(le. >, 9(x) < oo) and |fu(z)| < g(x) for all z in X and n > 1,

then
reX

rzeX

(v) For 1 <p < o0, the ¢? = ?(X) norm of f is defined by

1/p
[ fller = (Z \f(x)|p>

if 1 <p < oo, and || f|lee = sup, |f(x)].
Holder’s and Minkowski’s inequalities hold.

EXERCISE 2.28. Prove the second assertion in item (i).
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2.7.2.2. Inclusions of LP spaces. If 1 < p < q < 0o, then:
(i) if u(X) < oo, then LP D L9;
(ii) ¢ C 0.

The first inclusion follows from Jensen’s inequality:

a/p
J st =ux) [ et = o (150 )

The second follows from the fact that if 0 <t <1 and r > 1, then t > t":

|f ()P

1 = _ AT

; >, WP

q/p
S ()P
P> (zy If(y)lp>
> | f(@)]?
q/p’

(=, 1f @)

hence, || fller = [|fllea-

EXERCISE 2.29. Let ¢: [0,00) — [0,00) be convex, ¢(0) = 0. Prove that, if {a,} is a
positive sequence, a, > 0, then

Z ‘P(an) < <Z an) .

2.8. Signed measures

Additive set functions taking both positive and negative values exist in
nature: think of a distribution of electric charge as an example from physics.
Such signed measures also play an important role in mathematics per se. For
instance, as we shall see, they provide a unified and easy to work with frame-
work for classical objects such as functions of bounded variation, absolutely
continuous functions, Lipschitz functions, and more. The extension of much
of what we cover to complex valued measures, or even measures with values
in a linear space, is rather straightforward. We mostly stick to the real case
in order to avoid unnecessarily cumbersome notation.

2.8.1. Absolutely continuous and mutually orthogonal measures.
Let u, v be measures on a measurable space (X, F). We say that v is abso-
lutely continuous with respect to v < p, if v(E) = 0 whenever u(E) = 0. We
say that v L p are mutually orthogonal if there are disjoint sets A, B such
that u(B) =0=v(A).

Here are some basic properties of these two relations.
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(i) We have p < p. Also, if A < p < v, then A < p.

(ii) If A\, u < v and s,t >0, then a\ + by < v.

)

)
(i) If A < pand p L v, then A < v.
(iv) If A\, p L v and s,t > 0, then sA +tu L v.
)

(v) More generally, if, for n > 1, A, L g and ¢, >0, then Y >  t,\, L
i

(vi) We have A < p < A if and only if A and p have the same null-sets.
(vii) If A < pand A L p, then A = 0.

EXERCISE 2.30. Show (i-vii).

2.8.2. Definition and basic properties. Let (X, F) be a measurable
space. A signed measure on X (in fact, on F) is a map u : F — (—00, 09|
such that p(0) = 0 and, if {A,}°2, is a family of disjoint subsets in F, then

251 (U] - s

the convergence being absolute when the left hand side is finite.

EXERCISE 2.31. If (2.8.1) holds with both sides finite, then convergence of the series
is mecessarily absolute. Why?

EXERCISE 2.32. Look back at the proof for positive measures, and show that, if {an}>2,
is a family of sets in F, and i is a signed measure, then

H (U An) :nh*{go'u (U AJ) :
n=1 7j=1

EXERCISE 2.33. Show that the following are signed measures on the Borel o-algebra
of R.

i E) = [, f(x)dx, where f € L' is real valued.
() w(E) = [z

(ii) pu(E) = m(E) — 6o(E), where m is Lebesgue measure and 0y is Dirac’s delta (a
unit mass at the origin): 6o(E) =1 if 0 € E and §o(E) =0 if0 ¢ E.

(iii) Let {zn} and {ym} be countable, disjoint sequences, both dense in R. Define:
pE)y= Y 27— Y 2
T €EE ym€E

Then, 11 is a signed measure (where positive and negative charges are shuffled in
a rather messy way).
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(iv) w(E) = [ f(z)da(z), where o : R — R is increasing and bounded, and f is
continuous.

Examples (ii) and (iii) could be kept in mind while the theory is devel-
oped. They suggest that it is a tricky endeavour finding the locations where
the charge is positive/negative just by measuring p(E) when, say, E ranges
among open intervals. The existence of such locations is our next goal.

2.8.3. The Hahn decomposition theorem. Here we follow Doss,
Raouf The Hahn decomposition theorem. Proc. Amer. Math. Soc. 80
(1980), no. 2, 377. We assume throughout that p is a signed measure on
(X, F).

LEMMA 2.1. Suppose A € F is such that u(A) < co. Then, there is a
negative set N C A such that p(N) < u(A).

Proor. Claim. We prove first that for all € > 0 there is A. € F such
that p(Ae) < pu(A) and for all measurable B C A, one has p(B) < e.

Suppose the claim is false. Then there is € > 0 such that, if A, C A is
measurable and p(A.) < pu(A), then there is B C A, with pu(B) > e. Thus,

(1) With A, = A, There is By C A such that u(B;) > e.

(2) Set A, = A\ B; and observe that p(A.) = u(A) — u(By) < p(A).
Then, there is By C A\ B; C A with u(Bs) > e.

(n) Iterating and setting A. = A\ (By U ---U B,_;), which satisfies
w(A) = p(A) = Y071 u(B)) < p(A), we find B, C A\ (U2} B))
with p(B,,) > e.

The sets B,, (> 1) are disjoint in A, hence u(U2, B,,) = oo, contrary to our
assumption on p. Hence, the claim holds.
We use the claim iteratively.

(1) There is A; C A such that p(A;) < p(A) such that, for all B C Aq,
we have p(B) < 1.

(2) There is Ay C A; such that p(Az) < p(A;) < p(A) such that, for
all B C Ay, we have pu(B) < 1/2.

(n) There is A, C A,,_1 such that p(A,) < u(A,_1) < u(A) such that,
for all B C A, we have u(B) < 1/n.

Let now N =Ny, A, so that for B C N we have u(B) < 1/n for all n > 1,
hence u(B) < 0: N is a negative set. Also, u(N) = lim,, 00 p(A4,) < p(A),
as wished. 0
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THEOREM 2.18 (Hahn Decomposition Theorem). Let u be a signed mea-
sure. Then, there exist disjoint, measurable sets E, F' such that EUF = X, F
15 negative, and F is positive. The decomposition is unique in the sense that,
for an analogous decomposition with negative Ey and positive Fy, EAFE, =
FAF; is a null set. Moreover, u(E) < 0 if p is not a positive measure, and
w(F) > 0 if —p is not a positive measure.

EXERCISE 2.34. Find couples E, F for the examples in FExercise 2.33.

PROOF. Let
a=inf{u(A): A e F},

and let {A,}°°, be a sequence of sets such that a = lim, ,. u(A,). By
Lemma 2.1, there are negative N,, C A, with u(n,) < pu(A,), hence, lim,, o u(N,,) =
a. Set N = U N,,, which is a negative set with u(N) < p(N,) for all n,

hence u(N) = a. Let P = X \ N. If P where not positive, we could find a
measurable £ C P with u(FE) < 0, but this way

(NUE) = pu(N) + p(E) <a,

which is a contradiction. Hence, P is positive and X = N U P is the desired
decomposition. O

2.8.4. The Jordan decomposition theorem.

THEOREM 2.19 (Jordan Decomposition Theorem). Let p be a signed mea-
sure on (X, F). Then, there exist positive measures ., p_, such that (i)
W= py — p_; and (it) py L pu_. Moreover, such decomposition is unique.

EXERCISE 2.35. Consider pn = dg — 01 on {0,1}. Find all couples of measures o, 5 > 0
such that o« — B = p.

PRrOOF. Let X = E'U F be a Hahn decomposition of X with respect to

p, and let py = xpp, p— = —xpp. Then, py L pand py — p- = p.
Suppose p = vy —v_ is a different decomposition of u satisfying properties

(i-ii), with v (G) =0=v_(H), GU H = X. Then,

pr (F) = p(F) = v (F) — v (F) < vy (F),

with strict inequality if and only 0 < v_(F) = p(F N G). If this were the
case,
0 <wy(E) = pu(ENH),

contradicting the assumption that E is negative for . Thus, v, (F') = 0 The
same argument shows that v_(E) =.
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Finally, for any measurable A we have

vi(A) = vi(ANE)+v (ANF)=v (ANE)
= vy(ANF)—v_(ANF)=pu(ANF)
— e(A),
and similarly v_(A) = u_(A). O

The positive measure

(2.8.2) |uf o=y + pe

is called the total variation measure of the measure u. We define

(2.8.3) el = llsllaexy = [ul(X) € 0, 00)]
to be the total variation of p, and M(X) = M(F) = {u measure on (X, F) :
|l mx)} < oo, the space of the bounded signed measures.

EXERCISE 2.36. (i) The space M(X) is a linear space (with respect to which
sum operation?), and the expression ||u||p(x) defines a norm on it.

(i) Let X > 0 be a measure on (X,F) and, for f € L'()\) (real valued), define
dXy = fdA (i.e.: )\f(E) = fE fdX). Show that ”)‘fHX = ||f||L1(>\) (i.e., f— Af
is an isometry of L*()\) into M(X)).

2.9. The Radon-Nikodym theorem

2.9.1. Orthogonality and absolute continuity for signed mea-
sures. Let u, v be signed measures on a measurable space (X, F). We say
that v < u, v is absolutely continuous with respect to u, in any of the two
cases:

(i) © >0 and |v| < p (here p can be an infinite measure);
(ii) p and v are finite and signed, and |v| < |p|.

We say that p and v are mutually orthogonal, pn L v, if |u| L |v].
We collect some immediate consequences of the definition.

PROPOSITION 2.6. (i) If v is signed and p > 0, then v < p if and
only if for all measurable E, p(E) = 0 implies v(F) = 0.

(i) If v is signed, v = vy — v_ is its Jordan decomposition, and pu > 0;
then v < p if and only if v, < p and v_ < p.

(iii) p L v if and only if vy L puy and v_ L py.
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(iv) If A\, u are positive measures, or finite signed measures, then (A —
Wi <Ay +p_ and (A—p)— < Ao+ puy. If, in particular, A,y >0,
then (A — ) < X and (A —p)- < p.

PROOF. (i) We prove the ”if” part. Suppose u(E) = 0 and let
X = PUN be a Hahn decomposition of X with respect to v, with
P positive and N negative for v. If u(F) = 0, then

W(E)=vi(E)+v_(E)=v(ENP)—v(ENN) =0,
because v(ENP) < u(ENP) < u(E) = 0, and similarly [v(ENN)| <
u(ENN) < p(E) =0.

In the ”only if direction” if E is measurable and u(E) = 0, then
vi(E) =v(ENP) =0 because u(ENP) = 0, and similarly v_(F) =
0, hence |v|(E) = 0.

(ii) By definition v < p if and only if |v| = vy + v_ < p, which is
equivalent to vy < p.

(iii) Suppose |u| L |v| (Ponly if” direction), and let X = AU B with
lv[(A) =0 = |p|(B). Then, vy (A) =0 = puy(B), hence vy L .
All other combinations of signs are similar. In the ”if” direction,
using (v) in exercise 2.30, we have

= py +po Lvs,
and for the same reason |u| L v_ + vy = |ul.

(iv) Let X = PUN be a Hahn decomposition for A — . For E measur-
able,

A=w(E) = A=p)(ENP)=XNENP)—-pu(ENP)
M(ENP)+pu_(ENP)

<
< A (E) + (B,

and similarly one argues for (A — p)_(E).
U

Next, we prove a sort of "uniform continuity” result when a measure is
absolutely continuous with respect to another.

THEOREM 2.20. Let p > 0 be a measure on (X, F), and v be a finite,
signed measure on the same space. The following are equivalent:

(i) v < p
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(i) for all € > 0 there is 6 > 0 such that for any measurable E, if
u(E) <0, then [v(E)| <e.

PROOF. Clearly (ii) implies (i). If u(E) = 0, then u(E) < 6 for all § > 0.
This implies that |[v(E)| < € for all € > 0, hence that v(E) = 0.

In the other direction, it suffices to show the property for v > 0, finite:
we can then use the result for vy, hence for v = v, — v_. Suppose by
contradiction that there is € > 0 such that, for all n > 1 there is a set E,
such that p(FE,) < 2% and v(E,) > e. Set F,, = UL, E, 2 Fpy1, and let
F =nNX_,F,. Since co > v(F,,) > v(E,) > €, we have v(F) > e. On the
other hand,

2
F) = u(F,) < E,) < —
) = ) < 3 ) < 3
for all m > 1, hence, u(F) = 0, and we have contradicted (i). O

COROLLARY 2.5. If f € L*(u), with u > 0, for all € > 0 there is § > 0
such that, if p(E) < 6, then [, |fldp <e.

We now show that, if y and v are finite and positive, and they are not
mutually orthogonal, then v ”contains” a nontrivial portion of x4 (and vicev-
ersa).

LEMMA 2.2. Let pu,v > 0 be finite measures. Then, either v L pu, or there
exist a measurable E with u(E) > 0 and € > 0 such that, whenever A C E
is measurable, v(A) > eu(A).

The thesis, that is, is that yg(dv — edp) is a positive measure.

PrROOF. For n > 1 consider the signed measures v — %,u, and let X =
P, U N,, be the corresponding Hahn decomposition. Set N = N,,>1/V,, and
P =U,>1P,=X\N. Since v > 0 and N is a negative set for each v — %u,
we have

0<vy(N)< w
n

for all n > 1, hence, ¥(N) = 0. Now, there are two cases. Either u(P) = 0,
then v L p; or u(P) > 0. In this second case, there exists ng > 1 such that
{1(Pny) > 0. Moreover, the measure v — - is positive on P,, by definition of
Hahn decomposition. Set £ = P,,. U

2.9.2. The Radon-Nikodym theorem. A positive measure pon (X, F)
is o-finite if X = U2 | X,,, where each X, is measurable and u(X,,) < occ.
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THEOREM 2.21 (Radon-Nikodym decomposition of a measure). Let pn > 0
be o-finite and v either (i) signed and finite, or (ii) positive and o-finite.
Then, there exist measures p L p and m < pu such that

(2.9.1) v=p+m.

The measures p, ™ are positive and o-finite if v > 0, or signed and finite if v
18 signed.
Also, there exists a measurable f : X — R such that dm = fdpu, i.e.

(2.9.2) dv =dp+ fdp.

Moreover, f > 0 if v is positive and o-finite, and f € L'(u) if v is signed
and finite.
Finally, p and f (p-a.e., the latter) are uniquely determined by p and v.

The main part of the proof is based on the following speculation, where
p and v are positive and finite. If we have (2.9.2) with everything positive
and p L p, how do we recover f7 If 0 < g < f and F is measurable, then the
key inequality fE gdp < v(F) holds. Let A be the class of the g’s satisfying
the key inequality for all £. It is an educated guess that ¢ = f is maximal in
some sense. Maximal for what? We introduce the functional L(g) = [ ~ 94,
which measures the "size” of g € A. It turns out that the function f we are
looking for is the one maximizing L.!

Proor. Case u,v > 0, finite. Let

A={g: X —[0,00] : g is measurable and / gdp < v(E) for all measurable E'}.
B

We have 0 € A, and max(g,h) € Aif g, h € A:

/max(g,h)du = / hd,u—i—/ gdu
E {z:g9(x)<h(z)}NE {z:g9(z)>h(z)}NE

< v({e:g(z) < h(@)} N E) +v({z : g(x) > hiz)} N E) = v(E).

IThe fact that the mathematical object solving a specific problem is that maximizing
a seemingly loosely related functional, is a recurrent theme in mathematical analysis.
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Set

a = sup{/gdu:gEA}
X

n—oo

= lim | g,du
X

for some sequence {g,} in A

IN

lim hndp

n—oo X

where h,, = max{gi,...,gn} € A, hp < hpiy

= / lim h,dp
X'IZ—)OO

by monotone convergence
< a,

where the last inequality holds because h, € A for all n > 1. Let f =
lim, o0 hpdpp = sup,,> hn. We have f € A since, by monotone convergence,

/ fdpu = lim [ h,du <v(E).
E E

n—oo

That is, dv — fdu > 0. We claim that dv — fdu L dp. If such were not the
case, by lemma 2.2 there would exist measurable F with u(E) > 0 and € > 0
such that

xe(dv — fdu) > expdp,
1.e.
(dv — fdp) — expdp > (dv — fdp — edp)xr > 0.

For all measurable F', then,

/F (f + exe)dn < (F),

so that f 4+ exg € A. On the other hand,

/(f + exp)dp = a+ ep(E) > a,
E

which contradicts the definition of a. Hence, dp := dv — fdu L du, or,
dv = dp+ fdu, with p L u. Observe that in this case f € L'(u), f > 0, and
p > 0 is finite.

To show uniqueness, suppose that we have two decompositions

dp + fdp = dv = dpy + fodp,
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with p L p L po and f, fo > 0in L'(u). Then,

We have disjoint decompositions X = AUB = AgU By with p(A) = p(Ag) =
0 and A(B) = X\o(By) = 0. Let A’ = AU Ay and B' = BN By, so that
X = AU B’ is disjoint decomposition. Moreover, u(A’) = 0 and, by (iv)
in proposition 2.6, (A — X\g)+(B') < A(B') < A(B) = 0, and similarly (A —
Xo)—(B') < Xo(B') < Xo(Bp) = 0. Thus, |A — Xo|(B’) = 0, and we conclude
that A — Ao L p.

Case when pu,v > 0 are o-finite, If X = U, X,, = U, Y, are disjoint,
measurable decompositions of X with u(X,,) < oo and v(Y,,) < oo for all
m,n > 1, then X = U, ,(X,, NY,) is a disjoint, measurable decomposition
where each set has finite u- and v-measure. After renaming the sets, we
might write X = U; W, with p(W;) < oo and v(W;) < co. Applying the first
case to y; = plw, and v; = v|y,, we have that

dv; = fidp + dpy,

where fi(z) =0ae on X \ W, py Ly, and py(X \W;) =0. Let f =", fi
and p = >, pi, so that

dV:Zde ZZfldlM-irZPl = fdp+ dp.
. z z

We have to verify that p L p. If W, = A; U By is a disjoint union with
AN(A;) =0 = pu(B), then X = (U A) U (U B,), and after denoting A = U;A;
and B = U;B;, we have \(A) = 0 = u(B), as wished.

Case when i > 0 is o-finite and v is signed and finite. Let X = PUN
be the Hahn decomposition for v, and use the previous case to decompose
dvi = fedp+dpy, with fi |y = f-|p, p+ L p, and p(N) =0 = p_(P). Set
p=ps—p_. Then, |p| = pi + p_ is finite and |p| L p. Also, f = fr — f_
belongs to L'(u), and

dv = fdu+dp

as wished.
About uniqueness, if we also had dv = fodu + dpg, then

dpo — dp = (f — fo)dp.

Using again (iv) in proposition 2.6, we show that py — p L p, but also
po — p < 1, hence, pg — p = 0. This also implies that f = f, a.e. OJ
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2.9.3. Application: the existence of the conditional expectation.
Let (X, F, ) be a measure space, p > 0, and let G C F be a sub-c-algebra
of F. The conditional expectation g = E[f|G] of a function f € L'X, F, u)
is a function g : X — [—o00, +00] such that

(i) g € LY(X, G, n) is G-measurable;
(ii) for all G € G, [, gdp = [, gdp.

This notion is foundational in probability theory, where the measure p is
typically assumed to be a probability measure: u(X) = 1.

THEOREM 2.22. If (X, F,p) is o-finite, f € LYX,F,u), and G is a
sub-c-algebra of F, then E[f|G] exists, and it is uniquely a.e. defined as a
function in fLY(X,G, n).

PrOOF. For G € G, define v(G) = [, fdu. The set function v defines
a (finite) signed measure on (X,G). In fact, if G = U2 |G, is a countable
union of disjoint sets in G, then

vg) = /X > v S
= ;/Xchndu

by dominated convergence, since f € L',

= > v(Gn).

n=1

The measure g, the restriction of x to the class G, is am positive, o-finite
measure on G (which we still denote by p), and v < u. For G € G, in fact,
if u(G) =0, then fxg = 0 a.e., hence,

v(G) = / fdu = 0.
G
If we apply Radon-Nikodym theorem, we find ¢ € L'(X,G, ) such that

dv = gdpu, i.e.
/fw=WKU=/gw,
G G

hence ¢ satisfies the properties defining the conditional expectation. About
uniqueness, if ¢’ has the same properties of g, then

LL@—JMMZO
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for all G in G. Considering the subsets of G where g — ¢’ is, respectively,
positive or negative, we have that 0 = [, (9 —g¢')+dp = [ (9 —¢')—dp, which
implies that (¢ — ¢')+ = (9 — ¢')— = 0 p-a.e., hence g = ¢ a.e. O

An alternative proof of the existence of the conditional expectation is by
means of Hilbert space projections.

2.9.4. Application: the dual space of [P for 1 < p < oco. We
consider here real valued functions. Complex valued functions can be dealt
with in exactly the same way.

Let (X, F,u) be a measure space, and let 1 < p,p’ < oo be conjugate,

é + z% =1. Let f € Lp/, and define the functional
(2.9.3) A¢(h) = / hfdu.
X

The following is a simple consequence of Holder’s inequality.

PROPOSITION 2.7. We have that Ay : LP — R is well defined. Moreover,

A(H
290 Iglaass = s { LA e oy < 1

PROOF. In one direction, by Holder we have

A _ Sy L IRl £l
IAlle NRllee = Al

which shows that [|Af|lzzs sy < [|fllz»- To obtain the opposite inequality,
let h = f|f[P'~2, so that

. 1/p ) 1/p y -
uhum:(/x !f!“”’%) =(/X If!”du) 1A = 11,

while
[ nfdu= [ 15V dn =111
b's X

Hence,

A (H)]

= = Il

1] e t

50 ||Af||B(LP,Lp’) > [ fll - O

When 1 < p < o0, a converse to the proposition holds, at least in the
o-finite case.
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THEOREM 2.23. Let p be a o-finite measure on a measurable space (X, F),
1 <p<oo,andlet A: LP(u) — R be a linear functional such that

ANH
| AllB(Lr ) := sup {W che LP||h|r # O} < 00.
Then, there exists g € LP (n) such that A = Ay, the functional defined in
(2.9.3). Moreover, ||Allgirr) = 9]l 10 -

The function representing A is unique.

Like in all representation theorems, the problem is to extract a concrete
object from an abstract one. Our abstract object here is the functional A. If
A, B are disjoint, measurable sets with finite measure, then x4, xg € L?(u)
and x4 + XB = XauB, 50 A — v(A) := A(xa) induces a finitely additive set
function on F. If we can prove that v is a measure on F, we are in business
with a ”concrete”, measure theoretic object to work with.

PrOOF. Consider first the case when p(X) < oo. For A in F, define
(2.9.5) v(A) = A(xa),

which is defined since x4 € LP because p is finite.

We show that the set function v is countably additive, hence a signed
measure. Suppose that {A4,} is a family of disjoint, measurable sets in X.
Then,

(2.9.6) > XA = Xu= 4,
n=1

converges in LP. In fact S, := > " xa;, /D 02 Xa,, and it is Cauchy in
LP,

p n+j

= ZM(Ai) N0

n+j

D Xa
i=n L

as n — 00. By the boundedness of A on LP(u),

(2.9.7) v (U2, A4,) =A (Z m) => A(La,) = v(A).

= n=1

Also, if u(A) =0, then x4 = 0 in LP(u), hence v(A) = A (xa) = 0, showing
that v is absolutely continuous with respect to u, v < p. By Radon-Nikodym
Theorem, there is g € L'(p) such that

(2.9.8) y(A) = / gyt = /X xagd.
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By linearity, the same happens for all simple functions s,
(2.9.9) A(s) = / sgdy.
b

We have more: ¢ € L¥. Since the simple functions are dense in L?, in fact,

lgll.»r = sup{ / sgd,u‘: s simple |, ||s||zr < 1}
b

= sup{|A(s)|: s simple , ||s|[zr < 1}

= ||A||B(LP,]R) < Q.

Fix h € L?, and let {s,} be a sequence of simple functions converging to h
in LP. Then,

(2.9.10) ‘A(h) —/ sngd,u‘ = |A(h = sn)| < ||AllBer)l|h = Snllze = 0,
X

as n — 00. On the other hand, by Holder’s inequality,

[ hat— [ sngdu\ < Nl = sullen
X X

— 0 asn — oo.

Together with (2.9.10), we have then that A(h) = [, hgdpu, as wished.

Suppose now that p is o-finite on X: X = U2, X,,, where the summands
are disjoint and u(X,) < oo for each of them. For n > 1 let u, = p|x,
be the restriction of p to X, u,(E) = p(E N X,), and for h € LP(u), let
hn, = hxx,. Any function in LP(u,) can be isometrically identified with a
function of the form h,. Observe that h = ) h, converges in LP(p) by
dominated convergence. Apply the finite case of the theorem to the measure
ttn- The functional A restricted to functions vanishing outside X,,, which can
be identified with a functional A,, on LP(u,), has the form

A(Xth> = An(hn) :/ P Gndpin, :/ hgndp,
X n

where g, € L” (u,,) vanishes outside X,.
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Let g = >, gn. We first prove that g € LP' (u). For any h in LP(u), in

fact,
N
X n=1

NN

< | AllsErr)

/ hgdu
Unz1 Xn

N
Dt
n=1

< Als@r 1Bl Log -

Lp(p)

Passing to sup over [|h||zr(,) < 1, we obtain that [|g[| ;) < [[AllsEe ) R)-
If h € LP(u), by dominated convergence and the fact that ‘hgxugzl x, | <
|hg| € L' (1), we have:

(2.9.11) lim hgdu:/ hgdju.
b

N—o0 Uszan

We can finally conclude, for any h € LP(u):
N
A(h) = limA (2 hn> = lim_ hgdpu

u_ X,
= / hgdp,
X

n=1
as wished. O

2.10. Summary

Contents of the chapter §2.1 was purely motivational. Our first expe-
rience with integrals is Cauchy’s definition of integral, where integrands are
continuous functions on compact intervals. Riemann’s integral allows more
general integrands, but only under very special assumptions we can pass the
limit under the integral sign. Both notions are based on approximations
where the z-axis is partitioned into small intervals. The Lebesgue integral
moves the partition to the y-axis: approximating functions are constant on
measurable sets, of which we can calculate the measure.

In §2.2 we have developed the definition of the Lebesgue integral in an
abstract setting. We have defined o-algebras of measurable sets, hence mea-
surable functions from measurable spaces to metric spaces, the most basic
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example of the latter being simple functions, which are piece-wise constant
in a measurable sense. Finally, we have defined the Lebesgue integral of a
positive, measurable function by a limiting procedure, and that of a complex
valued function by splitting it into a linear combination of positive func-
tions. An important example of og-algebra is the Borel o-algebra associated
to a topology.

The promised reward for this effort comes in §2.3, where we have seen the
three most used theorems about limits under the integral sign: the Monotone
Convergence Theorem (MCT), Fatou’s Lemma, the Dominated Convergence
Theorem (DCT).

In §2.6 some integral inequalities related to convexity are proved: Jensen,
Holder, Minkowski. Finally, in §2.5.3 we define the LP spaces, the Banach
space of the measurable functions whose p-power is integrable (for p < oo;
L* functions are those which are essentially bounded) and we prove the basic
facts concerning them in §2.7.

So far, the only concrete measure we have is the counting measure. The
results of the section, when particularized to this setting, provide nonetheless
interesting facts about series, which are summarized in §2.7.2.1.

Spaces and operators In this chapter we have introduced the family of the
Banach spaces LP, 1 < p < oo. We also have defined the space of the signed
measures.



CHAPTER 3

Product measures

Integrals with respect to two or more variables are an essential tool not
just in higher dimensional calculus, but also in analysis on the real line. Think
of the theorem on existence of weak derivatives of increasing functions, where
we switched integration with respect to a Borel measure p and Lebesgue
measure. We will have an even stronger need of integrating on product
structures when we introduce convolution.

3.1. o-algebras on product spaces, product measures and Fubini’s
Theorem

3.1.1. Product o-algebras. Let (X, F,u) and (Y,G,v) be measure
spaces. A measurable rectangle is a set of the form A x B, with A €
mathcal " and B € G. We consider the class (F ® G)o containing dis-
joint unions of measurable rectangles. It is a routine exercise verifying that
(F ® G)o is a an algebra (draw some pictures): it is closed under union,
complementation, and it contains (). The product o-algebra is

FRG:=0c(F®Qg)),
the generated o-algebra.

Foraset Ein X XY, x € X, and y € Y, consider the z-section F, and
the y-section EY of E to be

E.={yeY: (z,y) € E}, EY={reX: (z,y) € E}.
Define analogously for f: X xY — C,
fo(y) = fYx) = f(x,y) forallz € X, yeY; f,.: Y =-C, fY: X = C.

LEMMA 3.1. (i) IfEe€e F®QG, then E, € G and EY € F for all x
m X andy inY.

(ii) If f : X x Y — C is measurable with respect to € F ® G, the f, is
G-measurable and fY is F-measurable.

71
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PROOF. (i) We show that the collection H of the sets E for which E, € G
for all x € X (a) is a o-algebra, (b) it contains the measurable rectangles;
hence, it contains F € F ® G.

(b) is clear: (Ax B),=Bifz € A, and (Ax B),=0ifz € X \ A, and
both are elements of G. (a) If £ € H, then (X xY \ E), =Y \ E, € G, so
X x Y\ E € H. Similarly, using the fact that (|, En), = U, (En). we see
that H is closed under countable unions.

(ii) For f = xp, £ € F®G, statements (ii) reduces to (i). By linearity of
f > fu, statement (ii) holds for simple functions. Let now f be measurable
and positive on X x Y, and let f,, ' f an approximation from below of f by
means of positive, simple functions. Then (f,),. / f: is an approximation
from below of f, by simple functions, hence each f, is measurable.

If f is real valued, split it f = f, — f_ and use again linearity of f — f,,
and similarly is done if f is complex valued. 0

3.1.2. The Monotone Class Lemma. Below, we need a general lemma
on c-algebras, which is also often used, for instance, in probability theory.
The proof is not fun, but the result itself is very useful.

A family M of subsets of X is a monotone class when:

(3.1.1) it M3 A; /A, then A€ M, and if M 5 A; \( A, then A € M.

LEMMA 3.2. Let now Ag be a set algebra on X, A = o(Ap) be the smallest
o-algebra containing Ay, and M(Ay) be the smallest monotone class contain-

ing Ag. Then, A= M(Ay).
The way the theorem is normally used is the following.

COROLLARY 3.1. If a property P = P(A) is satisfied by the sets A be-
longing to a set algebra Ay, and the P is preserved under monotone limits
of sets (A; /A, A; Ny A), then P holds for all sets in o(Ayg), the o-algebra
generated by Ag.

PROOF. The family of the monotone classes is closed under intersections,
hence, M(Ay) is the intersection of all monotone classes containing A,. Since
a o-algebra is already a monotone class and it contains Ay, then A O M(Ay).

Also, the class M(Ap). ={X\E: E € M(Ap)} (i) is a monotone class
(the complement, F +— X\ F, switches countable unions of increasing families
of sets, and countable intersections of decreasing families of sets); and (ii)
contains all E = (X \ E)\ E, as E ranges over Ag. Thus, M(Ag). 2 M(Ap),
and the opposite inclusion holds for the same reason. Hence, M(A4y) is closed
under complements.
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For E € Ay, let Cg be the class of those F' € M(A) such that
F\E, E\F, FNE, X\ (FUE) € M(A).

Clearly Ay C Cg € M(Ap). Also, Cg is a monotone class. Let’s verify it. If
F, /in Cg, then

(U Fn>\E = |J (Fu\ E) € M(A), E\(U Fn> = () (E\ F,) € M(A),

n=1 n=1 n=1 n=1

(G Fn> NE = D (F, N E) € M(A),

and finally

X\ ((G Fn> uE) - ﬁ (X \ (F, UE)) € M(Ay),

n=1

This shows that Cg is closed under unions of increasing sequences of sets,

and the verification for the intersection of decreasing sequences is similar.

By definition of M(Ag), we have that M(Agy) C Cg. Hence, M(Ay) = Cpg.
Let now D be the class of those sets E in M(A) such that

F\E, E\F, FNE, X\ (FUE) € M(A)

for all F'in M(Ap). We saw above that D contains Ay. Also, D is a monotone
class. Let’s verify that it is closed under unions of increasing sequences of
sets. If B, 7 is a sequences in D and F € M(Ay), then

Fy (UE) _(VF\ B € M(A),

n

because it is the intersection of a decreasing set sequence in M(Ay. Similarly
on deals with the other properties. The punchline is that D C M(Ay) is a
monotone class containing Ay, hence D = M(Ay).

We put the pieces together. Since M(Ay) = D, then M(A) is closed
under finite intersections, hence, being closed under complements, it is closed
under finite unions; thus, it is an algebra. A set algebra which is closed under
unions of increasing sequences of sets, is obviously closed under countable
unions. We have proved that M(Ap) is a o-algebra containing Ay, hence, it
contains o(Ag) = A. O
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3.1.3. Product measures and Cavalieri Lemma. The key step in
the proof of Fubini Theorem is this special case, which is a sort of Cavalieri
principle.

LEMMA 3.3 (Cavalieri). Suppose u,v are o-finite. Then, for E € F®G,
(i) = — v(E,) is F-measurable, and y — u(EY) is G-measurable;

(ii) we have
(3.1.2) /X v(E,)du(z) = /Y W(EY)dv ().

We can write (3.1.2) as the equality of two iterated integrals:

//Xzaxydv )dp(x //xExydu )dv(y).

PROOF. Let’s start with the case u(X),v(Y) < oco. We show first that
the class A of the subsets of X XY for which (i)-(ii) hold, contains the algebra
(F ® G)g. For a measurable rectangle F = A x B we have

V(E,) = xa(z)v(B); n(EY) = xp(y)u(A),

both measurable, and

/X V(Ey)du(z) = / v(B)dp(x) = v(B)p(A) = / u(A)du(y) = /Y W(EY)du(y),

thus F = Ax B e A.

If £ =, E; is a finite union of disjoint measurable rectangles, and
x € X, then E = U ,(Ei), is a finite union of disjoint measurable sets.
Hence,

i=1
is a finite sum of F-measurable functions of x, which is F-measurable, so
Ee A

Suppose now that A > E, A/ E. Then, (E,). / E, and, by Monotone
Convergence, v((E,),) 7 v(EY). Similarly, u((E,)Y) / 1w(EY), hence, again
by Monotone Convergence,

/ W(EY)dv(y —hm/ Y)du(y —hm/ ):/Xv(Ex)d,u(x),

showing that E € A.
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If A> E, \( F, we repeat the reasoning verbatim, replacing Monotone
by Dominated convergence, which we can do because pu(X),v(Y) < oo,
We have verified that

FxGOAD(F®G)
is a monotone class, hence, by the Monotone Class Theorem,
FxGDOAD0((F®G)) =F %G,

as promised.
Suppose now u, v are o-finite:

We define the product measure 4 @ v on X x Y by

313 pen)B) = [ vEBdue) = [ e

Y
for £in F ® G. It satisfies (p ® v)(A x B) = u(A)v(B).
EXERCISE 3.1. Verify that p ® v is o-additive.

On the o-finiteness condition When the measures are not o-finite, Cava-
lieri’s Lemma fails in a spectacular way, as the following example shows. In
R X R, consider on the first factor the counting measure H° (which is not
o-finite), and the Lebesgue measure m on the second. Let E = {(z,z): 0 <
x < 1}. Then,

[ eEndmi) = [ dm(y) = 1
while

/]R m(E,)dH’(z) /R 0dH'(z) = 0.

Measurability is a delicate issue. If (i) £EY is measurable in X for all y,
and y — p(EY) is measurable on Y, then the expression

[ ntEnyanty

makes perfect sense. Still, £ might not be measurable in X x Y, as the
following example shows. Consider ¢ = v = m to be Lebesgue measure on
R, and let L be a non-measurable set in [0,1]. Let E C R? be the union a
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horizontal copy of the interval [0, 1] for each 0 < y < 1, translated differently
according to the value of y:

Ez(U{(m,y):—leﬁO})U U {(z,y):0<z <1}

yeL y€[0,1]\L

Each EY is either empty or a segment, hence it is measurable; and m(EY) =
X[0,1](¢) is measurable, but E is not measurable in R2. If it were, by Cavalieri’s
Lemma, F, would be measurable for all z, but E, = L for z € [-1,1] \ {0}.

3.1.4. Fubini Theorem. Here, (X, F, 1) and (Y, G, v) are measure spaces.

THEOREM 3.1 (Fubini Theorem). Suppose (X, F,u) and (Y,G,v) are o-
finite, and let f : X XY — C be F ® G.measurable. If one of the following
holds,

(i) f>0; or
(i) [y [f@y)ldp@v)(z,y) < oo;
then,

(a) for each x € X the function f.(y) := f(x,y) is G-measurable, and
for each y € Y the function f¥(x) = f(x,y) is F-measurable;

(b) the function x — [, f(x,y)dv(y) is F-measurable, and the function
y = [y f(x,y)du(y) is G-measurable;

(c) we have

a1a) [ jepdnsnen = [ ( / f<x,y>dv<y>) ()

(3.1.5) = L(/}(f(w,y)du(x)> dv(y).

PROOF. (a-c)Equation reduce to the Lemma of Cavalieri when f = xpg,
with E measurable. By linearity, they hold for all simple functions. By
Monotone Convergence, they continue to hold for positive f’s: first you
apply MC to s¥ 7 f¥ for each fixed y, then to (y — [y s¥(z)du(z))
(y— [y fY(x)dp(z)) (and repeat, switching the role of = and y). This gives
Fubini for f > 0 (which is sometimes called Tonelli Theorem).

For real valued f, you split f = f. — f_, and apply the previous case. [
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There is a point we swept under the rug. It might be the case that (ii)
holds and for some, say, r € X, fY fi(z,y)dv(y fY (z,y)dv(y) = 0.
In these cases we redefine [, f(z,y)dv(y) = 0. ThlS is harmless, since the set
of such points has zero p-measure. If it did not, by the case (i) we would have
in fact that the hypothesis in (ii) fails, [/, , |f(z,y)|d(p @ v)(z,y) =

EXERCISE 3.2. Write down the proof of Fubini’s Theorem with all details.

3.2. Some applications

3.2.1. Minkovski integral inequality. Just because, for 1 < p < oo,
| - l» is & norm, we have that

p 1/p n
(/ du(x)) = | ZaifiHLP
X i=1
< Y lailll fillee
i=1

(32,1 - ZH (f rfi<x>\f’dﬂ<x>)l/p7

where for p = oo we have the esssup instead,

Z a; fi(x)

n

Zaifi(x)

i=1

esSsUP,¢ x

n
< Z |a;lesssup,e x| fi(2)],
i=1

which is rather obvious.

By replacing the finite sum by an integral, we obtain a much used in-
equality.

THEOREM 3.2. Let (X, F,u) and (Y,G,v) be measure spaces and let f :
X xY — R, be measurable. Then,
(3.2.2)

(/X (Af($7y)dV(y)>pdu(x)>l/p§/Y(/Xf(x,y)f’du(x))l/pdy(y)_

PROOF. By Fubini Theorem, y — [, f(z,y)dv(y) andy — [, f(z,y)’du(z)
are both measurable, with respect to G and F, respectively; hence, both sides
of the inequality makes sense. Il

3.3. Convolution and Young’s inequalities

3.3.1. Convolution. Let f,g: R — C be measurable functions. Their
convolution is the function f % g : R — C defined as

_ / £ - y)g(y)dy
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There are issues of measurability (of the function H(z,y) = f(x—y)g(y)) and
of convergence (of the integral defining f * ¢g) which we will for the moment
- 1
ignore.

To illustrate the definition, consider g,(y) = Lx[o,q- Then

(f % g0) () = - f@—yﬂy:if f(y)dy
a ] [x—a,zx]

[0,a a

is a moving average of f. Roughly speaking, all convolution operators f
f * g can be viewed as linear combinations of moving averages.

Moving averages commute with translations. Let 7, f(z) = f(x—b) be the
forward shift of the function f by b units of (say) time. It is rather obvious
that the moving average g, * f is shifted correspondingly.

ProrosiTION 3.1. Let f,g: R — C, and b € R. Then,

(3.3.1) (f*g) = (nf) * g.

PROOF.
n(f*g)(x) = U*mu»ww:/f@—b—wmw@
- /nﬂx—wmw@=4nﬁ*mm.

In other words, the operator T, f = f * g satisfies
(3.3.2) nol,=T,0T.

Invariance of the laws of Nature (and, hopefully, of technological items) in
time and space, can be rephrased as

Tto,xoT(f> - T(Tto,azo.f)a

where f = f(t,x) is an input function depending on time ¢ and position x,
7 is a shift in time and space, and T'(f) is the output function produced
by a natural process, or by an artificial device, (a system) T, which still
depends on time and space. A basic, heuristic principle, which has several
mathematical avatars, is the following.

Principle of invariance by translations. Alllinear systems T which are
mvariant with respect to position and time, have the form f > f*gr, where
gr 18 a suitable mathematical object.

L(x) Write the proof.
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Laws of Nature and devices are invariant under spatial rotations as well.
Mathematically taking this into account leads to convolutions on (some) Lie
groups, which is not a topic we will touch.

Another important notion with entertaining mathematical developments,
which are outside the scope of these lectures, is that of causality. Consider
again f = f(x), a function of time. If we have a simultaneous knowledge of
the values of f (as we do when, for instance, have the record of a music piece),
at each x we can compute the moving average f (%X[—a /2,0 /2}) considering
both future and past values of f(y) (—a/2+ 2 <y < a/2 + x), since our
record has all that information. If we want to compute an average in "real
time”, however (like in a transmission system, where we do not want any
unnecessary delay), we are bound to use values of f(y) with y < z. In the
general case of a system f +— f % g, we have then to require g(y) = 0 for
y < 0, so that

U*@@%zémﬂw—wﬂw@

only needs the information f(z) when z = x —y < x. This kind of analysis
naturally, and surprisingly, leads to holomorphic function theory.

3.3.2. Young’s inequality.

THEOREM 3.3 (Young’s inequality with ¢ = 1). Let f € LP(R) and
g € LY(R). Then,

(3.3.3) 1 * glle < [[fllzellgl -

ProOF. Using Minkovski’s integral inequality applied to 7, f(z) = f(z —
) Iy fllze = 11 f1lze,
P 1/p
dx)

If 5 gller = (4

_ ’/R@f'g(y)dy

< Auwmmmwww

— » d
|umtém@ny

= (Al ligllee

Af@—ymwMy

Lr
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A critical analysis of the proof shows that its main ingredient is the
fact that the Lebesgue measure dx is invariant under translations, fR x —
y)dr= fR x)dx. This hints at the fact that similar results hold in much
greater generahty (locally compact groups endowed with their left-invariant
Haar measure).

3.3.3. Supplement: a more general Young’s inequality. There is a family of
Youngs’ inequalities with an extra degree of freedom in the involved exponents.?

THEOREM 3.4. Young’s inequality with ¢ > 1] et f € LP(R) and g € LY(R), and let
1 < p,q,7 < oo be such that % + % — % = 1. Then,

1F* gllzr <[ fllzellgllza

PrROOF. We only use Holder’s inequality with three exponents and translation invari-
ance of Lebesgue’s measure. We can assume all functions are positive.

oot = ([ ][ e -] dx)w )
< (L[ CLsemrrawr) ™ ([ st o)

(/Rg(y)d”y/U] da:)l/r
11

1
with exponents r, u,v such that - + — 4+ — =1
roou v
and a+b=1, c+d =1 to be chosen

in such a way ar = bu =p and cr = dv = ¢q

- ( /R /R Flz =)™ gy)* dy ( /R f<xy1>b“dy1)r/u
</Rg(y2)d”dyz>r/v dﬂ?) "
_ ( [ [1-vra ( / f<21>de1>r/u ( / g(zQdez)r/vg(y)qdy)

|11/v+q/r

1/r

_ Hf”P/T-‘rP/“

g1

Our desideratahold if 1 =a+b=p/r+p/u=p(l/r+1/u)and 1 =c+d = q(1/r+1/v),
with the extra condition that

2The best constant in Young’s inequality was found by William Beckner in 1975.
See https://arxiv.org/abs/math/9704210 for a much simplified proof. The coordinates of
Beckner’s article are in the references.
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which is exactly the hypothesis. We can then solve and find:

Ju=1/p—1/r=1/¢1jv=1/q—1/r=1/p,
and
a=p/rb=p/u=1-p/r.c=q/r.d=q/v=1-q/r,
so that p/r +q/u=1=q/v+q/r. O

EXERCISE 3.3. Create a Young’s inequality for || f * g * h||Lr and prove it. Ezxtend to
the convolution of n functions.

3.4. Some properties of convolution
3.4.1. Convolutions and continuity.

PROPOSITION 3.2. Let f,g : R = R, with f € C. and g € L}
f * g is continuous.

If g € LP for some 1 < p < oo, then fxg € CoNLP. If g € L™, then
f*g € Cy and it is uniformly continuous.

Then,

loc*

PROOF. Suppose supp(f) C [-R, R], and |h| < < 1. Then,

()@t h) = (frg)a) < /le(x+h—t)—f(w—t)|-|g(t)|dt
r+R+1
< / g(B)ldt- sup [fly+h) — F()l,

z—R—1 y€eR, |h|<6

and the first factor is finite, while the second can be made smaller than any
e > 0 by uniform continuity of f. This gives continuity of f *g. Membership
in L? follows from Young’s inequality. If g € L*°, the first factor is bounded
by 2(R + 1)||g||z, hence f * g is uniformly continuous. We are left with
showing that, for 1 < p < oo and g € LP, f x g € Cy. This follows from the
estimate, where we use Holder with respect to the (finite) measure du(t) :=

|f (@ —t)ld:

ool < ([1sa=ol 1ot \p) "(fise-m)”
< oz ([ |g<t>|p)1/p,

which tends to 0 as « £ co by Dominated Convergence. U

Observe that in order to have lim,_,+ ., f * g(z) = 0 we just need f to be
bounded, and to vanish outside some compact set.
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In this, like in other similar "regularity results”, the hypothesis that f
have compact support can be relaxed by asking f to have some decay at
+o00, provided the growth of g at 400 is correspondingly kept under control.
Often the function f is related to the solution of some partial differential

equation, and its decay at +oo depends on the equation itself.
There are cases where continuity of the convolution is guaranteed even if
none of the factors are continuous.

EXERCISE 3.4. Let f = Xx[_1/2,1/2). Compute f x f, and verify that it is in fact
continuous.

More generally, we will see that, if f,g € L?, then f * g is continuous.
Observe that this corresponds to the case p = ¢ = 2, r = oo, of Young’s
inequality.

3.4.2. Derivative of a convolution. Derivatives can be thought of as
averages on endpoints of infinitesimal intervals, so it is not surprising that
they enter convolution products.

THEOREM 3.5. Let f,g : R — R, with f € C} and g € L},,. Then,
fxgeC! and:

(3.4.1) (fxg)=(f)*g.
Moreover,
(i) if g€ LP with1 < p < oo, then fxg € CyNLP;
(ii) if g € L™, then f* g € C}.

PROOF. Suppose supp(f) C [—R, R]. The function F(t,z) = f(t—x)g(x)
satisfies the hypothesis of Theorem 2.9 on any interval [a, b] 3 ¢, since

|f(t = 2)g(x)| < max|f] - [9(x) X~ R+arse (),

hence, (3.4.1) holds. Since f’ € C., f’ * g is continuous, hence f * g € C*.
Statements (i) and (ii) follow from Proposition 3.2. O

3.4.3. Approximate identities. We want here to construct smooth,
compactly supported approzimate identities (or mollifiers). These are fami-
lies of functions {¢.} : € > 0 in C2°(R), indexed on €, which should be con-
sidered as smooth approximations, in the L' sense, of the Dirac unit mass at
the origin.

LEMMA 3.4. There exists a family {@c}teso in C°(R) such that:
(1) e >0 and [ @ (x)dx = 1;
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(i) supp(pc) C [—€/2,¢/2].

cei T if lz] < 1/2
0if 2] > 1/2.

¢ > 0; (ii) supp(¢) = [-1/1,1/2]; (i) [ ¢(z)dx = 1, for a choice of ¢ > 0.
For € > 0, then, define

PROOF. Let p(z) = { It is easy to see that (i)

1 sz
(3.4.2) oe(2) =~ (—) .
e’ \e
Observe that ||¢e|lrr = 1, ¢ € CX(R), that suppy.) C [—€/2,¢/2], as

wished. O

Sometimes one needs approximate identities which are supported on the
positive half-axis. It suffices to start with ¢¥(z) = ¢(x — 1/2), then let

Ye(z) = ().
3.4.4. The smooth Urysohn lemma.

THEOREM 3.6. Let K C V C R, K compact, V open. Then, there exists
h e C such that K < h <V.

PROOF. We assume here V' # R, the other case being similar and easier.
Let 3¢ = d(K,R\ K) :==min{jlz —y|: z € K, y ¢ V}, and let K. = {y :
d(y, K) < e} C V. Since y — d(y, K) is continuous (even 1-Lipschitz), K. is
closed and bounded, hence compact. Moreover, for y € K, d(y,R\ V) = 2e.

Let h = ¢ * xk.. The support of h lies in Ky C V, hence h < V. For
x € K, h(z) = [ Ye(r —y)dy = [(x —y)dy = 1, since B(r,¢/2) C K.
Hence, K < h. Il

The proofs of a number of properties we saw depended on Urysohn
Lemma. Critical reading shows that most of those statements, and their
consequences, have then C'*° versions, which we are now going to state.
Their proof is the same, but for the fact that the smooth Urysohn Lemma
is used instead. We only have to be careful and verify that in the proofs
only C*°-preserving operations are performed on the ”Urysohn functions”:
sums, product... Such is not the case for the operation (f,g) — min(f,g),
which preserves continuity, but not smoothness. Here we consider R, but
everything can be extended to R? (hence, to manifolds).

3.4.4.1. Some consequences. Partitions of unity extend with no effort.

THEOREM 3.7. [Smooth partition of unity in R} Let K be compact in
R, K C Vi U...V,, where each V; is open. Then, there exist h; < Vi,
hi € C*(R), such that

hi+---+h,=1
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on K.

We have an important density theorem.

THEOREM 3.8. If 1 is a reqular measure, then C°(R) is dense in L, if
1 <p<oo.

The fundamental lemmas of the calculus of variations extend with no
change in the proof.

LEMMA 3.5 (1¥" Fundamental Lemma of the Calculus of Variations in R).
Let f € L},.(R) and suppose that for all o € C°(R) one has

loc

(3.4.3) /ngod,u =0.

Then, f =0 a.e..

LEMMA 3.6 (2" Fundamental Lemma of the Calculus of Variations). Let
f € Lj,.(R) and suppose that for all ¢ € C*(R) with [, ¢dp =0 one has

(3.4.4) /ngpd,u = 0.

Then, f is a.e. equal to a constant.

Then, we have this consequence of the 2"¢ lemma.

EXERCISE 3.5. Write down the proof of some of the statements above.
3.4.4.2. The closure of the unit ball of C*[0, 1] in the uniform norm.

THEOREM 3.9. The closure of By in C[0,1] with respect to the uniform
norm is the unit ball of Lip[0,1].

PRrROOF. We have to show that any function f with ||f|Lp, < 1 can be
uniformly approximated by functions in B;. First, extend such f : [0,1] - R
to the whole real line by setting f(z) = f(0) if z < 0 and f(z) = f(1) if
x > 1. Such extension clearly preserves the Lipschitz constant of f. Let then
¢ € C(R), supp(p) C [-1,1], ¢ >0, [ ¢(t)dt = 1. The existence of such
a function will be proved later in the notes. We introduce an approzimation
of identity (or Friedrich’s mollifier) by setting ¢,(x) = ny(nz), which has
all the properties we listed for ¢ and, more, supp(¢) C [—1/n, 1/n]. Define

+o00
fa(@) = fxpn(z) = [z —t)pn(t)dt,

—0o0

for 0 < x < 1. We use the following properties of convolution.
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(i) [ fu = fllu — 0 as n — oo and || follu < 1.
(ii) f, = f*e, € C[0,1].
(i) ||f2]l. <1 for all z € [0, 1], since

fo(x +h) = fol)
h

IN

A

< [lel|Lip-

Properties (i-iii) say that f,, € B; and they uniformly converge to f.
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CHAPTER 4

Constructing measures

In this chapter we see some useful methods to construct measures, or
to recognize when a measure looms in the shadow. A basic tool in the
craft is Carathéodory’s construction of a measure from an outer measure.
The Extension Theorem of Carathéodory has many applications, such as
the construction of the Lebesgue measure and, more generally, Lebesgue-
Stieltjes measures; the construction of Hausdorff measures; et cetera. Here,
we use it to prove Riesz Representation Theorem for measures, and deducing
Lebesgue-Stieltjes measures from it. Riesz Representation Theorem might be
seen as a statement about particular distributions (in the sense of the Theory
of Distributions) living in rather general spaces. We will pursue further this
distributional viewpoint trying to extract information from Lebesgue-Stieltjes
measures. Distributions themselves will be the subject of a later chapter in
the notes.

Here is a quick overview. Section 4.1 deals with outer measures and falls
squarely into abstract measure theory. In Section 4.2 we consider measure
structures associated to metric spaces: more precisely, Radon measures on
locally compact metric spaces. The main result here is Riesz Representation
Theorem for Measures, which is a cornerstone of real analysis, with many
theoretical and practical applications. We specialize all this to the real line
in the long Section 4.5, where Riesz Theorem allows us to quickly define the
Lebesgue measure and, much more generally, Lebesgue-Stieltjes measures.
The notion of distribution function creates a natural bijection between Borel
measures on the line and right continuous, increasing functions. All opera-
tions involving increasing functions can be translated in operations involving
measures, and viceversa: the class of the Borel measures coincides with that
of the Lebesgue-Stieltjes measures. Since we believe (perhaps too optimisti-
cally) to know everything important about increasing functions, it follows
that we know (more realistically) many interesting properties of Borel mea-
sures. Of particular interest for present and future developments is Theorem
4.12, showing that the Borel measures are the derivatives of the increasing
functions, at least in a "weak”, distributional sense. We end with the remark
that the limiting process defining Lebesgue-Stieltjes measures goes through
if the starting function is not increasing, but just of bounded variation; a

87
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fact we will be able to extract gratification from after we consider, in a later
chapter, the connection between signed measures and functions of bounded
variation. We conclude with Section 4.5, where we compare Lebesgue integra-
bility and Riemann integrability. The story of Lebesgue integration started
with Borel’s characterization of the functions which are Riemann integrable,
and here we reach the end of the loop we started when trying to motivate a
new definition of integral.

There are at least two other extremely useful, and beautiful, ways to con-
struct measures. One is the construction of Hausdorff measures, which opens
the way to Geometric Measure Theory, and to a whole world of wondrous
objects having ”fractal dimension” and ”self-similar features”. A quick, but
rigorous and in depth, introduction to this topic, is the short book by K.J.
Falconer!.

The other one is Kolmogorov Extension Theorem, which is a way to
mathematically construct a stochastic process developing in time (where the
number of ”instants” to take into account is infinite), starting with the obser-
vation of its distribution at finite collections of such ”instants”. The theorem
is part of any standard course in stochastic processes, and its proof can be
found e.g. in Durrett’s (advanced) introduction to probability?.

4.1. Outer measures and Carathéodory’s Extension Theorem

Outer measures are a special class of set functions. Their raison d’étre is
that they are defined on all subsets of a given set X: no a prior: structure
(algebra, o-algebra, topology...) is assumed. We are interested in them
in view of their applications to measure theory, but there are important
set functions which are very different from measures, and are generated by
certain outer measures. This is the case, for instance, of set capacities in
Potential Theory, which generalize and formalize the notion of conductor
capacity from electrostatics. If you want to know more about these natural,
but tricky objects, you might start here?.

4.1.1. Outer measures. Let X be a set. An outer measure pu* on X is
a set function pu*: 2% — [0, +-00] with the properties:

(i) N*(@) = 0;
(i) if £ C F, then p*(E) < u*(F);

'K.J. Falconer The Geometry of Fractal Sets: 85 (Cambridge Tracts in Mathematics)
1986

2Rick Durrett, Probability: Theory and Examples, Version 5 January 11, 2019 https:
//services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf

3Irina Markina, Potential theory: the origin and applications, expository article


https://www.researchgate.net/profile/Irina-Markina-2/publication/228928484_Potential_theory_the_origin_and_applications/links/59aa53dda6fdcce55a3213ca/Potential-theory-the-origin-and-applications.pdf
https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf
https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf
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(i) p* (Uo—y En) < D02 w*(Ey) if By, ..., E,,... are subsets of X.

Outer measures often arise when we extend some positive set function
from a subclass of sets to 2%.

PROPOSITION 4.1. Let A be a family of sets in 2%, such that X is covered
by countably many elements in A, X = |J,— | A, with each A, in A. Let
[: A—[0,400] be a set function satisfying (D) = 0.

Define

(4.1.1) p*(E) = inf {il(An) . EC [j An}

Then, p* is an outer measure.

PROOF. Properties (i-ii) are obvious. If p*(E,) = +oo for some n, then
(iii) holds for trivial reasons. Otherwise, for any ¢ > 0 and each n we can
find {A” }°°_, in A such that E, C UX_; A" and

S U < (B + &

m=1
Now, UpZ, En € Uy =1 Af,, hence,
o0 oo € o0
A E, ) < S ian) < [ —} =N (B, +e
(iii) follows. O

DEFINITION 4.1. Let p* be an outer measure on X. A subset A of X s
w*-measurable if for all subsets E in X :

(4.1.2) WH(E) = i (ENA) + 1" (E\ A).

Observe that the inequality < in (4.1.2) holds for all A’s, so, in practice,
we only have to verify >. A possible intuition of how (4.1.2) might be
considered a natural guess for extracting measures from outer measures will
be attempted at the end of the next section.

THEOREM 4.1. Let p* be an outer measure on X. Then, the class F =
F(p*) of the p*-measurable sets is a o-algebra, containing all sets A such
that p*(A) = 0. Moreover, p* is a measure on F.
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PROOF. Equation (4.1.2) becomes an identity for A = (), hence ) € F.
Also, (4.1.2) is symmetric with respect to A and X \ A: E\ (X\A) = ENA,
EN(X\A)=FE\A, hence A e Fifand only if X \ A € F.

Let A, B two subsets in F. Let E C X. Using twice the definition of F,
and twice subadditivity of u*, we have:

p(E) = p(ENA)+p(E\A)
= pw(ENANB)+u ((ENA)\B)
+ W ((ENA)NB)+pu ((E\A)\ B)
= p(EN(ANB))+p(EN(A\B)
+ W(EN(B\A)+p"(E\(AUB))
> p(EN(AUB))+p*(E\ (AUB))
> p(E).

Hence, we have equality all the way, hence, AU B € F. Since F is closed
under complementation, A — X\ A, we also have that ANB = X\ (X\A)U
(X\B)) € Fift A, B € F. By iteration, A U---UA, € Fif Ay,..., A, € F.
For A, B in F, disjoint, we have

W(AUB) = p((AUB)NA)+ 4 ((AUB)\ A)
= w(A) +p*(B),
hence, p* is finitely additive on F.

Consider now a countable {A4,,}>°, of disjoint subsets of X in F. For
eachn >1and F in X,

n n n

w(EN(JA) = w(EN (AN A) +u (BN (A 4)

i=1 i=1 i=1
n—1

= W(ENA)+u(En(A)

e i=1
= > u(ENA).
=1

Hence,

n

p(E) = wEn(Ja)+uE\ ()

=1

— ZM*(E NA;) + ' (E\ (U Ai))

> S wEn )+ ()
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Let n — oo, and use subadditivity of p*:
(4.1.3)

MWE)ZE:MWE0A0+MWE\QJA0)ZMWEQQJ&M+WWE\QJAM

This shows that [ J;°, A; € F, and also that, letting £ = J;°, A;) in (4.1.3),
©* is countably additive.

If {B,} is a countable family in F, then |J)~, By = U, (B, \ (B1U---U
B,,_1)] can be viewed as disjoint union of countably many sets in F, hence
it lies in F.

Finally, if *(A) = 0, then, for E in X, p*(ENA) < p*(A) =0, thus

W(E0A) + i (E\ A) = (B A) < 1°(E),
hence, A € F. O

4.1.2. Carathéodory Extension Theorem. We see here a method to
produce a measure from ”conditionally o-additive” set functions. Let A > X

be an algebra of subsets of X: () € A;if A, B € A, then AUB and A\ B belong
to A. A pre-measure [ on A is a function [: A — [0, +o0] such that () =0
and, if {A,,}22, is a family of disjoint sets in A such that [ J 7, A, € A, then

" (04) -

It follows that if A C B, with A, B € A, then [(B) = I((B\A)UAUQUD...) =
I(B\A)+1(A) >1(A).

THEOREM 4.2. [Carathéodory Extension Theorem] Let | be a pre-measure
on an algebra A. For E C X define

:inf{il(An) . A, e A and GA” D E}
n=1

n=1

Then,
(1) p* is an outer measure;
(i) p*(A) = 1(A) if A e A;
)
)

(iii) all sets in A and all p*-null sets are p*-measurable.

(iv) Moreover, if I is o-finite (X = U2 A, with [(A,) < o0), then the
extension of l to o(A), the o- algebm generated by A, is unique: if v
is a measure on o(A) and v(A) =1(A) for all A in A, then v = u*.
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PROOF. (i) By Proposition 4.1, u* defines an outer measure.
(ii) The inequality p*(A) < I(A) for A € A is obvious: we test the inf in
the definition of ;* on the decomposition A = AUQUQU. ... For the reverse

inequality, suppose A € A and A C |J,_, A,. We recover a disjoint cover of
A by setting B, = (A \ (A1U---UA,,_1))NAC A, sothat A=J, _, By,
is a disjoint union in A. We have

S 2 SUBY =1 (U B
AR 7/}

Passing to inf over all covers, u*(A) > [(A), as wished.

(iii) We use here that A is an algebra of sets. If A€ A, E C X, and E C
U,—, B, forn>1 then ENACJ (B,NA)and E\AC U, (B, \A),
hence,

f: I(B,) = i (B, N A)+ il(Bn \ A)

n=1
> (BN A)+ 1 (B A),
thus, passing to inf over all covers | J>~, B,, of E,
pr(E) = p (ENA)+p(E\ A),

which is the measurability condition. Measurability of null-pu* sets is in
Proposition 4.1.

(iv) Suppose v is another extension of the pre-measure [ to o(A), the
o-algebra generated by A. We first show that p*(E) > v(F) for E € o(A).
If ECU,”, A, with A, € A, then,

p(A) <Y v(An) =) (A,

and passing to inf we have v(F) < p*(FE).
The opposite inequality is where we use o-finiteness of [. Suppose E €
o(A), p*(E) < oo, and fix € > 0. Then, there exist A, € A (n > 1) such

that
W(E) +e> SUA) = S (A = (UAH> ,

hence p* ((U,, An) \ E) < €. Thus, using the fact that ¢* and v agree on A
from the first to the second line,

pr(E) < pf (UAn>
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= liin w* (LmJ An)
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v(E) + u* ((U An> \E)

< v(E)+e

Since € > 0 was arbitrary, pu*(E) < v(E).

Since [ is o-finite, we can exhaust X = U, X,, where A > X,, C X,,,; and
[(X,) < co. Define [,,(A) :=1(ANX,) for A € A For FF C X, we can
compute p*(F') just by testing on covers by subsets of X,, in A. For E in
o(A) we have, then, by the finite case,

pi(E) = lim " (ENX,)

n—o0

= lim v(ENX,)=vE).

n—oo

i

The Lebesgue measure on R is a particular example of a measure produced
by Carathéodory Extension Theorem. Consider the family .4 populated by
finite, disjoint unions of the intervals (a,b] and (a, 00), with —co < a <b <
0o. It is easy to see that A is an algebra. If —oco < a; < by < az < by <
e < ay, < b, < 400, let

I ((a1,b1] U+--U(an,by]) == (b1 —a1) + -+ (by — an),

be the length function of (a3, b1]U---U(ay,,by,], and let [(E) = 40 if E € A
is unbounded. Then, [ defines an additive function on A. The corresponding
measure m = p* is the Lebesgue measure. It is easy to see that o(A) con-
tains the Borel algebra of R. Also, by considering different cases it is easy to
see that if [ is an interval in R, having endpoints —oco < a < b < +0o0, then
m(I) = b — a. However, the Lebesgue, and other, measures will be intro-
duced in the next section as particular applications of Riesz Representation
Theorem for measures. Let u be a measure defined on a o-algebra G on X.

4.1.2.1. The outer measure associated to a measure. Carathéodory’s idea
of recognizing (4.1.2) as the condition which characterizes a o-algebra on
which p* is a measure is a brilliant one, and it deserves some comments. By
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Proposition 4.1, with A = G and | = pu, we can associate to p the outer
measure p* which is defined, for any F in X, by

(4.1.5) p'(E) =inf{) u(A,): A, € F, UyA, 2 E}.

By the properties of a measure, we can test the infimum over mutually dis-
joint A,’s. The main lemma on outer measures generated by additive set
functions says that

(4.1.6) ' (A) = u(A)
whenever A is in F. Suppose now B € F and £ C X, and £ C U,A,,

where the A,’s are disjoint element of F. Then, A, N B and A,, \ B are in
F, U (A, NB) D ENB,U,(A,\ B) D E\ B, so

p(ENB)+p (E\B) < > wAnB)+Y u(A,\B)

= ZM(An)7

and passing to inf we have
(4.1.7) p(ENB)+p (E\B) <y (E),
which is Carathéodory’s condition (4.1.2) for B.

4.2. Radon measures

So far, but for the definition of the Borel o-algebra, we have considered
metric structures and measurable structures as separate entities. Indeed, this
state of affairs depends on the tendency towards generalization, hence, ab-
straction, which is part of the mathematical enterprise. Both theories stem
in fact from the same base space, the real line, and more generally Euclidean
spaces, which has deeply intertwined metric and (length) measure. After
Riemann-Stieltjes integrals were introduced at the end of the XIX century,
and immediately used in a variety of applications, it became clear the the
metric structure on the real line supports many different, useful measures.
In 1909, Frigyes (Frederic) Riesz* proved a theorem that, among other appli-
cations, shows that Riemann-Stieltjes integrals exhaust the linear, positive
operators acting on continuous functions supported on a compact interval.
Extensions of the result in the context of Lebesgue theory of integrals, and
with more general topological spaces, were provided by Andrey Markov in
1938 and Shizuo Kakutani in 1941.

4The brothers Frederic and Marcel Riesz were both important mathematicians, and
gave fundamental contributions to analysis. Marcel moved to Stockholm, then Lund, while
Frederic remained in Hungary, mostly at Szeged.
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4.2.1. Riesz Representation Theorem. Let X be a locally compact
metric space. We do not specify the metric, since we will only be using
Urysohn Lemma and its consequences. In fact, the theory developed in this
section applies, more generally, to locally compact topological spaces. A
functional A: C.(X) is positive if A(f) > 0 whenever f > 0. Examples of
positive functionals are provided by Borel measures.

EXERCISE 4.1. Let pu be a measure defined on the Borel o-algebra of a metric space X,
such that u(K) < oo if K is compact in X (we say that p is a Borel measure). Then,
the map

Ay f»—)/ fdu
X
defines a positive functional on C.(X).

Riesz Theorem provides a converse of the above remark.
Let X be a locally compact metric space. A measure p defined on the
Borel o-algebra B(X) is inner regular if, for E in B(X),

(4.2.1) u(E) =sup{u(K): K is compact and £ O K}.
The measure p is outer regular if
(4.2.2) u(E) =inf{u(V): V is open and E C V}.

The measure p is a Radon measure if it is finite on compact sets, outer regular
and inner regular on open sets: (4.2.1) holds when E' is open.

THEOREM 4.3 (Riesz Representation Theorem for Measures). Let A be a
positive functional on C.(X). Then, there exists a unique Radon measure
on X such that

(4.2.3) Af) = / fdu for all f € CL(X).
b
Moreover,
(1) if V is open in X, then
(4.2.4) p(V) = sup{A(f) : f e C(X), f<V};
(i) if K is compact in X, then
(4.2.5) p(K) =mf {A(f): feC(X), f>K}.

The idea of the proof is natural. If (4.2.3) held for f = x g, with E Borel
measurable, we could define u(E) = A(xg). Unfortunately, characteristic
functions are typically not continuous, but we can set up some approximation
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scheme. The F. Riesz way consists in approximating (from above) charac-
teristic functions yg of compact sets by continuous functions with compact
support; the Radon way, which we follow below, approximates (from below)
characteristic functions yy of open sets instead. If A and p are related as
in (4.2.3) and f <V, then A(f) < p(V) and in fact it can be proved that
w(V) = sup{A(f) : f < V}. This will be our starting point for defining u.
The proof that u extends to a positive set function on a g-algebra contain-
ing the Borel sets, as you will see, requires the verification of a number of
properties (think of the Lebesgue measure on the real line).

PROOF. In order to prove uniqueness, we show that a Radon measure
p satisfying (4.2.3) is determined by the values A(f). For V open, we have
that (V) > A(f) if f < V, so that (4.2.4) holds with >. Also, for any
K C V compact there exists, by Urysohn Lemma, K < f < V, hence,
u(K) < A(f) < (V). Then,

sup{u(K): K CV, compact} <sup{A(f): f <V}

By inner regularity (4.2.1) on open sets, the sup on the left hand side is p(V),
then we also have < in (4.2.4). Hence, u(V) can be expressed in terms of
the functional A.
By outer regularity (4.2.2), this determines p on the Borel o-algebra.
About existence, what we have seen so far suggests that, given A, we
should first define p1 on open sets. For V' open, define u(V') by (4.2.4):

p(V) =sup{A(f): fe€C(X), f<V}.
Let then, for any ' C X,
(4.2.6) p*(E) =inf{u(V): V is open and E C V},

as in (4.2.2).

By definition we have monotonicity of p on open sets and of p* on subsets
of X: p(U) <p(V)if U CV and p*(E) < p*(F) if ECF.

The proof of the existence statement will proceed in four steps.
(1) We show first that p* is an outer measure, and that p*(V)) = (V') when
V' is open. For the property of being outer, it suffices to show that, for a
countable family of open sets {V;}32,, we have:

(4.2.7) 1 (U vj) < Do nv;).
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If this holds, in fact, (4.2.6) implies that, if £ = U, Fj,

WH(E) = inf{u (U%) : where each Vj is open andEQUV}}
- ’

J

(4.2.8) < inf {Z”(VJ) : where each V; is open and £ C U V]} )
- -

J

where we have equality in the first line because any open set can be written
as countable union of open sets.
Fix € > 0 and, for each F;, choose U; open such that

i €
wUj) = 1™ (Ej) + 55

Since the union of such U;’s contain £, the final expression in the last chain
of inequalities satisfies

inf {Z u(V;) : where each Vj is open and E C UVJ} < Z,u*(Ej) +e.
- : -

J J

We now prove (4.2.7). Consider f < |J;V}, and let K = supp(f) C U, V;.
By compactness, K C V3 U--- UV, for some n. By Partition of Unity, for
1 < j < n there are h; < V; such that hy +--- 4+ h, = 1 on K. Clearly,
hjf <V, hence,

Af) = A(Z’%f) =2 _Ahf)
SWUHE

and passing to sup over all such f’s, we obtain (4.2.7).
We show next that, for V open,

(4.2.9) w (V) = p(V).
In fact,
u(V) < p* (V) :=inf{u(U) : U2V, open} < pu(V):

the first inequality since p(U) > p(V') when U O V; the second testing the
inf with U = V.
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(ii) We have to show that, for V open and E C X with u*(F) < 0o, one has
p(E) Z p (ENV)+p (E\V).

We consider first the case when E' is open. For € > 0 fixed, let f < ENV
such that p(ENV) < A(f) + € and g < E \ supp(f) 2 E\ V such that
n(E \ supp(f)) < A(g) + €. Then, f+g < E and

w(E) u(E) > A(f +g)

A(f) +Alg) =2 (ENV) + p(E \ supp(f)) — 2¢
= W(ENV)+ " (E\supp(f)) — 2€

> pW(ENV)+pu (E\V)—2e

Since € > 0 is arbitrary, Carathéodory’s test is passed by any open E.
For arbitrary E, and V open,

w(E)

inf{u(U): U D E, open} =inf{u*(U): U D E, open}
inf{p*(UNV)+p*(U\V): UDE, open}

inf{p"(UNV): UDE, open} +inf{p*(U\V): U D E, open}
W (EOV) 410 (E\V)

[IAVARI

where the last inequality holds because p* is monotone and UNV 2 ENV,
and U\V DO E\V,ifUDE.
(iii) (4.2.5) holds. In particular, 1(K) < oo for compact K. Also, u is inner
reqular on open sets. Let K be compact and f > K. For 0 < A <1, let V), =
{z: f(x) > A} D K. For any g < Vi, \™'f > g, hence, \"'A(f) > A(g).
Thus,

p(K) < p(Va) =sup{A(g) : g < Va} < ATTA(S).

As A — 1, we have pu(K) < A(f), and this gives the direction < in (4.2.5).
In the other direction, if V' O K is open, by Urysohn Lemma there is K <
f =<V, hence, A(f) < u(V). Since p is outer regular by its very definition,

p(K) =inf{u(V): K CV open} > inf{A(f): f > K},

as wished.

We now prove inner regularity on open sets. Let V' be open, fix € > 0,
let f <V such that A(f) > u(V) — ¢, and set K = supp(f) C V. For all
g > K, g> f, thus, by positivity of A, A(g) > A(f). Then,

A(f) < f{A(g) : g = K} = p(K) < n(V) < A(f) +e,

implying that pu(V) — u(K) < e. As € — 0, we obtain inner regularity of u
for V.
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(iv) Finally, we show that A(f) = [, fdp if [ € C.(X). We can assume
f(X) C [0,1], since any other function in C.(X) can be written as a linear
combination of functions of this form. We proceed by discretizing f. For
n>1land 1 <5 <27 let

0if fz) < L5,
filw) = § flo) — S if 52 < f(z) < &,
2%1ff(x)>23—;1

After setting Ko = supp(f) and K; = {z : f(z) > £}, we see that f; €
Co(X), xk; £ 2"f; < Xk,_,- By outer regularity and (4.2.5),

n(K;) < A2 f;) < p(Kj-a).
The second inequality depends on the the fact that 2"f; < V' for all open
V’s containing K;_;, hence A(2"f;) < u(V) for such V’s, hence A(2"f;) <

(K1),
The functions f; decompose f:

on 21
(4.2.10) ZXK < f= ij <o Z XF; -
Thus,
on =
ZN ZA fi) < o p(K).
7=0

Similarly, by the properties of the mtegral,
A on =
3 onli) < [ =" [ pn< 5> )
j=1 X j=1"X =0

We obtain the estimate

[ra-an) < 5 Zu )= o S ()
X =0 j=1
which tends to 0 as n — oco. Hence, (4.2.3) holds. d

It is clear from the proof that the metric structure enters only through
Urysohn’s Lemma, and the Partition of Unity which follows from it. The
Lemma holds, more generally, in locally compact Hausdorff spaces (LCH),
with the attached price tag of a proof which is not two lines long as the one
for metric spaces. All results of this section hold, in fact, for general LCH
spaces.
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4.2.2. Regularity and approximation theorems. A metric space X
is o-compact if X = U,>1 K, can be exhausted as union of compact sets K,
where we can clearly assume K, C K, 1. A set A C X belongs to the class
F, if it countable union of closed sets, and to the class Gy if it is countable
intersection of closed sets.

THEOREM 4.4. Let X be a o-compact and let A be linear and positive on
C.(X). Then, the measure p constructed in Riesz’ Theorem has the following
extra properties:

(i) For each E € F and € > 0, there are C C E CV, C closed and V
open, such that V' \ C' < e.

(i) p is regular.

(iii) If E € F, then there are A € F, and B € Gy such that AC EC B
and (B \ A) = 0.

ProoOF. Let E C X, fix K, in the exhaustion of X, and find V,, O K,,NE
open such that p(V,, \ (K, N E)) < 5. Set V = J, V. Then,

VAEC W\ (5, 1 ),

and so
WV \ E) < e.

Apply the same reasoning to X \ E: there is open W O (X \ F) such that
e>puWN\(X\E)) =pE\(X\W)), and X \ W is closed. This shows (i).
Let £ € F. By (i), for each ¢ > 0 we can find C C E such that
u(E\ C) < e. On the other hand, C' can be exhausted by compact sets
K,NC,and p(K,NC) 7 u(C) as n — oo. (ii) follows.
To obtain (iii), use (i) with ¢ = 1/n to obtain open V,, and closed C,,
then set A =U,,C,, € I, and B=n,V,, € Gs. O

The next theorem provides a very practical sufficient condition for a mea-
sure to be regular, which in particular holds when the metric space is o-
compact.

THEOREM 4.5. Let X be locally compact metric space in which every open
set 15 o-compact, and let i be a Radon measure on X. Then, p is regqular.

PrROOF. If u(E) < oo and € > 0, by outer regularity there open V2 E
such that u(V \ E) < ¢, and by inner regularity on open sets there is a
compact K C V such that u(V \ K) < e. Again by outer reularity, there is
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open W D U \ E such that u(W) < e. Set C = K \ W, which is compact
and C' C E. We finally estimate

1(C) = wW(K) — p(KNW) > p(E) — e — (W) > u(E) — 2,

which shows inner regularity for F. If u(FE) = +oo, by o-finiteness there
exists a sequence E,, / FE with u(E,) < oo for all n, and u(E,) / co. By the
previous step, there are compact sets K,, C F,, C F with u(K,) > u(E,)—1,
hence pu(K,) — oo = u(E), and regularity hilds in this case as well. O

In many cases, including Euclidean spaces, Borel measures which are finite
on compact sets are automatically regular. The hypothesis of the following
theorem, for instance, hold in Euclidean spaces.

THEOREM 4.6. Let X be a locally compact metric space in which all open
sets are o-compact. Then, all Borel measures on X which are finite on
compact sets are reqular (hence, Radon).

PROOF. If compact sets have finite measure, then C.(X) functions are
integrable, hence A : Co(X) — C, A(f) = [, fdu defines a positive, linear
functional. By the Riesz representation theorem, there exists a Radon mea-
sure v such that A(f) = [, fdv. We have to show (i) that v = p on the
Borel o-algebra, and (ii) that v is also inner regular.

Let U be an open set: by assumption there are compact sets K, such
that K,,  U. We construct a sequence of functions f,, € C.(X) as follows.
We start with K7 < f; < U. For each n > 2, we recursively choose K,,_; U
supp(fn—1) < fn < U. This way, f,  xv, hence,

p(U)=lim | f.dp=lim [ f,dv=v(U):

n—oo

i = v on open sets. For a Borel set £ and € > 0, use theorem 4.4 to find
C C E CV, with V open and C closed, such that u(V \ C) = v(V\ C) <,
the equality holding because V' \ C' is open. Thus,

u(V) < p(C) + e < p(E) + ¢,
which shows outer regularity of u, and
p(E) < p(V) < p(C) + e

Now, C'is o-compact because X is: let K,, / C be an increasing exhaustion
of C' by compact sets, so that u(K,) ~ u(C) > pu(F) — €. In particular, we
have that u(K,) > u(C) — 2¢ for some n, and this shows inner regularity of
L.

The measures p and v coincide on open sets and their are outer regular,
hence they coincide on the whole Borel o-algebra. O
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We have a very useful approximation theorem, which will be used several
times.

THEOREM 4.7. If pu is a reqular measure, then C.(X) is dense in LP, if
1<p<oo.

PROOF. We start by approximating the characteristic function of a mea-
surable set F. For € > 0 fixed, consider K C F C V with K,V compact and
w(V '\ K) < e. By Urysohn lemma, there is K < f < V. Then,

If=xeler < If = xxllze + XK — XEl L
< 2llxy — Xkl < 267

Let now s = Z?:1 ajXx g, be a simple function where the sets £ are disjoint,
and let f; € C.(X) be functions approximating the xg;’s within errors €;’s
to be chosen. The function f =37, a;f; is continuous and

n n
E ajXE; — E a; f;
j=1 j=1

n
> lagl lIxe, = fillee
j=1

< 6

ls = fII =

Lp

IN

if [[xg, — fjllzr < —+—-. The theorem follows because simple functions
J J nZJ‘:1|aJ|

are dense in LP. O

4.2.3. Lusin’s Theorem. Lusin’s Theorem says that measurable func-
tions are continuous when restricted to large sets.

We will use Severini-Egorov’s Theorem, that in the locally compact case
assumes the following form.

THEOREM 4.8 (Severini-Egorov in LCH spaces). Let y be a regular Borel
measure on a locally compact metric space, and f, be a sequence of measurable
functions converging pointwise a.e. to a function f. Then, for all € > 0 there
erists a compact set K with u(X \ K) < €, such that f, converges to f
uniformly on K.

PRrROOF. Egorov-Severini proves that uniform convergence holds on a mea-
surable E such that pu(X \ E) < €/2. On the other hand, by regularity we
can find compact K in E with u(E\ K) < €/2. O

THEOREM 4.9 (Lusin). Let u be a finite, reqular Borel measure on a
locally compact metric space, and let f: X — R be measurable. Then, for all
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€ > 0 there is a closed subset F' in X with u(X \ F) < € and a continuous

function f.: X — R such that f = f. on F. In particular, f is continuous
on F.

PROOF. Suppose first that h = >"" | a;x g, is a simple function, J, E; =
X, and the E;’s are disjoint. Let K; C FE; be compact sets with pu(FE; \ K;) <
e¢/n. Then, h is continuous on F' = K U---UK,,, and (X \ F) = p(J,(E; \

Let now f: X — R be measurable, and let {h,, : n > 1} be a sequence of
simple functions converging to f a.e. For fixed ¢ > 0, let K, be a compact
set such that pu(X \ K,) < ¢/2™ and h,, is continuous on K,. By the Severini-
Egorov Theorem, there is H compact such that h,, converges to f uniformly
on H and pu(X\ H) <e. Let K = ([, K,,) N H. Then, each h,, is continuous
on K, h, — f uniformly on K (hence, f is continuous on K), and

PO\ K) < 30X\ Ko + (X \ H) < 2,

as wished. By Tietze extension theorem, f|x extends to a continuous func-
tion f. on X, having the same minimum and maximum. U

4.2.4. The Fundamental Lemmas of the Calculus of Variations.
The material in this subsection is much used in Calculus of Variations,
whence the name. In particular, it is used in rigorously deriving the Fuler-
Lagrange equations associated to a functional. Their proofs depend on the
properties of a Radon measure, not on the Riesz representation theorem.

Here, (X,d) is a locally compact metric space, and p > 0 is a Radon
measure on X.

LEMMA 4.1 (1% Fundamental Lemma of the Calculus of Variations). Let
f € L}, and suppose that for all ¢ € C.(X) one has

loc

(4.2.11) /ngodu = 0.

Then, f =0 a.e.

EXERCISE 4.2. Provide a two lines proof of Lemma 4.1, then of Lemma 4.2, under
the extra assumption that f is continuous.

PROOF. The proof is by contradiction. If f(x) # 0 u — a.e., then there
are r > 0 and F measurable such that u(E) > 0, and f(z) > r on E or
f(z) < —r on E. Assume the first holds. Let then K C E be compact such
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that p(E\ K) > u(E)/2, and let U O K be open, to be chosen later. By
Urysohn Lemma, there exists K < ¢ < U. Then,

AﬁMLszw—mew

2umw—qumL

Since K = N,U, with p(U,) / pu(K), by dominated convergence we can
choose U = U, such that [, . |fldu < p(K)r/2, in which case [, fodu >
0. 0

LEMMA 4.2 (2" Fundamental Lemma of the Calculus of Variations). Let
f € L}, and suppose that for all ¢ € C.(X) with [, ¢du =0 one has

loc

(4.2.12) /X fodu = 0.

Then, f is a.e. equal to a constant.

PROOF. It is a corollary of the 1% Lemma’s proof. The function f is not
a.e. equal to a constant if and only if essinff < esssupf, i.e. if there exist
real C' and r > 0 such that

p{: f(z) = C4r}) = p(Ey) >0, and p({z : f(x) < C—r}) = p(E-) > 0.

Let K. C E. be such that u(Ky) > pu(FE1)/2, and let Ux O K. be open
and disjoint, to be chosen later (we first choose U, and U_ disjoint, and
later we shrink both of them). Apply to each couple (K, UL) the procedure
above. We find positive functions ¢1 in C.(X) with disjoint supports such

that [, fioydu >0, [y fibrdp < 0. The ”dipole”

o
NVl 1= lloi

¥

has vanishing integral and [, ¢ fdu > 0. O

The name of the lemmas above comes from the fact that they are widely
used in Calculus of Variations. There, the base space has a differentiable
structure, and the statement often requires the testing functions ¢ to be
smooth, which in our context does not make sense. However, a critical anal-
ysis of the proofs shows that smooth versions of the lemmas can be proved
without changes, provided we have smooth versions of Urysohn Lemma,
which are standard in Euclidean spaces and in manifolds.
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4.3. The dual of Cy(X)

Let pu be a positive, finite, Radon measure on a locally compact metric
space X. Then,

Au:h—+t/‘hdu
X

defines a positive, linear functional on Cy(X), not just on C.(X). Moreover,
this functional is bounded: |[A,(h)| < p(X)||h||u, where ||h]|, = ||| L= is the
sup norm. Moreover, by inner regularity on open sets (hence, on X), we see
that the constant u(X) is best possible.

PROPOSITION 4.2. Let p be a positive, finite, Radon measure on a locally
compact metric space X. Then,

A, (h
(4.3.1) Aoy = SUP’ (1)
nz0 ||Bll

= pu(X).

ProOOF. Let in fact K,, C K, .1 be an increasing sequence of open sets
such that pu(K,) — pu(X), and consider h,, = K,. Then, ||h,|l, =1 and

pEG) < Ap(hn) < p(X),
hence, A, (hy) — p(X). d

A variation on Riesz’ representation for measures ensures that the con-
verse statement holds.

PROPOSITION 4.3. Let X be o-compact, and let A : Co(X) — C be a
bounded, positive, linear functional on Co(X). Then, there exists a positive,
bounded, Radon measure j1 on X such that A = A,,.

ProOOF. First, by Riesz representation theorem there exists a positive,
Radon measure g such that

M@=Aww

for all p € C.(X).

Given an increasing sequence {K,} of compact sets whose union is X,
we produce a sequence {V,} of open sets with compact closure such that
V, C V.11 and that K,, C V,,, so that the union of the V},’s is X. Consider
no = K, and V; = {x : no(x) > 0} D K;. Next, consider 7, = K, UV, and
let Vo = {x:m(x) > 0} D Ks. Tterate, choosing 1, > K, 1 UV, _;. We have
found a sequence {V,} with the desired properties. Moreover, we obtained
functions

Vi1 < N < Vn,



106 4. CONSTRUCTING MEASURES

so that 1, 1 on X, uniformly on compact sets. By monotone convergence,

:U’(X) = lim UndM = 11_}111 A(nn) < ||A||Co(X)*7
X n—00

n—o0

and, in particular, the measure p is finite.
For h € Cy(X) C L' (u) (because p is finite), |n,h| < || and n,h — h
uniformly, hence, by dominated convergence and continuity of A,

A(h) = lim A(nuh) = lim nnhdu::l/‘hdu,
X X

as desired. 0

The next theorem identifies the dual of Cy(X) with the space of the
bounded, Radon, complex measures of X.

THEOREM 4.10 (Riesz representation theorem for signed measures). Let
X be o-compact, and let A : Co(X) — C be a bounded, complex, linear
functional on Cy(X). Then, there exists a bounded, complex, Radon measure
1 on X such that

(4.3.2) Mm:/mu

for all b in Co(X). Moreover, ||Al|g, ) = |u[(X) is the total variation of p.

Let M(X) be the linear space of the signed, finite, Radon measures on
X, normed by |p|lm = |[#](X). Another way to state the theorem is that
p— A, is an isometric isomorphism between M (X) and Cy(X)*.

PRrROOF. By splitting A into real and imaginary part, it suffices to show
the theorem for real valued functionals, and we can thgus show (4.3.2) for
real valued h. We start by splittig A into a positive and negative part in a
way which somehow mimics the proof of Jordan decomposition theorem. For
h >0 in Cy(X), define

(4.3.3) A (h) =sup{A(g) : 0 < g < h} > A(h),

so that [|gllu < [[h[lu, and [A(g)] < [[Allcox)-

9l < Ao+ 1]l Thus,

(4.3.4) 0 < Ay(h) < [[Mleoeo 1allu,

where the first inequality follows by taking g = 0. By steps, we show the
linearity of A on Cp(X).
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(I) If ¢ > 0 and A > 0, by homogeneity of A we have that A, (ch) =
CA+<h)
(IT) Let 0 < g; < h; for i = 1,2. Then, 0 < g1 + g2 < hy + he, hence,
Ay (h1) + Ay (h2) < Ay(hy + ha).
In the opposite direction, if 0 < g < hy+hg, we have that min{g, by } <
hy and g — min{g, h1} < hg; hence,
Ai(g) = Ay (min{g, hu}) + Ay (g — min{g, hn}) < Ay (ha) + Ay (h2),
SO A+(h1 -+ hg) = A+(h1) + A+(h2)
(III) For signed h = hy — h_, we are forced to define Ay (h) = A (hy) —
A, (h_). If h can be differently decomposed as difference of positive

functions in Co(X), h = f — g, then ¢ + hy = f + h_, and by (II)
we have

Ai(g) + As(hy) = A (f) + Ay (ho),
ie.
(6) Ar(f) = Ai(g) = Ay (hy) — Ay (ho),
independently of the decomposition. Linearity follows easily. If
h,g € Co(X), then h+ g = (hy + g+) — (h_ 4+ ¢g_), hence, by (x),

Ar(h+g) = Ai(hy+94) —Ai(h+g-)
= Ai(hy) + Ap(g4) = Ap(ho) — As(g-)
= AL(B) + AL ().
(IV) The linear functional A is bounded on Cy(X), since, by (4.3.4),
(A ()] < max{A,(hy), Ayp(ho)}

< [[Alleoxyr max{[| g [lu, [|A-{l}
hl| -

= [[Allcox)-

By (IV) and proposition 4.3, there is a positive, bounded, Radon measure
iy on X such that

Ay (h) :/thﬂ+

for h € Cy(X), and p14(X) < ||A]lcpx)+-

Let now A_(h) := A (h) — A(h), which is a positive functional since, for
h >0, A(h) < Ay(h). If p_ is the measure associated to A_ by proposition
4.3, and p = py — p—, then (4.3.2) holds.

We are left with the proof that ||Allcyx)- = |p](X). O
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COROLLARY 4.1. The normed space M(X) is Banach with respect to the
total variation norm.

4.4. The Lebesgue measure and some of its variations

One of the applications of Riesz representation theorem is that any time
we have a method to integrate C\ functions, we can extend that notion of
integration to a much wider class, and ”"see” the measure which does that.

4.4.1. Lebesgue measure. For instance, we can start from Cauchy
definition of integral from basic calculus, which applies to functions in f €

Ce(R),

(4.4.1) AP = lim f f (%) 2%

j=—00
A few remarks are in order.

e Cauchy integral is defined on a closed interval [a,b]. Since f has
compact support, for each n the points zj—n which are considered in
the sum are finitely many. They scan supp(f) at a finer and finer

resolution 2%, hence (4.4.1) provides the usual approximations for

the integral of f on an interval having, say, integer coordinates and

containing supp(f).

e The existence of the limit is proved in calculus classes, and it depends
on the uniform continuity of f. If you had Riemann’s integral first,
observe that (for n > R) the sum inside the limit in (4.4.1) is a
Riemann sum for the integral. However, for completeness and with
extensions in mind, we prove the convergence of the limit below.

PROPOSITION 4.4. The limit in (4.4.1) exists.

PrOOF. Fixn > 1. Suppose that supp(f) C [~ R, R], so that the number

of points of the form 5 for which f (277) # 0 is bounded by (2R + 1)2™. For
e > 0 fixed, let n(e) > 0 be such that, for n > n(e) and |z — y| < 5 we have
that [f(z) — f(y)| < €. Set

(4.4.2) M =30 (QJ—n) zin

For n > n(e) and j > 1,
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k 1 1279 27

zk: f <2n+j> on+j o Zl: f (2n+j) on+j
2| (12 +m 129 \| 1

Z Z f on+j —f on+j || on+j

m=1
€
Z on+j’
kE€Z: f(k2—(n+1))5£0
122 4+m 12
on+j o on+j

IN

IN

1
because < —,
2n

< (2R+1)e.

This shows that {A,(f) : n > 1} is a Cauchy sequence. O

COROLLARY 4.2. There is a Radon measure m such that A(f) = [, fdm
for f € C.(R). Moreover, m is translation invariant, m(E + a) = m(E) for

EeF,

and m((a,b)) = b — a.

PROOF. We can prove this in a number of ways. Here is one.

(i)

For a < b real, consider the interval (a,b) and for 0 < e < (b —a)/4

. ) _ lifa4+2e<x<b—2¢
consider continuous functions f.(x) = . - ’
Oifr<a+4+eorxz>b—e¢,

and that are linear in the intervals [a + €, a + 2¢] and [b — 2¢,b — €.
Then, f. < (a,b) and it is easy to see that

b—a—de < A(L.).

Hence, m((a,b)) > b — a. In the other direction, if f < (a,b), then
A(f) < b— a, thus we have m((a,b)) = b — a.

When a = —oo or b = +00 we have m((a,b)) = +0o0 by exhausting
(a,b) by an increasing sequence of intervals.

If V is open in R, then V is the union of at most countably many
disjoint intervals (ay,, b,), so that, by (i) and countable additivity,

m(V+xz) = m (U[(an,bn) + 3:]) = Zm((an,bn) + )

n=1

= > m((an, b)) =m(V).

For E C R, m(E) =inf{m(V): V O E open} = m(FE + x) because
m(V) =m(V + z).
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EXERCISE 4.3. Complete the proof of (i).

Let E be the non-Lebesgue measurable set in example 2.1, and define on
E the o-algebra Fg having as elements A N E, with A € B(R) Borel in R.
On Fg, define
mg(ANE) :=m"(ANE),

where m* is the outer measure generated by m. By our results on outer
measures, we know that mpg is in fact a (Borel) measure on E. This is a
notable example of a measure space, on which no concrete computation can
be performed.

4.4.2. Lebesgue-Stieltjes measures. A critical analysis of the con-
struction of the Lebesgue measure we saw above leads to an immediate gen-
eralization, with important consequences for analysis on the real line. Let
a: R — R be an increasing function. For n > 1 and f € C.(R), let

(4.4.3) A(f) = f f (;—n) (a (2*77) . (‘72_“1» .

j=—00

Clearly, A, is a well-defined, linear, positive functional on C.(R).
We will write

: _q
(4.4.4) Aa(n;j) = « (;—n) -« (‘7 o ) .
LEMMA 4.3. For f in C.(R), the limit

A(f) :== lim A,(f)

n—oo

exists in C, and it defines a linear, positive functional on C.(R).

PrOOF. Consider n,l > 1 and f € C.(R). We write

Aa(nij) = a (%) —a (j;>

S S =S W TR,
_ ZZlAa(n+l;(j—1)2l+m)

m=1
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as a telescopic sum. For fixed € > 0, choose n(e) > 0 so large that, for
n > n(e), |f(z) — f(y)| < e when |z —y| < 5. Then, using the telescopic
sum in the first equality,

+o0 ol . . l m
Api(f) = Au(f)] = Z Z {f <2]_N) -/ (%)]
cAa(n+1;(j — 1)2' +m))|
< € Z AO&(?I + l; k)
k: k2—(n+) csupp(f)

< ela((R+1)) —a(—(R+1))),

provided [—R, R] D supp(f). Thus, {A,(f)} is a Cauchy sequence, hence it
converges to a value A(f), which clearly satisfies the properties listed in the
statement. 0

We write
44, dov = A
(1.4.5) /R fdo = A(f),

which makes sense for f € C,(R) as limit of the A,’s.
From Lemma 4.3 and Riesz Theorem we immediately obtain an important
result.

COROLLARY 4.3. There is a unique Borel measure p, on R such that,
for all f in C.(R):

(4.4.6) /R fdpa = /R fda.

In practice, we will often use the notation on the right of (4.4.6) also
when f is a positive Borel function, or f is integrable with respect to .
Below, we will have a more complete picture of the relations between Borel
measures and increasing functions. We refer to

/R [(@)da(z)

as to the Lebesgue-Stieltjes integral of f with respect to the measure da. Of
course, we would like to have a more concrete understanding of p,.

We pause a moment on the functionals A,, defined in (4.4.3). Trivially,
they are positive functionals on C.(R), and we do not need Riesz Theorem
to understand which measure they are associated to:

(447)  pn = i 0 (a (2‘7—”) —a(j;l)) -y 04 Aa(n;j).

j:—oo j:—OO




112 4. CONSTRUCTING MEASURES

Lemma 4.3 can be restated as the limit

(4.4.8) lim fd,un:/fdua
whenever f € C.(R). A way to rephrase this fact is that p, is the weak®
limit of the discrete measures fi,,.

Following usual notation, we let
(4.4.9) a(a™) = lim a(z); ala”) = lim a(z).

x—ra™t T—a~

THEOREM 4.11. Let ao: R — R be increasing. Then, for —oo < a <

b << o0,

(4.4.10) ta((a, b)) = a(b™) — ala™).

PROOF. The general case follows from an easy limiting argument from
the finite case —0o < a < b < oo, which is what we are going consider. We
first show that p,((a,b)) < a(b”) — a(a™). Let f < (a,b). Then, there are
N>1landa <& <l < by < psuch that f(z) = 0if z ¢ (=, ).
For n > N (draw a picture!):

M) = 1 () aatmi)
j > Aang)

o lmtl_ g
J: ZLN <Tn<

o(5%) o (%)

< alb”) —ala™).

IN

ES

IN

Taking the limit as n — oo, then the sup over f < (a,b), we have < in
(4.4.10).

In the other direction, let N > 1 fixed, and [,, and [, as above. Let
fn < (a,b) be such that fy (2LN) =1forl=1,+1,...,ly_1,and fx(z) =0
WheanlQ—%orxgé—%. Forn > N,

A (fn) = ;fN (Q—n) Aa(n;j) > « ( SN ) -« (2_1\7) .
Taking the limit over n, then the sup over N:

a0 2 st = i o (M550 ) < (55)] = a0 - ata)

as wished. 0
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Here and in Proposition 4.4, there is nothing magic about the choice of
points of the form QJ—n We used them mostly to avoid cumbersome notation,
to carry out the argument in the clearest way, and also because the points
considered at step n are a subset of those considered at step n + 1, and this
nicely illustrates the fact that 2% should be considered as a the "resolution”
of a "sampling”. As a matter of fact, for each n > 1 we might choose an

increasing, two-sided sequence of points {x;‘ ;fi o With lim;_, 4 x} = +o0,
and define
+o0
Ka(f) =Y flaplala]) — ala)y)].
j=—00
If the sequences {z} ;"i « become thinner and thinner, the positive function-

als A, (f) converge. Also, there is nothing magic in the choice of computing
f in the upper endpoint of [z7 ;,27]: we might replace that value by f(Z7})
with any Z7 in the interval, and the uniform continuity would do its job. It is
noteworthy that in stochastic integration, which is not a topic we are touch-
ing, the function « is not increasing (it is not, in fact, of bounded variation),

and the choice of the point in the interval becomes a crucial issue.

PROPOSITION 4.5. Let a : R — R be increasing. Suppose that, for all
R>0,

lim sup  (zf —zj_ ;) | =0.
n=0o0 \ j: z}€[-R,R]

Define
+o0
An(f) = Z f(E) (@) — alzi_y)],
with x;?_l < t;‘ < x? Then, for f € C.(R), hmn—)OAR(f) = A(f), the

functional in Lemma 4.3.

EXERCISE 4.4. Prove the proposition. To show that it converges to the functional A in
Lemma 4.3, show that the measures associated to both functionals agree on open intervals

(a,b).

4.4.3. Signed Lebesgue-Stieltjes measures and function of bounded
variation. Further critical analysis of the proof of Lemma 4.3, shows that
the Cauchy-type estimate works the same for functions o which are not nec-
essarily increasing, provided they do not oscillate too much.
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Let « : I — C, with I C R an interval. The total variation V(a) €
[0, 4+00] of v on I is a measure of its oscillation,
(4.4.11)

V(e I) —sup{Z\a(xj) —ofxjq)| v <x1 <o < Ty o, X1y, Ty € [}.
j=1

When the interval is fixed, we simply write V' («). Clearly, V(o) = 0 if and
only if « is constant.

EXERCISE 4.5. Let a: I — R be increasing on the interval I. Find an expression for
V(e I) when I = (a,b),|a,b],(a,b],|a,b).

The function « has bounded variation if V(o) < oo, and BV (I) is the
space of such functions. We say that « is locally of bounded variation on an
interval I, o € BV},.(I), if « € BV (J) for all intervals J compactly contained
in /.

LEMMA 4.4. Let a : R — C be a function in BV,,.(R). For f € C.(R),
define A (f) as in (4.4.3). Then, the limit

A(f) == lim A, (f)

n—oo

exists in C, and it defines a linear functional on C.(R).

Of course, the functional A is not positive anymore, in general. Consider,
for instance, a function o which decreases on (—oo,0] and it increases on
[0, +00). We use the same notation as before,

(4.4.12) A(f) = /R fdo.

The educated guess here is that da defines a signed Borel measure. This
is correct, but to have a proof we need more information on functions of
bounded variation, which will come in a later chapter.

The proof of lemma 4.4 is similar to that of lemma 4.3.

PrOOF. Let n,l > 1 and f € C.(R). Observe that:
. . 2! . .
J j—1 (j—1)2"+m G—1)2"+m-—1
‘Oé (2_n> - ( an >' Z a < on+l - on—+l
m=1

j-1J
< =, =— .

IN
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For fixed € > 0, choose n(e) > 0 so large that, for n > n(e), |f(x) — f(y)| < €
when |z —y| < 2% Then, using the above inequality,

[Ansa(F) = An(F)] = 20; mz [f (QL) ' <<J—;>ﬂ>]
Ma Wﬂ . (j—1)2i+m—1
< e( <Z " |a(k;)2<"+l><) — a((k2+l1)2(”+2>>‘

k: k2= (+) esupp(f)

< eV(e,[-R—1,R+ 1)),

provided [—R, R] D supp(f). Thus, {A,(f)} is a Cauchy sequence, hence it
converges to a value A(f), which clearly satisfies the properties listed in the
statement. U

EXERCISE 4.6. Prove Lemma 4.4.
EXERCISE 4.7. Let I be an interval and x¢ be a point in I.
(i) Verify that BV (I) is a (complex) linear space.

(ii) Show that ||| gy := V(a)+|a(zo)| defines a norm on BV (I), and that sup,¢; |a(z)| <
lellzy .

(iii) Show that a monotone function o : I — R lies in BV (I) if and only if it is
bounded, and, if o is increasing, V(a) = sup,c; o(x) — infyer oo(x). In particu-
lar, monotone functions are BV on any compact interval J C I.

4.4.4. More on increasing functions and Borel measures on R. In
this subsection, the reader is invited to further investigate the relationship
between (positive) Lebesgue-Stieltjes measures and increasing function. A
broader and more complete picture of the topic will be presented in the last

chapter.

4.4.4.1. Distribution functions of Borel measures. Recall that a Borel
measure 1 on R (in general, on a locally compact space (X, d)) is one which
is defined on the Borel g-algebra of R (or, of (X,d)), such that pu(K) < oo
whenever K is compact.

EXERCISE 4.8. Let ;1 > 0 be a Borel measure on R. Define its distribution function

oy, to be

i,
(4.4.13) u(t) = {_u((t,O]) ift <0,

so that, in particular, a,(0) = 0.

i) Show that «, is increasing: if s < t, then a,(s) < ay,(t).
L i t
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(i) Show that oy, is right continuous, lim,_, .+ o, (t) = oy (a), and it has left limits,
limy_,,  «,(t) exists at all a € R.

(iii) Show that oy, has a discontinuity at a if and only if p({a}) > 0. Relate this with

li t)— I t).
Jim, u(t) = lim (0

(iv) Find an expression for u((a,b)), u(la,b)), u((a,b]), u(a,b]) in terms of a,, with
—o0 < a<b< +oo (a,b = +oo are allowed only if the interval is open at the
corresponding extreme).

This definition of distribution function is different from the one usually
given in Probability Theory. The reason is that here we deal with possibly
infinite measures, and p((—o0, z]) might be infinite for all real . The choice
of having «,(0) = 0 is purely conventional. The difference between the
two definitions is inconsequential: for a finite measure, the more analytic
definition and the probabilistic one might differ by a constant, which is "lost

in differentiation”, or in differences at the endpoints of an interval.
Notation. For a function a: R — R we denote by a(a™) = lim;_,.+ a(t) (if
it exists) the limit from the right, and by a(a™) = lim;_,,- «(t) that from
the left. If they both exist, we denote by Aa(a) = a(a™) — a(a™) the jump
of a at a.

EXERCISE 4.9. (i) Let a: R — R be increasing. Show that it has at most count-
ably many points {x,, : n > 1} of discontinuity, that they are all jump disconti-
nuities, and that for each interval [a,b],

0< Z Aa(z,) < oo.

zn€[a,b]

(ii) Find an increasing function o with a dense set of discontinuities.

(iii) Let « be as in (i), and define its right continuous regularization «,. to be

ar(a) = tl_iglJr a(t).

Show that

(a) a,(t) = a(t) for all points t which are not jumps for «;
(b) « and a,. have the same jumps points, and the same jumps at them.

4.4.4.2. Cantor’s function. Recall the definition of the Cantor set C' C [0, 1], which was
constructed by inductively removing "middle thirds” from intervals. Define the Cantor
function V': [0,1] — [0,1] as follows. On [0,1]\ C

1
V(z) = 5 on the middle third of 1Y = Cy;
1 3
(4.4.14) V(z) = 53 on the middle third of I} and 5z OB that of I5;
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etcetera. The function V' is now defined on [0,1] \ C, which is dense in [0, 1]. For z € C,
define

V(z) = sup V(y) = lim V(y).
y€[0,1\C, y<z y—x—

Also, set V(0) = 0.
EXERCISE 4.10. Show that V is continuous.
EXERCISE 4.11. Show that the Cantor set C has zero Lebesgue measure.

Recall from the previous exercise set that C' = N,>1C,,, where C,, = U?" I}* is what
is left of [0, 1] after removing middle thirds for n times, I* = [a}, b}'].

EXERCISE 4.12. For a function f € C.(R) and integer n > 1, define

on

(4.4.15) An(f) =D 1 (0F) 2%
§=0

(i) Show that A(f) := lim,— oo An(f) exists and that A defines a positive, linear
functional on C.(R).
(ii) Let pc be the associated Riesz measure. Show that pc is supported on C: pc(R\
C) = 0. Also, show that uc(I}) = =.
(i) Let ax) = pe(—o0,x] be the distribution function of pc. Show that a =V is
Cantor’s function.

4.4.4.3. Generalized Cantor sets. We construct here the generalized Can-
tor set with ratios { A\, }02 1, 0 < A, < 1.

(i) Start with C° = I{ = [0, 1].

(ii) At the first step, let C* = I]UI], the two intervals left after removing
the central portion of IY having length 1 — \;. The length of each
interval is %

(iii) Iterate the construction. Assuming at step n — 1 we have C"~! =
U2 I let €™ € C™1 be the union of the 2" intervals obtained
by removing from each Ij”’1 the middle portion which is in a ratio

1 — A\, with the whole of I;-‘_l.
(iv) Let C' =N, C™.

The (classical) Cantor set corresponds to A, = % for all n > 1.

EXERCISE 4.13. Show that C' is compact, that all points of C' are accumulation points
of C (i.e. C is perfect), and C totally disconnected.

EXERCISE 4.14. Recall that m denotes Lebesgue measure. Show that
(4.4.16) m(C) = lim AMAg... A, = 1102, A,
n—oo
(the last expression is a symbol denoting the infinite product, which is defined by the

limit on its left). In particular, if A, = X € (0,1) is constant (as in the case of the classical
Cantor set), then m(C) = 0.
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EXERCISE 4.15. Again with 0 < A\, < 1, show that 1152, A\, > 0 if and only if

o0

(4.4.17) D (1-Ay) < oo

n=1

Hint. Use the logarithm to turn the product into a sum, then use an estimate for f(\) =
log(A\) as A — 17
Use (4.4.17) to produce a "fat” Cantor set having positive Lebesgue measure.

EXERCISE 4.16. Use Riesz representation theorem to define a Borel measure supported

on the Cantor set in which interval of generation n have measure s~. Is its distribution

271,
function always continuous?

4.4.5. Weak derivatives of increasing functions. Although increas-
ing functions can have a dense set of (jump) discontinuities, they are rather
differentiable, in the sense that the measure of the points where their de-
rivative does not exist has zero Lebesgue measure. (Beware! The problem
does not just consist in the discontinuities, but also in sets playing the role
the Cantor set plays for the Cantor function). This result is hard to prove,
and it will be presented in a later chapter. It is although easy to show that
any (right continuous) increasing function « satisfies an integration-by-parts
formula, in which the measure u of which « is the distribution plays the role
of a’s derivative. We say that p = o in the weak sense. For a more general
discussion of weak derivatives, and of their relation with the usual ”strong”
derivatives, the best mathematical universe is that of distribution theory, in
one or another of its avatars, depending on the particular context.

THEOREM 4.12 (Weak derivatives of increasing functions). The following
are equivalent for a real valued, measurable function f on R:

(i) f is a.e. equal to a right continuous increasing function f;

(ii) f € L., and there exists a Borel measure u > 0 such that, for all

loc

¢ € CLR),

(4.4.18) Awmﬂmm——ép@ww.

Also, f(x) = f(0) 4+ p(0,2] if = > 0, and f(z) = f(0) — p(x,0] if z < 0.
Lebesgue-Stieltjes notation gives (4.4.18) a more suggestive form:

(4.4.19) [ @ s@ar=— [ cwao.

EXERCISE 4.17. Specialize the statement to the case of f € Ct, and find what the
measure p s in this case.
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In the proof, we exchange order of integration a couple of times, using
Fubini’s Theorem.

PROOF. Suppose (i) holds. Then f— f(0) is a.e. equal to the distribution
function of a positive measure u. Using the fact that fR ¢ (z)dr = 0 and
assuming that supp(¢) C (—R, R):

[d@r@a = [ @ / Md (0o = [ (@) [ xCra(Odu(tits
_ // X(ra (B¢ (@) dzdp(2) /RR)/tRso )dadu(t)

- / (R) — o(t))dpu(t)
( RR)
— ~ [ etwduto

R

Suppose (ii) holds. Then, using the same calculations as above,

[d@s@ar = — [ etau

-/ o) /( s

for all ¢ € C1(R), i.e. for all choices of ¢ = ¢’ € C.(R) such that [, ¢ (z)dx =
0. By the 2"? Fundamental Lemma 4.2, there is real C' such that f ( ) =
w(0,z] + C, i.e. fis a.e. equal to the increasing function on the right. After
changing the values of f(x) on a set of null measure, we can assume equality
everywhere, with C' = f(0).

The use of Fubini theorem was justified, since F(x,t) = X(—rq(t)¢' ()
belongs to L'(R x R). O

4.5. Riemann integration vs. Lebesgue integration

In the chapter on measure theory, we saw some shortcomings of Riemann’s
definition of integral. Actually, it is not even a priori clear which functions
are Riemann integrable. At the end of the XIX century, Borel characterized
the Riemann integrable functions in terms of sets having vanishing length.
This paved the way to a broader definition of length itself, and to Lebesgue’s
definition of integral.

In this section we state and prove Borel’s Theorem. Also, when we defined
Riemann’s integral, for expository reasons we limited ourselves to dyadic
partitions of the interval, and one might worry that this way we illicitly
enlarged the class of the Riemann integrable functions. We will show below
that the two definitions are, in fact, equivalent.



120 4. CONSTRUCTING MEASURES

4.5.1. Riemann’s integral and oscillations.
4.5.1.1. Partitions and oscillations of a function. Recall that the oscilla-
tion on a set I of a bounded, real valued function f defined on I is

(4.5.1) Osc(f,I) =sup f(z) — Hg_f(a:) > 0.

zel

It is immediate that if J C I, then Osc(f,I) > Osc(J), hence, if A and B
are disjoint intervals in R, and C' = AU B, we have

(4.5.2) Osc(f, C)m(C) > Osc(f, A)ym(A) + Osc(f, B)m(B).

Here, m((a,b)) = m([a,b]) = m((a,b]) = m([a,b)) = b — a is the length of
the interval, which is also its Lebesgue measure.

Let A ={I;, i =1,...,n} be a partition of the interval [0,1]: 0 = zy <
1 < < Ty <y =1,11 = [xg,x1] and I; = (z;_q,2;] for i = 2,... n.
Define the resolution of A to be 0(A) = max{m(l;) : ¢ =1,...,n}. The
average oscillation of f with respect to the partition A is

AvOsc(f, A) := Z Osc(f, I)m(I).

IeA

Draw a picture to have an intuition of the quantity AvOsc(f,.A). Inequality
(4.5.2) implies monotonicity of AvOsc(f,-):

(4.5.3) if B C A, then AvOsc(f, B) > AvOsc(f,.A).
We say that f : [0, 1] — R is Riemann integrable if
(4.5.4) inf {AvOsc(f,A) : A is a partition of [0,1]} = 0.

Riemann integrability has an ¢ — ¢ formulation.

PROPOSITION 4.6. A bounded, real valued function f on [0, 1] is Riemann
integrable if and only if, for any € > 0, there is 0 > 0 dependent on € and f
alone, such that, if A is a partition of [0, 1], then

(4.5.5) if 0(A) <0, then AvOsc(f, A) <.

ProOOF. The "if” part is clear since, by (4.5.3), by choosing partitions
with smaller and smaller resolution, the assumption implies (4.5.4).

In the other direction, suppose that (4.5.4) does not hold. Then, there is
a positive € such that, for any § > 0 there is a partition A with 6(A) < 9,
yet AvOsc(f, A) > e.
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Let now B be any partition of [0, 1], and let N+1 = §(B), 6 > 0 a number
to be chosen in such a way 0 < §(B), and A with §(A) < § as above. Also, let
AVvB={;NJ;; I, € A, J; € B} be the partition having a set of endpoints
the union of the endpoints of A and B. We have then that 6(.AV B) < ¢ and

AvOsc(f,B) > AvOsc(f,BV A)
= AvOsc(f, A) — [AvOsc(f, A) — AvOsc(f, BV A)]
> € —[AvOsc(f, A) — AvOsc(f, BV A)].

Let’s look at the difference of sums given by: AvOsc(f,.A)—AvOsc(f, BV A).
If I € Ais an element of BV A (and this happens if and only if it is included
in some J € B), then it is cancelled out in the difference. The I’s giving a
contribution are then at most the 2(IN — 1) ones possibly containing some of
the N — 1 endpoints of the partition B which lie in (0,1). Let £ be the set
of such intervals, and for I € £, I = [_ U I, is split into two parts, where
I_,I, € BV A are the left and right part into which I is divided by an
endpoint of B. For each I in £, we simply estimate
Osc(f, I)m(I) — [Osc(f, I-)m(I-) + Osc(f, I+ )m(1)] Osc(/f, [0, 1])m(1)
Osc(f, [0, 1])0.

IAIN

Summing the contributions,

AvOsc(f, A) — AvOsc(f,BV.A) < (N —1)Osc(f,[0,1])6
<e€/2

provided § > 0 is chosen small enough. Thus, AvOsc(f,B) > €/2 for all
partitions B, and f is not Riemann integrable. O

4.5.1.2. The defition of the Riemann integral. We can now define the
Riemann integral of a Riemann integrable function f : [0,1] — R. For a
partition A, define the corresponding inferior and superior sums to be

s(f.A) = ) wff,

IcA

S(f,A) = Zsup f, so that
!
AvOsc(f, A) = g(}, A) —s(f, A).

Since for any partitions A, B we have

s(f, A) < s(f, AV B) < S(f, AV B) < 5(f,B),
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we have that

1

(4.5.6) /o f(z)dx = sg‘p s(f, A) < iﬂf S(f,A) = / f(z)dx,

0

and equality holds if and only if f is Riemann integrable, since it is easy to
verify that

/0 f(z)dx — /Lf(x)dx = igf AvOsc(f, A).

If f is Riemann integrable,

[ swyis = L () = ff(x)d:c

is the Riemann integral of f. Proposition 4.6 can be reformulated as follows:
f is Riemann integrable if and only if, for all € > 0, there is 4 > 0 such that,
whenever §(A) <4, S(f, A) — s(f, A) <e.

LEMMA 4.5. If f is Riemann integrable and {A,, : m > 1} is a sequence
of partitions with 6(A,,) — 0 as m — oo, then

n%i_rgos(f,A)—thfA /f
PROOF. We have that
/0 f@)de < S(f, An)
= [S(fa-Am)_S<faA )]+8<17
< 15U Aw) — s(f, An)] + / F ()

1
(4.5.7) — / f(x)dz
as m — 00, hence lim,,,_,o S fo x)dx, and similarly lim,, .. s(f, An,) =
I f(a)d. O

4.5.1.3. Riemann sums. Indeed, we would like to have some more practi-
cal way to compute the integral of f. This is provided by the next result. The
relevant objects are summing frames (A, A), where A ={I;: i =1,...,n}
is a partition of [0,1] and A ={t;: i =1,...,n} C [0,1] has an element in
each interval of the partition, t; € I;. The associated Riemann sum is

(4.5.8) S(f; A, A) ; Zf [s(f,A), S(f, A)].

Riemann sums approximate Rlemann integrals.
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THEOREM 4.13. Let f : [0,1] — R be bounded. If f is Riemann integrable
and {(Anm, Am) : m > 1} is a sequence of summing frames, Ay, = {Im; :
1<i<np}, Ap ={tmi: 1 <i<npy}, such that

limé§(A,,) =0,

moo

then
1 Nm
(4.5.9) / f(x)de = lim S(f; A, A) = lm > f(tm)m(Ins)
Proor. We have

S An) €S Fltma)m(Tng) < S, An),

i=1

and, since f is Riemann integrable, by Lemma 4.5, ¥(A,,, An) — fo
D

4.5.2. A characterization of Riemann integrable functions. Here
is the result where the story of Lebesgue integration started. Borel gave a
definition of set of zero measure in terms of covering, that soon after Lebesgue
generalized and used to define the integral that goes under his name. Borel’s
motivation was characterizing Riemann integrable functions.

THEOREM 4.14. A bounded function f :[0,1] — R is Riemann integrable
if and only if

(4.5.10) m({x; f is discontinuous at x}) = 0.

PROOF. Let D(f) be the set of points in [0, 1] where f is discontinuous.
We begin with the easy ”only if direction”. Fix ¢ > 0, and let

D(e) ={x: for all § > 0 there is y € [0,1] such that |f(z) — f(y)| > €}.

Then [0,1] 2 D(n) 2 D(e) if n < ¢, and D(f) = U..oD(e). Consider
the dyadic partition A4,, of [0, 1], having as endpoints the dyadic rationals
J/2" (0 < j <2"),and let A, = {j : Osc(f,I,;) > €}. If v € D(e) and
x ¢ Q9 is not a dyadic rational, it lies in the interior of I,, ; for some j, hence

Osc(f, In;) > €, 50 D(e) \ Q C A,,. We have, then
m(D(e)) = m(D ( )\Q2) <27"(4,)
< ZOSC (f, Inj)
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because Osc(f, I, ;) > € for j € A,

1

= —AvOsc(f, A,)
€

— 0asn—

because f is Riemann integrable. Hence, D(e) > 0 for all positive e. Choose
e, = 1/k. The set of discontinuities is | J, D(1/k), hence it has zero measure
by Dominated Convergence.

In the other direction, suppose by contradiction that f is not Riemann
integrable and let A,’s be the dyadic partitions with resolution 1/2". By
Proposition 4.6, there is ¢ > 0 such that AvOsc(f,.A,) > ¢ for all n, and by
rescaling we can assume ¢ = 1. Fix € > 0, to be chosen later, and let

D(e,n) ={z: |f(z) — f(y)| > € for some y with |z —y| < 1/2"}.

and observe that D(e) = (), D(e,n). Also observe that if Osc(f, I, ;) > 2e,
then I, ; C D(e,n). We can now estimate

1 < AvOsc(f, A,) ZOSCf]ng n.j)

Cow(hl1) Y w2 Y i)

7:0sc(f,In. J) j:OSC(f:InJ')SQE

< Ose(f. [0, 1)m(Dle,n) +2

le.
1—2¢
D > .
Choose € = 1/3, and let n — oco. By Dominated Convergence, m(D(e)) >
1/(30sc(f,[0,1])) > 0. O

COROLLARY 4.4. Riemann integrable functions are Lebesgue integrable
and the two notions of integral coincide.

PROOF. Let f be Riemann integrable, let D(f) be the set of its points of
discontinuity, and f; : [0, 1]\ D(f) — R be the restriction of f to [0, 1]\ D(f),
which is continuous. For any real o, f;'(a,00) is open in [0,1] \ D(f): for
any z in f; '(a, 00) there is 7, > 0 such that B(z,r,) \ D(f) C f; *(a, 00)
(here B(z,r) = (x —r,z+1r)NJ[0,1] is the metric unit ball for the Euclidean
metric in [0, 1]). Let V = U yB(z,7;), so that fit(a,00) = V\ D(f).
Then,

xeffl (a,00

fHa,00) = VA D(f)] U [f (@, 00) N D(f)] -
Since m(D(f)) = 0 by Theorem 4.14, the set f~!(, 00) is the union of two
measurable, sets, hence it is measurable.
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Consider now the dyadic partitions .4,, having endpoints j /2" (j = 0,1, . ..
The Riemann integral of f is

1
[ fe =l 3 it st
= nh_nolo/ Zlnffdm

= lim fndm,
n—oo 0
where the integral in the second line is the Lebesgue integral of a step func-
tion. The functions f, = fo 1nf I; [ < Jay1 increase towards a limit
function ¢ < f, and by Monotone Convergence (we can use it because f is
bounded and defined on a set of finite measure)

/ f@dz < [ fla)dz
0 0,1]

where the second integral is in the Lebesgue sense.
The same reasoning with sup instead of inf shows the opposite inequality.
O

,2").






CHAPTER 5

Hilbert spaces

Among function spaces, Hilbert spaces are probably the most ubiquitous
in mathematics and its applications. At its inception, ”Hilbert theory” dealt
with concrete L? spaces, but soon an abstract theory was developed. The
advantage of the abstract theory is that it makes it easier to recognize when
a Hilbert space structure underlies a cluster of mathematical objects and
phenomena, and it helps in generating Hilbert spaces in which better state,
and solve, theoretical, as well as practical problems. Although all Hilbert
spaces are isomorphic to some L? space, the point of view that knowledge
of L? is all that’s needed is far too simplistic, and basically incorrect. Most
Hilbert spaces are spaces of functions defined on some set of points, and
such ”points” constitute further structure, which often is at the core of the
problem we have at hands. Is this chapter, however, we are mostly interested
in the abstract theory.

Another useful way of thinking is that of viewing at Hilbert spaces as
generalizations (often infinite-dimensional, with complex rather than real
scalars) of the Euclidean space. Even if in applications each vector in the
Hilbert space represents a functions, we can think of each of them as a ”point”
in a linear space where notions like orthogonality make perfect sense. This
intuition is helpful in translating complex phenomena in simple pictures, and
pictures into statements (which are sometimes true, sometimes false).

5.1. Basic geometry of Hilbert spaces and Riesz Lemma

5.1.1. Definition and basic properties. An inner product on a vector
space V over C (or R ) isamap (- |-) : V x V — C such that:

(i) (x| x) >0 and (z | ) =0 if and only if x = 0;
(i) (z | ax + By) = alz | z) + f{z | y) for z,y,z € V and «, € C;

(i) (= [y) = (v [ =),

Two vectors x,y are orthogonal, = L y, if (z | y) = 0. We define ||z| :=
(x| £)'/? to be the norm of z € V. A simple calculation gives:

127
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LEMMA 5.1. [Pythagorean relation] Let x,y € V,x # 0. Then,

== G o)l + ()

Proor. Expand the right hand side using the definition of norm and the
properties of the inner product. 0

2

EXERCISE 5.1. Explain why the lemma is called as it is with a picture, or observing
that the vectors ﬁ <H;”—H | y> and y — ﬁ <ﬁ | y> are orthogonal and their sum is y.

COROLLARY 5.1. [Cauchy-Schwarz inequality/For x,y € V we have

[z || < l=llllyll,
with equality if and only if x,y are linearly dependent.

Proor. If x = 0, there is nothing to prove. Otherwise, the inequality
follows from dropping the first summand from the right of the Pythagorean
relation. In case of equality, either x = 0 or the first term in the right of
the Pythagorean relation vanishes, in which case z,y are linearly dependent.
Conversely, if they are linearly dependent it is easy to see that equality holds
in Cauchy-Schwarz. O

PROPOSITION 5.1. The function x — ||z|| defines a norm on V.
ProOOF. It is an immediate consequence of Cauchy-Schwarz:
lz+yll* =(z+y [z +y)

= llz* + (@ [ y) + (y | 2) + llyll”

= [l2]I* + 2Re((z | ) + [ly[I*

< el + 2l iyl + llyll?

= (]l + Iyl

OJ

An inner product space (H, (- | -)) is a Hilbert space if it is complete with
respect to the norm induced by the inner product.

EXERCISE 5.2. Show that the inner product can be written in terms of norms by means
of the polarization identity:

1 . .
(5.1.1) (@ly) = [l + 5l = llz = ylI*) +i (o +iyl* = o - iyl*)] -
LEMMA 5.2. [Parallelogram law] Let x,y € V. Then,

lz+ylI* + llz = l* =2 (l=l* + llyl*) -
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PROOF. Expand the expression on the left using the definition of ||-||. O

EXERCISE 5.3. Show that, if || - || is a norm on a vector space which satisfies the
parallelogram law, then it comes from an inner product as defined by the polarization
identity.

EXERCISE 5.4. Show that the (two-dimensional) Banach spaces £({0,1}),1({0,1})
are not inner product spaces (i.e. that their norm does not come from an inner product).
A Hint. The parallelogram law fails.

5.1.2. L? as a Hilbert space. Let (X, F, u) be a measure space. Ob-
serve that, if f,g € L?(u), then fg € L'(u):

[ Faldi < 112l

by Hélder’s inequality with p = p’ = 2. We can then define

(flghe = / fadp,

b's
which satisfies the properties of a inner product, with associated norm (f|f);2 =
[ f117:. We saw that L*(u) is complete with respect to this norm.

5.1.3. Projections onto subspaces. Let M C H be a closed, linear
subspace of H. Its orthogonal complement, M+ = H & M, is:

={zeH:z Lyforalye M}.

LEMMA 5.3 (Projection Lemma). Let M C H be a closed, linear subspace
of H. Then, for each x € H there exists a unique u € H such that

o —ull = inf{{lz —yl| : y € M7}

PROOF. Let {yn},-, be a sequence in M such that |y, —z| — ¢ =
inf{|lx —y|| : y € M}. We show that it is a Cauchy sequence- By the
parallelogram law,

2
1(Ym =) = (yn = 2|
2
2 (Il — l” + N1y = 21”) = llym + o — 22|

2
Hym - ynH

2
ym+yn_

2

2 (lm — 2l + llgm — 2) — \

<2 (Hym - x||2 + Hyn - ‘75”2) - 452

Ym T ¥y

because “eM

—46% — 46 = 0.
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We now let u = limy,, € M (because M is closed).

If v/ is another point with the same property, then “E“, € M and

u+u

=) = 2 (Jhu = 2l + ' = 2]*) — 4

—x” < 46% —48° =0,

hence, u = u’. O

We call u = mp(x) the orthogonal projection of x onto M.

PROPOSITION 5.2. Let E C H and define E+ = {x € H : x L y for all
y € E}. Then,
(i) E* is a closed, linear subspace of H, and E N E+ = {0};
(ii) if M is a linear subspace of H, then M+ = Ml;
(iii) of M is a linear subspace of H, then (]\4L)L = M s the closure of
M i H.

PROOF. (i) Let 2,y € E+, a, 3 € C, and let 2 € E. Then,

(zlax + By) = alz]z) + B(zly) = 0,

hence, ax + By € E+.
Let now E+ 3 z,, and lim,, o ||z, — z|| = 0. Then, for z € E,

[{zl2)| = [(z]2) = (zlzn)| < [2 - [l = 2]l =0,
as n — oo. S0, |(z|z)| is smaller than any positive €, hence (z|z) = 0, i.e.
T € Bt

Finally, if z € E N E*, then 0 = (v|v) = ||v||?, hence, v = 0.

(iii) (ML)L is linear and closed by (i), and (ML)L O M: ifx e M,
then, for 2 € M+ we have that (z|z) = 0, then z € (ML)L. We have thus
proved that M, the smallest closed linear subspace containing M, is a subset

L
of (M ) .

Consider = € (]\4l)L \ M. By the Projection Lemma, z = u + v with
weM,and v e M= M- So,vE M*+n (ML)l, hence, v =0 and x € M,
contradicting the assumption. 0

EXERCISE 5.5. Let E be a subset of H. Show that (E+)* = span(FE) is the closure of
the linear span of E in H.

THEOREM 5.1. [Orthogonal Decomposition] Let M C H be a closed, lin-
ear subspace of H. Then, for each x € H there is a unique decomposition
r=u+v withu € M andv € M+,
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PRrROOF. Let u € M be as in the Projection Lemma, and for t € R and
w € M, so that u + tw € M, define f(t) = ||u + tw — z|>. By minimality,
f(0) =0, and

d
/ O _ _ t 2
PO =G (el
d 2 201,112
= —| (Jlu—2|*+2tRe((u — z | w)) + £*||w|]?)
dt|,_,
= [2 Re({(u —z | w)) + 2t||w||2L:0
=2Re({(u —z | w)).
Hence, Re({u — x | w)) = 0. The same reasoning with g(t) = ||u + itw — x|
gives Im((u—x | w)) = 0. Hence, (u—xz |w) forallw € M,ie. vi=x—u€

M+,
If T have two decompositions x = u + v = u' + ¢v' with w,u’ € M and
v,/ € M+ thenu —v' =v —veMNM* hencew —u' =v —v=0. O
In the theorem on the orthogonal decomposition of a vector, we saw that,
if M is a closed subspace of a Hilbert space H, and x € H, then there exist

unique v € M and v € M+ such that 2 = u + v. Define my; : H — H by
Iy (z) = u, the (orthogonal) projection of x onto M.

EXERCISE 5.6. Let M be a closed, linear subspace of a Hilbert space H.
(i) Show that wpr : H — H is linear and that ||mprzx|| < ||z|| for all z in H.

(ii) Show that 7%, = mpr and that war is self-adjoint, i.e. that

(mvx | y) = (x| Tary)
forxz,ye H.
(iil) Verify that Ipy + My = 1 is the identity operator (I(x) = x), and that M o
HML == 0
It is an interesting fact that the Exercise 5.6 has a converse: all operators
sharing the properties of projections are in fact projections on closed sub-
spaces. We can, that is, indifferently work with the lattice of the closed sub-
spaces of H, or with the lattice of the projection operators. Since projections
operators are spacial instances of linear operators on H, this identification
gives much more flexibility in theory and calculations. (This is similar to
the case of g-algebras, where characteristic functions of measurable sets are
special instances of measurable functions, and measurable functions have a
rich structure).

PROPOSITION 5.3. Let m: H — H be a linear operator satisfying:

(i) m% =m;
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(ii) 7 =m;
(iii) [|w(x)] < C||lz|| for some C > 0.

Then, there exists a closed, linear subspace M of H such that m = my;.

PrROOF. Let M = {n(z): = € H} be the range of 7. For n(z),n(y) € M
and «, f € C we have an(x)+ fn(y) = m(ax+ By) € M, hence M is a linear
space. Let M > w(x,) = y in H. Then, 7(z,) = 7*(z,) — 7(y) because

l7*(2n) = ()]l < Cllm(2n) =yl = 0 as n — oo.

Thus, y = w(y) € M, showing that M is closed.
Finally, let = be an element of H, and write x = u+v = my(x) + 7y (),
as in Theorem 5.1. By definition of M, u = 7(w) for some w. For y € H we

have:
(m(v)y) = {v[n(y)) =

Iy
since 7(y) € M and v € M*. Hence, w(v) = 0, and S0
m(x) = m(u) = 7*(w) = 7(w) = u = mp(x),
showing m = ;. O

5.1.4. F. Riesz representation in Hilbert spaces. F. Riesz repre-
sentation theorem in Hilbert spaces, like the one we saw concerning measures,
shows that any element from an abstract collection of objects can be rep-
resented as an object from a very special and concrete subclass. The first
theorem we saw represented positive functionals on C.(X) in terms of mea-
sures; the present one represents bounded, linear functionals on H in terms
of inner products.

EXERCISE 5.7. Let y € H and define Ty(x) = (y | ). Then, T, : H — C is a linear
operator (a linear functional) and || T,|| = ||ly|.

THEOREM 5.2 (F. Riesz Lemma). Let T : H — C be a bounded, linear
functional. Then, there is a unique yr in H such that T'(z) = (yr | x).

ProOOF. Let N =KerT. If N = H, set yr = 0. If not, by the Orthogonal
Decomposition Theorem there is some xg € N+\{0}, and we can assume that
l|zo]| = 1. We write

o= (o 7b ) + g = u-t Az

The second summand is in span ({x¢}) € N+, with A = (x¢ | z), while u
clearly lies in N (incidentally, this shows that Ker(/N) has codimension one
in H).

T(a) = XT (w0) = (w0 | 2) T (x0) = (T (wo)zo | ).

hence, yr = T (x¢)xo. O
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EXERCISE 5.8. Riesz Lemma provides an identification, in fact an isometry, C : T —
yr of the dual space H* = {T : H — C such that ||T|| < oo} with H itself. The map C
s conjugate linear,

C(aS + bT) = aC(S) + bC(T).

Prove this and prove that, if A: H — K is a bounded, linear map between Hilbert spaces,
then C(TA) = Ax C(T), where the adjoint operator A* : K — H is defined by (Az | y) =

(z | A™y).
5.2. Orthonormal systems

5.2.1. Orthogonal vectors. A family S = {f,:a € I} of vectors is an
orthogonal system if any two vectors in it are orthogonal, and an orthonormal
system if, in addition, each f, has unit norm. An orthonormal basis (0.n.b.)
for H is an orthonormal system which is maximal: no other vector can be
added to it without breaking the orthonormality condition.

EXERCISE 5.9. . Show that the orthonormal system {eq : a € I} is a o.n.b. for H is
and only if span {e, : a € I} is dense in H.

THEOREM 5.3. [Bessel Inequality] Let {e; :i =1,...,n} be an orthonor-
mal system in the Hilbert space H, and let x € H. Then, the vector v —
S (x| ;) e; is orthogonal to span{es, ..., e,}, and

n

2

lzl® =) fes | )]
i=1

If {eq :a € I} is an o0.n.b., the numbers (e, | x) = Z(a) are the Fourier coef-
ficients of x w.r.t. the basis.

PRrRoOOF. The first assertion is clear:
<1’—Z<m | ei)ei | €j> = (z]e;) =Y (xle)leiles) =0,
i=1 i=1

by orthonormality of the system. As a consequence,
2

n 2 n
l]|* = x—z<€i\$>€i + Z<€i|l’>€i
i=1 i=1
n 2 n
2
=z = (e | )es| + ) Iei | =)
i—1 i=1

Before proceeding, we need to clarify some concepts about infinite sums. If
{¢a : a € T} is a family of positive numbers, then

an ::sup{z% Aay, ... a,} Q[}.

acl i=1
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COROLLARY 5.2. Let M = span{ey,...,e,}. Then,

n

T (z) = Z (x| e;) e

i=1

PROOF. The first assertion in Bessel’s inequality says that x = u+v with
u=>" (z|e)e; € M and v € Mt hence, u = my (). O

EXERCISE 5.10. Show that, if ) .;ca < 00, then {a € I : ¢, # 0} is at most count-
able. If {cq :a € I} is a family of complex numbers, we say that ) . ca converges ab-
solutely if ) ,crlcal < oo converges. In this case we say that ) . ca converges in C
absolutely, hence irrespective of how I is ordered (prove it if you have never done it be-

fore!).
5.2.2. Spectral analysis and synthesis.
THEOREM 5.4. Let {e,}acr be a 0.n.b. of H. Then,

(i) For all x in H,

(5.2.1) xr = Z(ea]x>ea (Spectral Analysis of x)

a€el

converges in H;

(ii) we have

(5.2.2) |z]|? = Z [(ea|7)|? (Plancherel Isometry);

acl
11) 2] \Cqract 1S QG SEqUENCE 1T suc a Cq|” CONvVETGES, en
iii) 4 ‘ n H such that ", |cal? th

(5.2.3) Z Cota converges in H.

a€cl

PROOF. By Bessel inequality, if A C I with §(A) < oo, then Y-, _, [{eq]2)|* <
|z||*. As a consequence, I(x) := {a € I : {(e4|z)} = {an}, is countable,
hence, (5.2.2) holds with <. Set now z, = Y ", (eq;|7)es;. We show that is
defines a Cauchy sequence in H:

!
|2nst — zal* =D [{eq,|2)[> = 0
j=1
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as n — 00, by the convergence of the series on the right of (5.2.2). Let
y = lim,,_,o @, (the limit is taken in H-norm):

<‘fL‘ - ylea'm> = <x - T}L)IE-O Z<eaj|x>eaj |€am>

7=1
= lim <w — Z(eaj|x>eaj\eam>
n—o0
j=1
= hm (<€am|x> - <eam|x>) = O
n—0o0

The same argument shows that (z —yle,) = 0if a ¢ I(z). Hence, z —y L e,
for all elements of the orthonormal basis, hence x = y, which shows (5.2.1).
We finish the proof of Plancherel’s identity:

n

x — Z(eaj\@eaj

Jj=1

= (Hfﬂll2 - Z !<6aj|93>\2>

= Jall* =) Nea, o) ?
= Jall® =D l{eala)?,

a€el

0 = lim
n—oo

as wished. O

5.2.3. Orthonormal basis in separable Hilbert spaces.

5.2.3.1. Gram-Schmidt algorithm. A Hilbert space is separable if it sep-
arable as a metric space, i.e. if it has a countable, dense set. Most Hilbert
spaces encountered in theory and applications are separable, and in this case
the existence of a orthonormal basis is constructive. We will then treat first
the separable case, then we will see how things work in the general case,
where Zorn’s Lemma is required, and we have no way to "see” the basis.

THEOREM 5.5 (Gram-Schmidt). Let H be a separable Hilbert space. Then,
H has a countable basis.

PRrOOF. We start with a countable, dense subset G = {g,, : n > 1} of H.
Inductively removing vectors linearly dependent from the previously chosen
ones, we obtain a linearly independent subfamily F = {f, : n > 1} such
that span(F') = span(G) is still dense in H. We then transform F' into an
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orthonormal system:

R
/1"
o = 127 {e1lfa)er
2= Lelf)al’
. _ fn _22;11<6j|fn>6j
" Ifa = 32521 Cesl fudesl”

The denominators do not vanish because F' is a linearly independent family,
and inductively we see that span{ei,...,e,} = span{fi,..., f.}. Hence,
{en : n > 1} is a orthonormal basis for H.

0

EXERCISE 5.11. Let H = L?[0,1] with the Lebesque measure, and consider the func-
tions 1, x,x2. Apply Gram-Schmidt’s algorithm to find three orthonormal vectors in H.

5.2.3.2. The classification of separable Hilbert spaces.

THEOREM 5.6. A Hilbert space H is separable if and only if it has one
countable orthonormal basis B. If it does, all o.n.b. of H have the same
cardinality. Moreover,

(i) if 4(B) = d < oo, then H is isometrically isomorphic to C4;
(i1) if #(B) = oo, then H is isometrically isomorphic to (*(N).

ProoF. If H is separable, then Theorem 5.5 provides a countable o.n.b.
B. Suppose viceversa that H has a countable basis B. If §(B) = d < oo,
B = {ey,...,eq}, then each x in H can be written as x = Z;lzl(ej|x)ej by
the Analysis part of Theorem 5.4 (or by a much more elementary argument).

The map
d
i=1

Lg:xw— ((ej|z))
is an isometric isomorphism of H onto C?. Since H is finite dimensional, all
its basis have the same dimension. In the countable case, B = {e, }°°,, and
we define Ly : H — (*(N) in the same way, Lg :  — {(en|z)} ;. Theorem
5.4 implies that Lg is a isometric isomorphism.

In the opposite direction, suppose H has a countable o.n.b., and consider

the countable () family of the vectors ¢ = Z?Zl gjej, where n > 1, the g;’s

are complex rationals, ¢; € Q +iQ. If x = 2;’;1 cjej and € > 0, then
e, n 2 o n
docies =D aiei|| = Y lelf + ) le — gl
Jj=1 Jj=1 j=n+1 j=1
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Choose first n such that the first sum is dominated by €, then ¢, ..., g, such
that each summand in the second sum is dominated by €/n. This shows
separability.

We are left with proving that, if one o.n.b. B is infinite countable, then
any other o.n.b. By is. Let By = {e, }qer, and observe that, for any e, # e, in
it, ||e, — ep]|* = 2. Let {g,}°2, be any countable, dense set in H. Then, for
each a € I there is n = n(a) such that |le, — ¢.|| < v/2/2, and if a # b, then
n(a) # n(b). This provides an injective map I — N, hence [ is countable. [

5.2.4. Supplement: orthonormal basis in general Hilbert spaces.

5.2.4.1. Ezistence of o.n.b. A widely used version of the Axiom of Choice is Zorn’s
Lemma, which we are stating below. We work with a partially ordered set (A, <). A chain
in A is a subset B C A on which the partial order is in fact a total order: for any x,y in
B, either z < y or y < x. An element m in A is mazimal for C C A if z < m for all z in
C and if n < m has the same property, then n = m.

THEOREM 5.7 (Zorn Lemma). Let (A, <) be a (nonempty) partially ordered set with
the property that any chain B in A has a maximal element in A. Then, A has a maximal
element.

As a consequence, we have that an orthornormal basis exists for any Hilbert space.
THEOREM 5.8. Every Hilbert space H # {0} has a orthonormal basis.

PROOF. Let A be the set of all orthonormal systems of H, ordered by inclusion. It is
nonempty because {z/||z||} € Aif z # 0 is an element of H. If B is a chain in A, then

G=UrepF €A

is a maximal element for B: it is an orthonormal system, and all orthonormal system
containing all F in B contain G.

By Zorn’s Lemma, A has a maximal element H and, unravelling definitions, H is a
maximal orthonormal system in H, hence a basis. O

5.2.4.2. The dimension of a Hilbert space. By Theorem 5.4, if H be a Hilbert space
and B = {e, : a € I'} an orthonormal basis for it, then the map

Lg:xz= Z<€a|$>ea = {(€al) baer

acl

is an isometric isomorphism from H onto ¢%(1).
A natural question is whether different orthonormal basis of H have the same cardi-
nality, as we verified the separable case. The answer is positive.

THEOREM 5.9. Let {eq: a €I} and {fy: b€ J} be o.n.b. of the same Hilbert space
H. Then, §(I) = 4(J).

The cardinality in question is the dimension of the Hilbert space.

COROLLARY 5.3. All separable Hilbert spaces which are not finite dimensional have
countable dimension, and are isomorphic to each other.
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PROOF. If both I and J are finite dimensional, the statement is a well know fact from
linear algebra (go back to see its proof!).

If I is finite dimensional then J is finite dimensional as well. For, suppose [ is finite
dimensional and let S = {z € H; ||z|| = 1} be the unit sphere in H. Being H a finite
dimensional Euclidean space, and S both closed and bounded, S is compact. Suppose
now J is infinite and let {f,, : n > 1} an infinite countable subset of {f; : b € J}, which
is contained in S' if a subsequence of it (which we might denote the same way) converges
to some z in S, by continuity of the inner product (z|f,, ) — [|z]|> = 1 as n — co. On
the other hand, x = 7, _ (x| fy) fp, hence (z|fy,) — 0 as n — oo, because, for instance,

> [l fo )1 < ) = 1.
The remaining case is that in which both I and J are infinite. To each a € I there
corresponds an at most countable subset J(a) of J such that

€a = Z <ea‘fb>fb-

bel(a)

The number of the involved f3’s is

t (Uaerl(a)) < 4(1).

Suppose a basis element f;, was not used. Then, fp, is orthogonal to all e,’s, hence to H:
contradiction.
We have then that §(J) < #(I), and the opposite inequality holds as well. O

5.3. The trigonometric system and Fourier series

In this section we consider the trigonometric system in L?((0, 27]), which
is especially natural and important. It should be kept in mind, however, that
a great amount of work goes on all over the world into finding, studying the
special properties of, and applying, new orthornormal basis (ONB) for old
and new Hilbert spaces of functions. Broadly speaking, when the functions
e, in an ONB share some common feature, so do their linear combinations;
hence, using that ONB to approximate a function f means finding closer and
closer approximations of f which ”look like” the functions in the basis; to
wit, ”if all you have in your toolbox is a hammer, then everything you look
at seems a hammer”.

There are a number of other very good reasons to prefer one orthonor-
mal basis to others. Sometimes they have good algebraic properties, some
other times an operator of interest can be neatly expressed (maybe even
diagonalized) with respect to that basis.

5.3.1. The trigonometric system. The torusis T = {e? : t € R} =
JD, where D = {z € C : |z| < 1} is the unit disc in the complex plane.
We identify e € T +— ¢t € (—m, 7| and functions on T with 27-periodic
functions on R. In particular, the continuous function f(e”) is identified
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with a continuous, 27-periodic function f(t) = f(t 4+ 27) defined on R. The
convolution of two functions f,g: T — C is here defined as

(5.3.1) Fglt) = % F(t— 8)g(s)ds.
Observe that —27 < t—s < 27: this is not a problem, after we have extended
f to a 2m-periodic function, f(t+ 27) = f(t), which can be done in a unique
way. On T we consider normalized arclength measure Qd—fr. For 1 < p < o0,
we consider LP(T) = LP((—m, 7], dt/2m).

The trigonometric system is {e,(t) = €™ : n € Z}.

EXERCISE 5.12. The functions {e,(t) = €™ : n € Z} form an orthonormal system in
L2([—m,m), 4&). Observe that this depends on the algebraic relation e,(s+t) = €, (s)en(t).

There are two equivalent ways to define the torus: either we choose, as we
have done, the interval (—m, 7] and the imaginary exponentials ¢ or the
interval (0,1] and the exponentials e*™*. The latter is more algebraically
elegant, and reduces the propagation of 7’s in the main relations; while the
second is easier to use when we think of T as the boundary of the unit disc
in the complex plane. Here we have chosen to sacrifice algebraic elegance to
Euclidean geometry.

We define the n'* Fourier coefficient of f: T — C, f € LY(T),

—~ 1 [t~ . —~
(5.3.2) f(n)=— (z)e™™dt, f:7 — C.

T o o

THEOREM b5.10. The trigonometric system{e, : n € Z}, is complete in
L?:= LQ((_ﬂ-a ﬂ-]v g_:r)

The trigonometric polynomials p(t) = ZiV:_N cne™, that is, form a dense
subspace of L?. Our proof proceeds in three main steps.

5.3.2. The Poisson kernel. For 0 <r <1l andt e T, let

+00
P.(t) = Z rlnlgint

n=—oo

be the Poisson kernel, which can also be thought of as a function of z = re®,
P.(e") = P(z). Integrating the series term by term, with our normalization,

—

P, (n) = rnl,

Here are some basic properties of the Poisson kernel, which are similar to
those of the approximations of the identity we have seen earlier.
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LEMMA 5.4. The Poisson kernel satisfies:
(i) P.(t) > 0;
(i) 77 Ptk =1
(iii) for d >0,
lim sup P, (t) =0.

r—1 (5S|t‘§ﬂ'

PROOF. Integrating the series term by term we have (ii). An alternative
expression for P,(t) can be obtained by computing the series, also proving

(ii):

P(t) = Y 2"+> 7
n=>0 n=1
1 1
= -1
1—z+1—2
o l-Z4l—z—(1-%)(1-2)
a 1 —2]?
1=z
L
1_ 2
= r > 0.

1 — 2rcos(t) +1r?
From the closed expression for P, we have:

1—r?
1' P — 0.
oy sup Bl = ooy + 2

OJ

Denote 7,f(e) = f(e!*=)), translation by s on R (or, rather, rotation
by t radians in T).

LEMMA 5.5 (Continuity of translations in LP). Let 1 < p < oo and
f € LP(T). Then,

tim |7 — flze = 0.

PROOF OF THE LEMMA. We saw that any function f in LP can be ap-
proximated in L? norm by a continuous function ¢ with any precision e,

If =l < e
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On the other hand, it is easy to see that for a continuous function ¢ we have
lim || 75 — @||z» = 0.
s—0
In fact, by uniform continuity, for each ¢ > 0 there is 6 > 0 such that for
|s| <& we have |p(x — s) — ¢(x)| < €. Integrating,
1 [T

o | el —=s) —p(a)fde < €.
2m J_,

All together,
(533) Irf ~ Sl < 1af = 7lis + e = elas + o — Sl
= It — @lle + 2l — fllw < 3e,
provided |s| < s(e). 0

EXERCISE 5.13. (i) Show by (simple) examples that Lemma 5.5 fails for p = oo.

(ii) Show that Lemma 5.5 holds for L if we restrict to the class of the continuous
functions.

EXERCISE 5.14. Prove that, for 1 < p < oo, L? function can be approzimated in LP
norm by step functions, both in LP(T) and in LP(R). Hint. Approzimate step functions
by continuous functions.

THEOREM 5.11. Let f € LY(T) and, for 0 < r < 1, define its Poisson
extension

(5.3.5) P[f](e") = P[f](re") == P, = f(e"),
so that P.[f] : T — C, and P[f] : D — C.

(i) We have:

(5.36) lny 1P (1) = fllr =0,

(i) When p =2,

[e.9]

(5.3.7) Bl = D2 Flmyrer

n=—oo

converges both uniformly and absolutely, and in L*(T).
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PROOF. Observe that

P[f1(e") = f(e")

5. HILBERT SPACES

1 [T

[f(e) —

)
+r
= 3 | 1DE) =~ R eas

By Minkowsky’s integral inequality,

1P [f] = fllee

because the LP norm is translation invariant. Fix ¢ > 0 and find first, by
Lemmab.5, § > 0 such that |7, f— f|z2 < €if |s| < 6; then find 0 < r(d,¢) < 1

<

+

1 + .

or |7sf — fllo» Pr(e"¥)ds

7T —1TT

1 )

— Tsf — fllor Pr(€")ds
o] o Pr(e™)

1 Y

37 50 Be) [ = fllunds
1 .

— Tsf — fllop Pr(€"¥)ds

5w ] o Po(e™)

1 . A

L sup B (") / (ruflloolf o) ds
27 |s|>d -7

1 .

[ s~ Tl Pr(es

T Jls|<s

2 sup Po(c*)|| 1.

|s|>0

such that P.(e”) < e if r(d,¢) < r < 1. Thus,
IP[f] = flloe < (14 2[| fllze).

For the second statement, we apply Fubini’s Thorem:

R

ity - In| Sin(z—y)
PIAE) = 5| Zoo e f(y)dy
I 1 [ .
_ n:ZOOHn'%/W e—zny)f(y>dy6—mr
= Z f(n)r'"‘eint.
Convergence is uniform since |f(n)| = [{en|f)] < ||f||z2. Also, by orthonor-

mality of the imaginary exponentials and Bessel’s inequality,

N<n<N+L

Z f(n)r‘”'en

2

= |f(n)|2r2|"‘ —0as N — oo,

2

L2 N<n<N+L
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showing L? convergence. O

5.3.3. The trigonometric system and basic properties of Fourier
series.

THEOREM 5.12. The trigonometric system is an orthonormal basis for
L3(T).

PrROOF. We have to show that trigonometric polynomials, those having

the form
N
p(t) _ Z aneznt’
n=—N

are dense in L*(T). Let f € L?(T) and fix ¢ > 0. By Theorem 5.11, there is
0 <r < 1 such that

1P = fll72 < e

On the other hand, by theorem 5.11 and the orthonormality of the trigono-
metric system, there exists N(e) such that

= ’f(n)’zrzm <y ‘f(n)f <e

L2 [n|>N [n|>N

Plf]= > Fln)yrle,

The trigonometric polynomial p = Zg:_ N f(n)r'”‘en has the desired prop-
erties. U

To each function f € L() we associate its Fourier series

(5.3.8) Sw(f)(€) = Y Fln)e™.

n=—oo

The foundational problem of Fourier theory is understanding for which f, and
in which sense, the series in (5.3.8) converges. For f € L*(T), a quantitative
answer is provided by the fact that {e,},/>° _ is an orthonormal basis, and
the general theory of Hilbert spaces.

THEOREM 5.13. Let f € L*(T).
(i) The series Soo(f) converges to f in L*(T). i.e. Soo(f) = f as an L?

function,
(5.3.9)
+N 2 | b +N 2
R T _ y — 1 _ _ T nt
0= i [lr = 3 Foea| =t or [ 0= 3 Fome| ar
n=-— L2 n=—
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We write

(5.3.10) Z Fn)e™ in L*(T).

(ii) We have the Plancherel identity,

(5.3.11) Z il /Hy () dt.

PrOOF. Equation (5.3.10), to be read as (5.3.9), follows from the fact
that {e,} is an orthonormal basis, and the same is true for (5.3.11). It can
also be expressed by saying that

f = AT

is an isometry of L?(T) onto (*(Z). O

The most peculiar and important feature of the trigonometric system,
and of Fourier series, is the nice behavior with respect to convolutions.

THEOREM 5.14. Let f,g € L*(R). Then,

(5.3.12) Fxg(n) = f(n)g(n).
PRrROOF. We start with a formal calculation.
e, 1 s -
frgln) = o (f*g)(t)e "™ dt
1 _Iw 1 +m n(t—sts)
= 5 w ) f(t—s)g(s)dse™™ dt

1 [ [ A ,

= 5 by f(t —s)e ™9 dtg(s)e " ds
T) . 27 ) .
| Y A B 4 ’

= — — flu)e ™™ dug(s)e " ds

The first two equalities are definitions, the third an application of Fubini’s
Theorem, the fourth depends on the change of variables v = u(t) =t — s
(with s fixed), we use again the definition of Fourier coefficient. O
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Observe that the proof basically depends on the the relation e™(“+s) =
INU ,INS

e e and on the fact that the Lebesgue measure is translation invariant,

d(u+ s) = du (for fixed s).
THEOREM 5.15. (i) If f € LY(T) and a € R, then

T/a\f(n) = e_mafA(n).

(ii) If f € CHT) (i.e. f is 2m-periodic and C"), then

PROOF. About (i),

a(n) _ L ” f(t—a)e ™dt = e~ ! /+7fa f(z)e ™ dy = e_m“f(n).

o) o

About (ii),
5 1 [t |
flin) = 5 | f(t)e ™t
o +m o
= L= g [ e e






CHAPTER 6

Banach spaces

In this chapter we introduce some basic tools in Banach theory, Hahn-
Banach extension theorem and Baire’s category theorem and it consequences.
The latter are, on the one hand, (Banach-Steinhaus) uniform boundededness
principle, and on the other the sequence: open mapping theorem, inverse
mapping theorem, closed graph theorem. We will also consider some conse-
quences and applications of these cornerstones of functional analysis.

6.1. Zorn’s lemma and some of its consequences

In the proof of Hahn-Banach Theorem we will use Zorn’s lemma, which is
a consequence of the axiom of choice, and it is in fact equivalent to it. In most
courses Zorn’s lemma is just stated as a principle, then used alongside the
axiom of choice. One reason is that most instructors hope that the relation-
ship between the two statements has been clarified in some other course. The
other, probably, is that most instructors are research mathematicians with
little taste for nonconstructive principles: they know them and use them,
but feel that such principles are a sort of magic of last resort, and having a
magic tool generating others, or having a supply of independent ones, does
not really make to them much of a difference. A problem with highly non-
constructive existence theorems, in fact, is that we do not know much of the
object we have proved the existence of. It is surprising, in view of this fact,
that such theorems can be used to obtain more practical statements.

There is a price tag attached to it. Nonconstructive arguments allow us
to prove the existence of counterexamples to very reasonable guesses. If we
allow the logical basis of the nonconstructive arguments, we have to keep in
mind that such monsters exist and have to be taken into account.

So much for the small talk. Before we move to Banach theory, in order to
satisfy readers with a taste for logic we state Zorn’s lemma and prove that
it follows from the axiom of choice (but not the opposite implication).

THEOREM 6.1 (Zorn’s lemma). Let (X, <) be a partial order on a set
X, and suppose that each totally ordered subset C' of X has an upper bound:
there s uw in X such that uw > ¢ for all c € C. Then, X has a mazximal
element w: w > x for all X in X.

147
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Proor. While reading the proof, it is very helpful drawing pictures. A
partial order is a special instance of a directed graph, and a totally ordered
subset of it might be thought of, in pictorial terms, as a subset of the real
line (although it is clearly false that all totally ordered sets arise this way,
for instance because there is no a priori restriction on their cardinality).

Suppose by contradiction that X has no maximal element. In particular,
by the axiom of choice, for each totally ordered subset C, including C' = (),
we can choose an upper bound u(C') in X'\ C (if the only upper bound, which
exists by hypothesis, belonged to C, then it would be maximal for X'). Now,
to each subset F' of X and f € F we associate its tail set F.; <= {x € F :
x < f}.

A subset A is a u-set if

(i) A is totally ordered;

(ii) A contains no infinite descending sequence a; > as > ... (e.g. A can
have the order type' of N, but not that of —N), hence, any subset
A’ of A has minumum;

(iii) if a € A, then u(A-,) = a.

The last property says that wu-sets are linked in a very special way to the
choice function u, and, as we will see below, they share many properties with
the ordinals.

If Aisa u-set and a € A, then A_, has properties (i-iii), hence, it is a
u-set.

If A and B are u-sets, by properties (i) and (ii) they have minimum, and
{min(A)}, {min(B)} are u-sets. By property (iii),

min(A) = u({min(A)}cimin(a)) = u(0) = - - - = min(B).

The proof of Zorn’s lemma mostly consists in a ”transfinite iteration” of this
argument, to show that all u-sets are tail sets of a largest u-set E, and by
further applying v to it we reach a contradiction.
Claim Let A # B be u-sets. Then, A = B, forsomeb € B,or B=A_,
for some a € A.
Let
C={ce AnB: A.= B.}.

Sub-claim C = A or C'= A_, for some a € A.

1By order type of a partially ordered set (Z,<) we mean the equivalence class of all
sets which are in a order-preserving bijection with Z.
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We show the sub-claim first. Suppose C' # A and let a € A\ C be
minimal, so that A, C C. In the opposite direction, if c € C'\ A, C A,
then ¢ > a. Hence,

a€ A, =B..CB,

thus a € B and A., = B.,, implying that a € C', which is a contradiction.
This implies that C'= A_.

We now prove the claim. If A # C # B, by the sub-claim we have that
A., = C = By, for some a € A, b € B. By property (iii) of the u-sets,
a=u(A-,) = u(Bs) = b, and we have that

By definition, then, a € C, but this contradicts the fact that A, = C. The
assumption A # C' # B can not hold, hence we have that, again by the
sub-claim, either A = C' = B_;, or, the other way around, B = C' = A_,.
(Hidden in the proof is that the cases a = min(A) or b = min(B), in which
C = (), are covered because we defined u(()).
The claim allows us to glue together whatever u-sets we have into one.
Let
E=Uja, u-setA-

We first show that, if A is a u-set and a € E, then A_, = F_,. The direction
A., C E_, follows from A C E. In the other direction, let x € E_, and let
B > x be awuset. If BC A, then z € A. If not, by the claim A = B_, for
some b € B, in which case © < a < b, and so x € B, = A. In both cases,
x € A, hence, E., C A, which clearly implies £, C A_,.

It is now easy to verify that F is a u-set.

(i) Let a,b € E, and A > a, B 5 b be u-sets. Then A, = E_, and
B., = E_;, are u-sets, hence, by the claim above, either they are
equal, then a = u(A-,) = u(B) = b, or A, = B, for some ¢ in
By, and ¢ = u(B..) = u(A-,) = a, or the other way around. In
the second case, a = ¢ < b, and in the remaining case the opposite
inequality holds. Hence, E is totally ordered.

(ii) Suppose a; > a > 2 > ... is a descending sequence in E, and that
a; € A, a u-set. For i > 1, a; € E,, = A,,, hence the sequence,
being contained in A, can not be infinite.

(iii) If a € F and A 3 a is a u-set, then u(F.,) = u(A<,) = a.

Since E is a u-set, F U {u(E)} is still a u-set which is not contained in E,
and we have reached a contradiction. U
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In the spirit of the section, we use Zorn’s lemma to prove a purely alge-
braic result.

THEOREM 6.2. [Hamel’s basis of a vector space] Any vector space X over
a filed F has a basis. That is, there is a set {v, }aer of linearly independent
vectors of X such that X = span({vs}aer)-

PROOF. Consider the set V of all families V' = {v}},ey of linearly inde-
pendent vectors of X, partially ordered by inclusion. If {V,}.cp is a totally
ordered subfamily in V), then (J .y V. is an element of V, and it is an upper
bound for {V,}aecm. By Zorn’s lemma, there exists in V a maximal element
{va }aer, which is a basis for X, since a vector u which is not in span({v }aer)
could be added to the family, contradicting maximality. OJ

Below we use basic facts about cardinal numbers. For properties of cardi-
nal numbers, and of ordinal ones, you might look into Reed Solomon, Notes
on ordinals and cardinals.

THEOREM 6.3. Let X be a vector space over a field F, and let U = {U, }aer
and V' = {wvp}acs be two basis of X. Then, §(I) = 4(J), I and J have the

same cardinality.

PrROOF. We know from linear algebra that £(/) is finite if and only if §(J)
is, and they coincide. We can suppose then that both index sets are infinite.
To each a € I associate the set B(a) := {b1(a), ... ,by@)(a)} = {b1,...,bn}

J, where
Us= Y AV,
=1

with 0 £ \; € F, is the unique expression of U, with respect to the basis V.
The map B is one to one from [ to the family of the finite subsets of J. Since
the latter class has the same cardinality as J, we have (/) < #(J), and the
other inequality is proved in the same way. 0

By theorem 6.3, we can attach to any vector space X the cardinality of
one, hence all, of its basis. Such number is called the algebraic dimension,
or sometimes the Hamel dimension, of X. Let’s denote it by dimg(X). The
algebraic dimension is clearly a linear invariant: if L : X — Y is a linear
bijection, then dimg(X) = dimg(Y).

Infinite dimensional, but separable, Hilbert spaces have a countable or-
thonormal basis in the Hilbert sense, but their algebraic dimension is more
than countable. This shows that Hilbert theory, and more general Banach
theory, or even more generally topological vector spaces theory, is not re-
ducible to linear algebra alone, even at the most basic level of dimension.


https://www2.math.uconn.edu/~solomon/math5026f18/OrdCard2.pdf
https://www2.math.uconn.edu/~solomon/math5026f18/OrdCard2.pdf
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PROPOSITION 6.1. As a wvector space, any infinite dimensional Hilbert
space H does not have countable dimension.

PROOF. Let {v,}22, be any countable, linearly independent subset of H.
Using Gram-Schmidt algorithm, find an orthonormal set {e,,}5°_; such that
span({v, }7 ;) = span({e,, }>°_,). Consider then

Then, z € H \ span({e,, }5o_,) = H \ span({v,, }>2 ). This show that {v,}>2,
was not an algebraic basis for H. O

The completeness of H was used in that x exists in H since the series
converges.

Using Hamel basis, we can construct such monstrous objects as every-
where defined, unbounded linear functionals on a Hilbert space.

PROPOSITION 6.2. Let H be an infinite dimensional Hilbert space. Then,
there exists a linear functional | : H — R which is not bounded.

PROOF. Let {v,}aer be a Hamel basis for H, let {v,, }22; a countable
subset of it, which we might assume to be orthonormal after applying the
Gram-Schmidt algorithm to it. We then define [ on the basis by

l(va) =0if a # v, for alln > 1
[(Va,) = n.

The operator extends to a linear operator [ on H by linear algebra. On the
other hand, [ is not bounded,

12z = Sup 1) = [l(va, )| = n,
hence, ||l||z+ = oo. O

6.2. The Hahn-Banach Theorem and some of its consequences

EXERCISE 6.1. Let H be a Hilbert space, M C H a closed, linear space, and S : M — C
a (bounded) linear functional on M. Show that there exists an extension T of S to H with
IT|| = |IS||. Moreover, such an extension is unique.

In general Banach spaces matters are more intricate.
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THEOREM 6.4 (Real Hahn-Banach Theorem). Let X be a real vector
space, and p : X — R a real-valued, convex functional:

plaz + (1 —a)y) < ap(z) + (1 — a)p(y)

ifx,y € X and a € [0,1]. Let 1 :Y — R be a linear functional such that for
reyY

1(y) < p(y).
Then, there exists linear L : X — R extending [ to X, and such that

L(z) < p(z)
on X.

PROOF. The main step consist in extending [ on Y to A on span(Y, z),
where z ¢ Y, which we do by a sort of separation of variables. Then we use
Zorn’s Lemma. We must have A\(y + az) = [(y) + a)(z), and it suffices to
determine A(z). We start with an inequality involving z and p. Let a,b > 0,
r,y €Y:

bl(z) + al(y) = (b+a)l( b i@ y)

b+a +b+a

< (b+a)p( ’ - y)

b+ax+b+a

a
“+a

— (b+a)p(bja(x—az)+b (y+bz)>
< bp(x —az) + ap(y + bz).

That is,

l() = p(z —az) _ ply+b2) — Uy)
a - b
holds for all a, b, z, y as above. There is then real k such that [(z)—p(z—az) <
ka and kb < p(y + bz) — l(y), or

l(z) — ka < p(z —az), l(y) + kb < p(y + bz).

It follows that A(z) = k works.

Consider now the set A having as element (Z, \) where Z is a subspace
of X containing Y and \ is an extension of [ to Z in such a way A(z) < p(z)
on Z. We partially order A saying that (Z, \) < (W, p) is Z is a subspace of
W and p extends A.

Given a chain {(Z., A.) : ¢ € C} in A, we have that Z = U.ccZ, and A
such that A|z. = A. are a well defined element in A, and (Z, \) is maximal
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for C. By Zorn’s Lemma, there is a maximal (W, v) in A. Now, if W # X
we might apply the one-dimensional extension, and (W, r) would not be
maximal. Hence, W = X and the theorem is proved. Il

When proving Hahn-Banach’s theorem for a separable Banach space X
with p(z) = ||z, as it is often the case, Zorn’s lemma is not necessary. In
fact, we can proceed in a way which is much similar to the Gram-Schmidt
construction of a orthonormal basis for a Hilbert space.

EXERCISE 6.2. Let (X, ||]|) be a separable Banach space and let {x,}22, be a dense set.
Let Z be a subspace of X and letl: X — R be a linear functional such that |l(x)| < K||z||
for some constant K > 0.

(i) Let Zo = Z be the closure of Z in X. Show that | has a unique extension ly to
Zy with |l (z)] < K||z]|.

(ii) Let x;, be the first x,, in the sequence such that x,, ¢ Zy, and let Z, = span(Zy, x;,).
Verify that the inductive step in the proof of the real Hahn-Banach theorem shows
that ly extends to a linear functional l; on Zy such that |l (x)| < K||z||.

(iii) Write down how to iterate the procedure in (ii). What happens if it stops afetr
finitely man steps?

(iv) Suppose the procedure can be iterated indefinitely, exhausting {x,}, and let Zoo =
UX g Zm, and ls : Zoo — R be such that |z, = lyn. Show that Zs, is dense

m=0

in X and |lo(x)] < Klz||. Use then again (i) to show that lo has a unique
extension \ to X which coincides with lo on Zo, (hence, it coincides with | on
Z), and |A\(z)| < K|z

THEOREM 6.5 (Complex Hahn-Banach Theorem). Let X be a complex
vector space and p : X — R be such that

plaz + by) < [alp(x) + [b|p(y)

whenever a,b € C, |a| + 0] =1, and z,y € X. Letl:Y — C be a linear
functional defined on a subspace Y on X, satisfying |l(y)| < p(y). Then,
there exists a linear functional L : X — C which extends l, and such that

|L(z)] < p(x) on X.

PrRoOOF. We consider X as a real space of "twice the dimension”. Let
A(z) = Re(l(x)), a real functional on Y, and observe that

Aixz) = Re(l(ix)) = Re(il(z)) = —Im(l(x)),

so that I(z) = A(z) — iA(iz) reconstructs [ from A. By the real Hahn-Banach
theorem, there exists a real functional A : X — R which extends A to X,
and such that A(z) < p(z). We define L(x) = A(z) — iA(ix), which defines

a complex linear functional on X:

L(iz) = Aiz) — iA(—x) = i(A(z) —iA(iz)) = iL(x).
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We also have, for some real ¢,
|L(z)| = ¢"L(z) = L(e"x) = A(e"z) < p(e"x) = p(x),

where the third equality holds because L(e"z) is real, and the last follows
from the fact that p(ex) = p(x) for all ¢’s. O

6.3. The dual of a Banach space

Let X be a Banach space over C (virtually all we say holds for real Banach
spaces). Its dual space X* is the space of the continuous linear functionals
on X. It is a Banach space in itself. In fact more is true. Let B(X,Y") be
the linear space of the bounded, linear operators 7' : X — Y, normed with
the operator norm,

EXERCISE 6.3. Show that the operator norm is in fact a norm on B(X,Y).

THEOREM 6.6. Let X, Y be Banach spaces. Then, B(X,Y) is complete.

PrOOF. Let {A, : n > 1} be Cauchy in B(X,Y), so that {A,z : n > 1}
in Cauchy in Y for each fixed x in X, and Az = lim,,_,, A,z is well defined,
and linear. Also, |||An] — [|4n]l] < ||Am — Asl, hence ||A,|| — C has real
limit as n — oco. We have:

| Az] = lim [ Aua]| < lim [ A, [l2] < O],

hence, ||A]| < C.
We still have to show that A, — A in B(X,Y) norm. But we have:

(A~ Al = Jim [[(A, — Ay)al] < lim A, — Ay - ]

hence,
[ A= Ap]l < T[4, — Ayl < ¢
n—oo
if m > m(e), so ||A— A,| — 0 as m — oc. O

EXERCISE 6.4. Let S € B(X,Y) and T € B(Y, Z). Show that TS :==T oS € B(X,Z)
satisfies | TS| < |IT|IIS|I-

The above inequality, when X =Y = Z, expresses the fact that B(X) :=
B(X, X) is a Banach algebra with respect to the composition product. It is
also a wunital one, since the identity operator Ix = x satisfies A = Al and
HI”Welx;vill often use without mention the following fact.

EXERCISE 6.5. Let fo : Xo — Y be a continuous map from a dense subspace Xy of

a metric space X and a complete metric space Y. Then, fo can be uniquely extended to
a continuous map f: X — Y. If X is a normed space, Y is a Banach space, and fy is

linear, then f is linear and || f||zx,vy = llfollB(x0.v)-



6.3. THE DUAL OF A BANACH SPACE 155

The Hahn-Banach Theorem has important consequences about X*.

COROLLARY 6.1. Leti: Y — X be the inclusion in the Banach space X
of Y, a subspace of it. Then, the restriction map [ — Lo i from X* to Y*
15 surjective: each X\ in Y™ has an extension | in X*. Moreover, there exists
one extension | such that ||l|

x+ = [|Ally-

PrROOF. Apply the Hanh-Banach Theorem with p(x) = |||

vy« |lz]]. O

COROLLARY 6.2. Let y € X, Banach. Then, there exists | € X*, [ # 0,
such that 1(y) = ||| x+|lyl|-

X*

PROOF. Set A(ay) = ally|| on span(y), and extend it to [ : X — C by
Hahn-Banach. Since |A(ay)| = |lay|, we have ||l|| = ||A|| = 1, and I(y) =

AMy) = [lyll- O

COROLLARY 6.3. Let Z be a subspace of a normed linear space X, and
let d(y,Z) := inf{|ly — z|| : 2z € Z}. Then, there is L € X* such that
L(y) =d(y,Z), | L||x =1, and L(z) =0 for z € Z.

PROOF. We only have to define such L on span(Z,y), then use Hahn-
Banach. We are forced to define L(z + ay) = aL(y) = ad(y, Z). This is a
linear functional, and

Leta) _ | dZ)
Iz + ay Iz + ayl|
_ |a|inf{||w —y|l: we 2}
Iz + ay|
_ |a’inf{||w —yl|: weZ}
lal - I = & =9l

< 1

because —z/a € Z. Hence, ||L| x- < 1.

To show the opposite inequality, for € > 0 find 2z in Z such that ||y —z| <
d(y, Z) + ¢, so that

L=yl o _dy, 2)
|z =yl —dy,Z)+e

> 1 O

Since € > 0 is arbitrary, ||L]

EXERCISE 6.6. Give ”Hilbertian” elementary proofs of the three corollaries above in
the case when X is a Hilbert space.

The bidual of a Banach space X, X**, is the dual of X*.



156 6. BANACH SPACES

THEOREM 6.7. Let X be a Banach space and consider the map i : X —
X given by [i(x)](¢) := €(x) whenever x € X and ¢ € X*. Then, i is an
isometric imbedding of X into X**.

ProoFr. We have:
|[i(2)](O)] = [€(z)] < [|€]] x-

hence, [[[i(2)]]|x+ < [|z[|x-
In the other direction, by Corollary 6.2 we can find [ in X* with [|l||x~ = 1,
and such that [(x) = [|z]|. i.e.,

xHXv

[i(@)I(D] _ )]

i) || = = =
1Pl ([l

[l]]-

O

When the map i : X — X** is surjective (hence, a surjective isometry), we
say that X is reflexive. Not all Banach spaces are reflexive, as the following
exercise shows.

EXERCISE 6.7. Here (P = (P(N).

(i) Show that for each ¢ € €> the map Ly, : ¢ — Y " o(n)i(n), L, : £+ — C, is
a continuous linear functional in (€')* and || Ly|| ey = |l@]|5°.
(ii) Given L € (€')*, show that there exists ¢ € (* s.t. L = L,. Moreover, ||p| s~ =

I|L|(¢ry~. Hint. Make use of L(0,) as "building blocks” to construct . This
way, we have isometrically identified (£1)* = £>°.

(iii) Consider the subspace C' of £>°,
C={pet~: 3 1Lm p(n)}.
Show that is is a closed subspace £°, and that L : ¢ +— lim,,_, ©(n) is a closed

linear functional on C'.

(iv) Show that there is no 1 € £* such that C(p) = > > ¥ (n)p(n). Deduce from
this that £' is not reflexive.

EXERCISE 6.8. Let £. be the space of the sequences h : N — C which vanish outside a
finite set, and £ be the space of all sequences h : N — C.

(i) For m : N — C, define the multiplication operator with symbol m, T, : €. — ¢,
by T (R)(n) = m(n)h(m). Show that ||Tp[lge ey = ||m|e~.

(ii) Find a similar statement with L*[0,1] instead of £?, and prove it.

EXERCISE 6.9. Consider ¢* = (*(N), its 1-dimensional, closed subspace span(dy), and
l(ado) = a. Find all extensions L of | to a linear functional on (' satisfying HLH(@)* =
1 = 1.

How is this different from the Hilbert case?
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Another reason why ¢! (N) is not reflexive is that, while ¢! (N) is separable,
¢>°(N) is not.

THEOREM 6.8. If X is a Banach space and X* s separable, then X 1is
separable.

PROOF. We consider the case of a real Banach space, the complex case
being identical. If X* is separable, it has a dense, countable subset {l,}52 .
For each n, let x, be such that ||z,| = 1 and [,(x,) > ||l.]|x+/2. Suppose
Yy = spang{w,};2,, the linear combinations of the x,,’s with rational coef-
ficients, is not dense in X. So, Y5 # X, and we can find z in X \ Y. By
Corollary 6.3, there exists [ € X* such that l|y = 0, and ||/|| x- = 1. We have
that

Hl - ZNHX* > |(l - ln)(xn)’ = |ln(xn)| > HZNHX*/Z'

If {l,,} were dense in X*, we could find a subsequence {l,, } such that

0= lim ||l = Ly, ||x- > limsup ||l || x-/2,
k—o0

k—o0
then,
L= [llllx+ = lim [l [lx- =0,
k—o0
which is a contradiction. U
EXERCISE 6.10. (i) Show that £>°(N) is not separable, while ¢P(N) is separable

for 1 <p < oco.

(ii) Show that L*°[0,1] is not separable, while LP[0,1] is separable for 1 < p < oo
(with respect to the Lebesque measure).

(iii) Show that C[0,1] is separable (with respect to the uniform norm,).

(iv) Show that a Hilbert space H is separable if and only if it has a countable basis.

(v) Find Banach spaces X, Y with X C Y, such that the imbedding map x — x is
bounded from X to Y, Y is separable, and X is not separable.

In the second part of the next exercise, we need a definition. If A : X — Y
is a linear, bounded operator between Banach spaces, its adjoint T : Y* —
X* is defined on a linear functional [ € Y* by [T"l](x) = I(Tx).

EXERCISE 6.11. Let 1 < p < oo and let g : R — C be measurable. On LP(R), consider
the multiplication operator My : f+— gf.

(i) Show that

My f| v
| Mgllpczry = sup My fllLe

= llgllze--
ozferro] | fllze

(i) Let 1 < p < oo and g € L(R). After identifying [LP(R)]* = L (R) (1/p +
1/p" = 1), what is the expression for [My]', the adjoint of My ?
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6.4. Weak and weak” topologies, and the Banach-Alaoglu theorem

Our first experience is that we fix a topology on a set Y (a notion of
points ”being close”), and this way we can tell which functions f : Y — R are
continuous (their values do not change ”abruptly” from point to point). We
might instead want to put in the forefront the functions (the "measurables”),
rather than the points. We fix a family F of functions f : Y — R, and require
that those functions are continuous (that they do not change abruptly: that
we consider two points to be close, that is, if they result to be close in all our
observations). The topology 7(F) generated by F is the smallest one making
all functions in F continuous.

It is easy to show that a basis of neighborhoods for F is given by finite
intersections of basic sets having the form

N(f,a,r)=f Ha—ra+r)={yeY :|f(x) —al <r}.

One advantage of such weak topologies is that they are most economical in
terms of open sets, hence they have the largest family of compact sets, which
are good when convergence of (sub)sequences is concerned. We will consider
below some important instances of this construction.

6.4.1. The weak and the weak” topologies.

6.4.1.1. The weak topology. Let X be a Banach space, and let X* be its
dual. The weak topology w on X is the coarsest (weaker) which makes all
functionals [ € X* continuous. By general topology, a basis of neighborhoods
for the weak topology is given by the family of the subsets N(a;ly, ..., [,;€)
(withae X, n>1,10;,...,0, € X* ¢ >0), where:

N(ajly, ..., lpye) = {x e X :|lh(x)—ULa)] <e...,|l(z) = l.(a)] <€}
N(a;ly;e) M-+ N N(a;l,;e€)
[N(0;11;€) +a] N - N [N(0; 1,5 €) + a]

[eN(0; ;1) +aln---N[eN(0;1,;1) + a
eN(0; L1, ..., ;1) +a

(6.4.1) = N(0;ly,...,ln;€) +a

are various ways to write and think of these basic neighborhoods. For in-
stance, it is clear that the topology is invariant under translations and dila-
tions, x — Azr + a is a homeomorphism whenever A # 0.

If (X,w) is metrizable, and 2 is a metric space, then continuity of f :
X — € with respect to the weak topology is equivalent to continuity by
sequences: x, — x in (X,w) implies f(z,) — f(z) in . Unfortunately
(X.w) might not be metrizable, and we have to use nets instead. But some
nice features remain.
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PROPOSITION 6.3. (X, w) is a Hausdorff space.

PROOF. By translation invariance, we just have to separate a # 0 and 0.
By corollary 6.2 to the Hahn-Banach theorem, there is [ € X* with ||/||x- =1
and such that [(a) = ||a||. If N(0;1;]|al|/2) 2 0 and N(a;(;||al|/2) > a had a

point z in common,

lall = [i(a) = HO)] < [i(a) = U(z)] + [U(z) = LO)| < [al],

a contradiction. O

We say that the sequence {x,} in X converges weakly to a € X if I(z,) —
[(a) for all [ in X*. Although this notion is generally weaker than ”weak net
convergence” | it is nonetheless useful in many applications, for instance in
calculus of variations. We write x,, — a, or w—lim,, ,, x,, = a. By definition,

weak convergence of xz, to a means that, for each [ in X* and each ¢ > 0,
there exists n(l, €) such that, if n > n(l, €), then x, € N(l;a;¢).

PROPOSITION 6.4. (1) If ||z, — a|]| = 0, then x, — a.
(2) If x,, — a, then ||a]| < liminf, . ||z,

Proor. (1) For any [ in X*, |l(z,) — l(a)| < |||
(2) Again by corollary 6.2, there is [ with |||

x+ = 1 and [la|| = l(a), hence:

la|l = l(a) = lim |I(x,)] < ||l||x+ liminf ||z, ||x = liminf ||z, ||x.
n—00 n—o00 n—o0

g

We can not improve the statement in (2). Let H be an infinite dimensional
Hilbert space and let {e,}>°; be a orthonormal system in it. Then,

(6.4.2) en — 0,

but |le,|| = 1 for all n.

6.4.1.2. The weak”™ topology. Let again X be a Banach space, and let X*
be its dual. The weak™ topology w* on X* is the coarsest which makes the
functionals [ — [(x) continuous for all x in X. Unless the natural identifica-
tion X < X™** is surjective, i.e. unless X is reflexive, the weak™ topology on
X* is weaker than the weak topology.

A basis of neighborhoods for the origin in w* is given by finite intersections
of sets of the form

(6.4.3) N(O;zie) ={l € X™ : |i(x)| < €}.
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The topology is invariant under translations and a basis at any point is easy
to write, as in the case of the weak topology. Its basic properties coincide
with those of the weak topology.

PROPOSITION 6.5. (1) (X*,w*) is Hausdorff.

(2) If |z, — al| — 0, then z,, — a.

(3) Ifln — 1, then ||I|

x+ < liminf, oo || 1o x-

PROOF. Property (2) is weaker than the analogous statement for the
weak topology. Property (1) is proved like the corresponding statement for
the weak topology, using the fact that if [ # 0 is an element of X*, there

exists z in X with ||z||x = 1 and |I(z)| > ||l||x+/2. If A € N(0; x; ||I||x+/4) N
N(l;2; ||l x+-/4), then
1Ulx-/2 < 1) <[ = ) (@) + M) < ] xe/4 + [[U]xe /4,

a contradiction.
The proof of (3) follows the same lines as that of the weak topology

analog. For € > 0 there is  in X with ||z|| = 1 such that |[(z)| > ||I||x- — €.
Then,
Il x+ — e <|l(x)] = lim |l,(z)| <liminf ||],]|| x-.
n—oo n—oo
Let then € — 0. O

6.4.2. Two versions of the Banach-Alaoglu theorem. The raison
d’étre of the weak™ topology is related to compactness properties. To keep the
exposition self.contained, below you find a proof of the Tychonoff theorem.

6.4.2.1. Tychonoff’s theorem. If {X; : i € I} is a family of sets, X; =
IT,c 1 X;, their Cartesian product, is best interpreted as the set of the functions

p: I — UierX;, with p(i) € X; for each i € I.

We call I the domain of p.

If each X; is a topological space, the product topology on 1l;c; X; is the
weakest (coarsest, minimal) making all projections m; : X; — X, m(p) =
p(i), continuous. A basis of open sets for it is provided by the sets 7, YU, N
ﬂﬂ{nl(Uin), where n > 1, 7y,...,1, € I, and U;, is open in Xj,.

THEOREM 6.9. If each X; is compact, i € I, then Il;c; X; is compact.

We give the first of the three proofs surveyed in Three Proofs of Ty-
chonoff’s Theorem by E. Matheron (2020), which the author labels the Wis-
consin proof.


https://hal.science/hal-03660150/document
https://hal.science/hal-03660150/document
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Some of the usual notions associated to functions carry over and are
useful. If J C H, Iy p = p|s is the restriction of p € Xy to X, my -
Xy —>XJ’ THJOTJK = THK- We set 7 =Ty pr € Xy andq € X with
H and J disjoint, then pV ¢ € Xy is the function such that (pV ¢)|y = p,
(pV q)|s = q. The set Xy reduces to the unique empty function from ) to
itself, which we denote by ) (in agreement with the interpretation of functions
as particular relations).

We fix a set I, and let P = U;c; X, which is partially ordered by the
relation p < q if ¢|; = p, where J is the domain of p.

PRrROOF. The proof is by contradiction. We suppose that there is a family
U of open sets in X; such that no finite subfamily covers X;, and we shall
show that U itself does not cover X by exhibiting an element p € X\ Uy, U.

We consider the set B of the bad elements in P: those p € X; such that
for all open V' 3 p open in X, 7' (V) can not be covered by finitely many
sets in U. The empty function lies in B, which is then nonempty. The only
open set in Xy containing 0, in fact, is Xy = {0} itself, and 7, (Xp) = X,
which can not be covered by a finite subfamily of &/ by assumption. We will
prove three facts about B.

(i) B is downward close: if p < q € B, then p € B. In fact, if H is
the domain of p and J that of ¢, and V 3 p is open in Xy, then 7' (V) =
75 (mpt, (V) which can not be covered by a a finite subfamily of U because
WI}}J(V) 5 ¢ is open and ¢ is bad. We can assume V, = O, x W,

(ii) If p € B has domain J C I and ig € I\ J, then there is a € X;,
such that pV a € B. Suppose by contradiction that for all a in X, we have
pVa ¢ B;ie. there exists V, > pV a open in X ;) such that W}S{io}(VCL)
can be covered by a finite subfamily of &/. We can assume that V, = O, x W,
with O, open in X; and W, 3 a open in X;,. Since X;, is compact, it can be
covered by finitely many W,,,...,W,,. Let O = O,, N---N0O,, > p, so that
O x Wy, > pVa; and W;& {Z.O}(O X Wa,) can be covered by a finite subfamily
of U. Now,

m,H(0) = U 77;5{1'0} (O X Waj) J
j=1

and each set in the union can be covered by a finite subfamily of ¢/. Hence,
p¢B.

(ili) (B, <) has a maximal element. If any chain C' in B has an upper
bound in B, by Zorn’s lemma B has a maximal element. Let C' be a chain
in B, let H be the union of the domains of all ¢’s in C, and define p € Xy to
be such that p|; = ¢q if ¢ € C' has domain J. The function p is well defined
because C' is totally ordered. Thus p is an upper bound of C in P. It suffices
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to show that p € B. Let V > p be an open subset of Xy. By definition
of the product topology, we can choose V' O WI;}F(W) S p where F' C H is
finite and W C X is open with W 2 p|r. Now, C is a chain and each i; € F
belongs to some domain .J; in the chain, so F* C J1U...J,, = Jy C H, where
Jo is a domain in the chain. Let gy € X;, N C. Since qq is bad, p|r = qo|F is
bad as well by (i), thus 7' (W)) can not be covered by a finite subfamily of
U. A fortiori, 75 (V) D mz' (W) can not be covered by a finite subfamily of
U, hence p is bad.

Summarizing, B has a maximal element p by (iii), having domain I by
(ii). In particular X; 5 p can not be covered by a finite subfamily of ¢, but
this is possible only if p does not belong to any subset of U, which henceforth
does not cover the whole of X7. O

6.4.2.2. Banach-Alaoglu theorem: the topological form.

THEOREM 6.10 (Banach-Alaoglu). Let By be the closed unit ball of X*.
Then, By is compact in the weak™ topology.

PROOF. For each z € X, consider D(0, ||z||), the closed unit disc in the
complex plane, and let

(6.4.4) K = Tex D(0, [[z]]),

endowed with the product topology. Such is the topology having as basis at
{f(z) : x € X} with |f(z)| < ||z|, finite intersections of sets of the form

M(f;a;¢) ={g: X = C stfg(z)] < ||z[| and |g(a) = f(a)] < €}.

Since each factor D(0, ||z||) is compact, by Tikhonoff theorem K is compact,
too. o o
We imbed B, into K, ®: By — K,

O(l) = {{i(z) }oex }-
Unraveling definitions, we have that
O(N(l;as¢)) = M(l;a;¢) N (By),

i.e. ® is a homeomorphism of B; onto its image into K. Since the latter is
compact, if we show that ®(B;) is closed in K, then it is compact, hence B,
is compact as well.

Suppose f lies in the closure of ®(B;), and consider z,y € X. For any
€ > 0 there is [ € By such that |I(z) — f(z)| < €/3, |[I(y) — f(y)| < €¢/3, and
[l(x +y) — f(x+y)| <¢/3, so that

[f (@) + fly) = fle+y)l <e
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Hence, f(x)+ f(y) = f(x+y). The same way, one shows that f(Ax) = \f(x)
if X is a complex number. This shows that f : X — C is a linear functional,
which also lies in By, since |f(z)| < |lz||. We have proved that ®(B)) is
closed, hence K is compact. O

6.4.2.3. Banach-Alaoglu theorem: the sequential form. A practical prob-
lem with this version of the Banach-Alaoglu theorem is that in general com-
pactness is not in general equivalent to sequential compactness, which is
very useful in many applications (measure theory and probability, claculus
of variations, PDEs...). The version involving sequential compactness below
could be deduced by the previous one, but we provide a direct proof which is
similar to the original one for the Ascoli-Arzela theorem, which is essentially
constructive and does not require the Tikhonoff theorem.

THEOREM 6.11 (Banach-Alaoglu, separable Ee—dual). Let X be a separa-
ble Banach space, and let {l,,} be a sequence in By, the unit ball in X*. then,
there ezists a subsequence {l,, } and an element | in By such that [, — [.

PROOF. Let {2;}%2, be a dense sequence in X, let X be the dense space it
generates in X, and let {x,,}°_; be a maximal family of linearly independent
vectors in {2;}32,, so that Xy = span({z,,}7_;). We will first proceed to
define [ on Xj.

Consider a subsequence n(*) = {n,(cl)}zozl such that

Jim b (o) = o

z1llx < [l flx
is bounded in C. Suppose that subsequences {n}>%, D {n,(:)}zo:l DD

exists in C. Such sequence exists because |l,(x1)| < ||ln]|x+

{n,(j”) 72, have been chosen in such a way (i) limg o0 [ () (2;) = a; € C when
k

(m)

1 <j < m, and (ii) ngl) < nf) < e <ny As above, we can choose

a subsequence {n\""V}%  of {n{™}2° such that limy_,e Lo (Tmy) =
k
ams1 € C, and n{™™ > n{™. The sequence {z™}>_, is a subsequence of

all subsequences {n,(fm)}?:l, hence,

A g (73) =

for all ;’s. Define {(z;) = a;.
The linear extension of [ to X is forced by its values on the basis elements,

l <Z cjxj> = chl(xj) = ch kh_)rg@ ln,(x;) = kh—>Holo L, (Z cjxj> :

j=1 j=1 j=1 j=1



164 6. BANACH SPACES

As a consequence,

(6.4.5) l(chyc]) = klggj ln, (chxj)‘
j=1 j=1
(6.4.6) < liminf ||l | x- > e
Jj=1 X
(6.4.7) < D e
Jj=1 X

The unique continuous extension of [ to X = X, (see Exercise 6.5) satisfies
1Tllx < 1.

We have to verify that limy_e ln, () = [(x) for all z in X. This is a
simple 3¢ argument. For x € X and xy € X,

[[(2) = ln, ()]

< [l(z) = U(zo)| + [U(z0) = lny (z0)| + |l () — U()]
< 2fx — zollx + |l(xo) — L, (0)]-

For given € > 0, choose zy with ||z — x¢||x < €, then k(e) > 0 such that for
k > k(e) one has |l(xg) — I, (z0)| < €. O

6.5. Baire’s Theorem and the uniform boundedness principle

~ Let (X, d) be a metric space. A subset A of X is nowhere dense in X if
A has empty interior (it does not contain nonempty open subsets).

THEOREM 6.12. [Baire’s Theorem] If (X, d) is a complete metric space,
and A, : n>11s a countable union of nowhere dense sets, then U2, A, #

X.

PROOF. Since A; does not contain a nonempty open set, we can find
B(x1,7m) C X\A; withr; < 1/2. Since Ay does not contain a nonempty open
set, B(x1,71) \ Ay is a nonempty open set, hence, it contains B(zs, ;) with
ry < 1/22. By iteration, we find B(z,,r,) 2 B(Zp_1,7n_1) With 7, < 1/2",
and B(z,,1,) N (A_1U . A_n) = 0.

Since X is complete, the intersection of the balls B(z,,,) contains (a
unique) point z € X \ (U2 A4,). O

The next, important theorem is due to Banach and Steinhaus.

THEOREM 6.13. [Uniform Boundedness Principle] Let F = {T} be a
family of bounded, linear operators T : X — Y from a Banach space X
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to a normed, linear space Y. Suppose that, for each x in X, ||Tz| < C(z)
independent of T' € F, although possibly dependent on x. Then, F is bounded,

T <C
for some C' > 0 independent of T € F.

PROOF. For m > 1, let A,, = {z € X : sup{||Tz|| : T € F} < m}.
By hypothesis, U*_, A, = X, hence, some A,, contains a closed open ball
B(z,r). Since z € A,,,

B(0,r) CA,—2CA,+ A, C Ay,

This is what we need, since, for ||z]| <1 and T € F,

1 2m
[Tzl = —[Trz] < —.
r r

Here is an application of Banach-Steinhaus.

COROLLARY 6.4. LetT,, € B(X,Y) be a sequence of bounded, linear maps
from X toY, Banach spaces. If for all x in X there exists

Tz := lim T,z,
n—oo

then T € B(X,Y) is bounded.

PROOF. By hypothesis, {[|T,z|, » > 1} is bounded for each x, hence
{||T.||, » > 1} is bounded by some finite C' > 0. We have, then, if ||z| < 1,

|ITz|| = lim ||T,z| <limsup||T,| < C.
n—00 n—00

Thus, [T < C. O

Banach-Steinhaus allows us to transform (without control of the con-
stants) weak quantitative information, into strong quantitative information.
The following exercise provides an example.

EXERCISE 6.12. Let f : [a,b] — X a function with values in a Banach
space X, and suppose f is weakly Lipschitz,

[L(f(E+h) = 1(f(1)] < CD)]h]

for all t,;t + h € [a,b] and I € X*. Show that [ is Lipschitz: there is a
constant C' > 0 such that

17t +h) = )] < Clnl,
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We will see another important example in the next subsection, where we
treat Banach space valued holomorphic functions.

Qualitative information, however, behaves differently. For instance, it is
possible to exhibit functions f : [0,1] — ¢? which are weakly continuous (for
all hin 2, x — (h, f(x))e is continuous), but which are not continuous.
The following example is modeled on the weak, but not strongly convergent
sequence in (6.4.2). Let

(65.1) F(@))(n) = {

Oif z =0.
Since for  # 0 we have ||f(z)||7. > Y2, m, f is not continuous at
x = 0. On the other hand,
(6.5.2) igrg)(h, f(x))e =0.

After changing variables to y = 1/x — oo, and considering WLOG h > 0,
we can estimate (using an elementary estimate and Cauchy-Schwarz)

o fQe = Y oy M)

ooy LT (= y)? S 1 (0 y)?
C h(n)
< =
- yognzsy/2 (L4 (n—y)?)"?
1/2 ) 1/2
2
+ 2 ) hn) (Z —(1+n2>2>
n>y/2 n>0
C o\
< Z|h —
< S lihlle (Z (Hng)z)
1/2 ) 1/2
2
+ 2 ) h(n) (Z —(1+n2)2> .
n>y/2 n>0

The last expression tends to 0 as y — oo by monotone convergence. It is easy
to see that f is continuous on (0, 1] (for instance, by dominated convergence).

6.5.1. Banach space-valued holomorphic functions. Complex val-
ued power series of a complex variable define holomorphic functions, which
are at the heart of an elegant and powerful theory. At the root of it, is the
fact that holomorphic functions can be defined in several, equivalent ways:
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through power series, through complex integrals, via the Cauchy-Riemann
equations, and others. These different viewpoints can be translated to the
world of functions with values in Banach spaces X; or even better in Banach
spaces of the form B(X), where a product is part of the structure; or in
Banach algebras, which is the most general Banach structure with products.
This way, a number of results, tools, and techniques from holomorphic func-
tion theory become available to Functional Analysis, a fact of the greatest
importance.

A function f: C O Q — X defined from a region of the complex plane
with values in a Banach space is holomorphic if

P (RS ()

e X
h—0in C h

exists for all z in 2. The function f is weakly holomorphic if for all [ in X*
the function

2z 1l(f(2) eC

is holomorphic in the usual sense.

EXERCISE 6.13. Show that a holomorphic function f: Q0 — X is weakly holomorphic.

THEOREM 6.14. Let f : Q0 — X be a map defined from an open subset of
C with values in a Banach space X. The following are equivalent.

(i) The function f is holomorphic in §Q.
(ii) The function f is weakly holomorphic in Q.
(iii) For each zy in ), there is r > 0 such that, for |z — z| <,
f(2) =) an(z = 20)",
n=0

where a, € X and the series converges absolutely uniformly for |z —
2| <p<r.

The value of r can be taken to be that of the larger disc centered at zy and
contained in Q.

In fact, the series converges to an X-valued holomorphic function in
B(zo, R) where

1

 limsup,_, [|an |77

(6.5.3)

is the radius of the largest disc centered at zy and contained in €.
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The computational part of the proof is contained in the following.

LEMMA 6.1. Consider the power series

(6.5.4) g(z) = Z an(z — 29)"

n=0

with coefficients a,, € X, a Banach space, and with radius of convergence as
in (6.5.3).
Then, g : B(0, R) — X is strongly holomorphic, and

(6.5.5) g(z) = nan(z—z)"",

which has the same radius of convergence as g.
In particular, g is infinitely differentiable, and

(6.5.6) g™ (20) = nlay,.

PROOF OF THE LEMMA. The usual proof from holomorphic theory makes
use of tools we do not have, and we do not want to develop. We provide in-
stead an XVIII century style proof which does not require them. We can
suppose zg = 0. We start with the estimate

(z+h)" = 2"
h

(n—1)

(6.5.7) e R (12] + [A])" 2,

which holds for n > 1 and z, h € C. The proof is just a calculation,

> ()
j= \J
n—2 n
< WX () )l
=0
n—2
N ) -2,
||;(z+2)(z+1)< l )|Z| [

n(n—l)n_2 n—=2\ o
e o G [

1=0
n(n —1)

(z+h)"— 2"
h

. nzn—l

IN

= |l (1] + [l

Let now o

W(z) = Znanz”_l,

n=1
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which has the same radius of convergence. For |z| < R and |h| < R —|z|, we
have:

oz + 1)~ o) = (GrRe
H h —Y((2)|| = ;an < . —nz ) ‘
S e R T

— 0

as h — 0 in C, since the series in the line before the last converges. Hence,
1 = ¢'. Since ¢’ has the same radius of convergence as g, we can iterate the
calculation,

(6.5.8) g™ (z2) = Z L)!an(z —20)"™™, g™ (2) = mlap,.

U

PROOF OF THE THEOREM. (i) implies (ii) by exercise 6.13, and (iii) im-
plies (i) is the lemma above.

We show that (ii) implies (iii). We fix some notation. If z € X, 7 € X**
is the functional on X* for which Z(I) = I(z). We set X C X** the set of
such functionals.

We start by showing that if f: Q@ — X a weakly holomorphic function,
and v is a closed curve in €, then z — f(z) is bounded on . In fact, and
for z on :

£ (2) ()] ()]
sup [1(f(2))]

zEey

c),

IA

which is finite because z — [(f(2)) is continuous on «y. By Banach-Steinhaus
theorem,

—

sup [|.f(2)]lx = sup [ f(2) [ x= < oo.
zEey zEey

Let B(z,7) be a disc contained in €2, and let v be a circle of radius p < r
centered at zo and contained in €. Let again [ be in X*. Then, z — [(f(2))
can be expanded as a power series,

1(f(2)) = Y an(l)(z = 20)",

n=0
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where

an(l) = - / R,

2w ), (2 — zo)n
The functional [ — a,(l) is linear and

121

X*
7’L .

lan ()] < Sup ()l x

That is, a, € X** with

sup.e, 1)l

6.5.9 an
(6.5.9) lan] p

X S

Thus,

(6.5.10) g(z) = Zan(z — z)"

n=0

converges for |z — 29| < p to a function g with values in X**. You just have
to check that the usual proof in holomorphic function theory works when
you have power series with coefficients in a Banach space (geometric series
only are involved). The Hadamard formula for the radius of convergence of
the series is proved like in holomorphic theory. By the lem/rria, g is an X**

valued holomorphic function. We next prove that g(z) = f(z) is the image

—

in X** of f(z), i.e. that [g(2)](l) =1(f(z)) for all | € X*.

In fact, all [ in X™* we have

o0

9N = anD)(z = 20)" = U(f(2)).

n=0

By the lemma, ¢ is infinitely differentiable and

(n) ) (o
0 = 9" (z0) i (20) € X,
n! n!

because X is closed in X**, and the derivatives, which are limits of X valued
functions, belong to X. Thus, a, = &, with a,, € X, and

f(2) = anlz = =),

as wished. m

EXERCISE 6.14. Let Q2 C C be open, and let X : Q@ — C be holomorphic, and f : Q — X
be a Banach space-valued holomorphic function. Show that their product A - f : Q@ — X is
holomorphic.



6.6. THE OPEN MAPPING THEOREM AND THE CLOSED GRAPH THEOREM 171

6.6. The Open Mapping Theorem and the Closed Graph Theorem

A map F : M — N between metric spaces is open if the image of an open
set in M is open in N.

EXERCISE 6.15. If T : X — Y is a linear map between normed, linear spaces, then
the following are equivalent:
(i) T is open;
(i) there is a ball Bx(0,r) in X such that T(Bx(0,r)) contains a ball inY;
(iii) there is a ball Bx(0,7) in X such that T(Bx(0,7)) contains a ball centered at 0
mY.

Moreover, if T is open, then it is onto.

Hint. (i) = (i) is clear. For (ii) = (i14), you can show that if T(B(0,7)) D B(y, R),
then T(B(0,2r)) D B(0,R). The proof that (iit) = (i) is easy. Also, (i) implies that
T is onto by the homogeneity of T.

THEOREM 6.15. [Open Mapping Theorem/] Let XY be Banach spaces,
and let T : X — Y be a linear, bounded map from X onto Y. Then, T is
open.

PRrROOF. Let B, := B(0,n) C X. Since U,T(B,) =Y, there is n such
that T'(B,) D B(yo,€). f y € Y, then y = (y+ o) — yo € T(Bn) — T(B,) C
T'(Byy,) provided ||y|le. i.e. B(0,¢/(2n)) = B(0,n) C T(By).

It suffices then to show that T'(B;) C T'(Bs).

Let y € T(B;), and pick 21 € By such that ||y — Tx;| < n/2, so that
Tz, —y € B(0,1n/2) € T(Bi2). We can then find pick z € By, such that
ly — Tay — Tas|| < n/2%

Iterating, we have x,, € By jgn-1 such that ||y — T(z1 4+ - -+ z,)| < n/2".
We have that z1+1dots+z, — = € Byasn — oo, and T'(x) = lim,, ., T'(z1+

<o+ x,) =y, as wished. O

EXERCISE 6.16. Let X = R? with the Euclidean metric. Show that for all € > 0 there
is a linear bijection T : X — X such that |T|| =1, yet T(B(0,1)) does not contain B(0,€).
That is, the Open Mapping Theorem is not quantitative.

THEOREM 6.16. [Inverse Mapping Theorem] Let T : X — Y be a bounded
bijection of Banach spaces. Then, T~ :Y — X is bounded.

PROOF. The fact that T is open means that for some € > 0, if ||y|| < €
in Y, then there is z € X with [|z|| < 1 and Tx =y, i.e. x =T 'y. Said it
differently, 7! maps B(o, €) into B(0,1), so that ||T7|| < 1/e. O

EXERCISE 6.17. Show that if || - ||1 and || - |2 are two norms on X, if ||z||2 < ||z||1 on
X and X is Banach with respect to || - |1, then there is C' > 0 such that ||z]1 < Cllz|2 on
X.
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EXERCISE 6.18. Show that (even!) in R? one can find norms || - |1 and || - |2 with
lzll2 < llzll1, vet [|z|li < Cllz|l2 only holds if C is (arbitrarily) large. That is, the result
in the previous exercise is not quantitative.

The graph of a function f: M — N is the set T'(f) = {(z,y € M x N :
y = f(x)}. T : X — Y is a linear operator between linear spaces,
then I'(T") is a linear subspace of X x Y. If X and Y are normed, then
I(x,y)|| := ||z|| + ||yl defines a norm on X x Y, hence on I'(T).

EXERCISE 6.19. If X and Y are normed linear space and T € B(X,Y), then T'(T) is
closed.

THEOREM 6.17. [Closed Graph Theorem] Let T : X — Y be a linear
operator defined from a Banach space X to a Banach space Y. If T'(T) is
closed, then T is bounded.

PROOF. By assumption, I'(T") is closed in a Banach space, hence Banach
itself: if (z,, Tx,) — (z,y) is Cauchy, then y = Tz, so (z,y) € I'(T).

Consider the projections 7x : (z,Tx) — x and 7y : (z,Tx) — Tz. Both
projections are bounded, IIy is invertible (hence, its inverse is continuous),
and T' = my o [I'. Hence, T is bounded. ]

THEOREM 6.18. [Hellinger-Toeplitz] Let A : H — H be an everywhere
defined self-adjoint operator on a Hilbert space H :

(Azly) = (2|Ay) if z,y € H.
Then, A is bounded.

PROOF. Let (x,, Az,) be a sequence in I'(A) with z,, — = and Az,, — .
For all z € H:

(zlyy = lim (z|Az,) = lim (Az|z,)
= (Az|z) = lim (z|Az),
n—o0

hence, Ax =y, so T'(A) is closed. O

6.7. Integrals of continuous, Banach space valued functions

The integral of functions with values on a Banach space can be defined in
several ways, choosing which depends on the application we have in mind?.

2There are different definitions for the integral of a Banach space valued function. A
reasonably general, Lebesgue style one, is provided by Bochner integrals. See e.g. The
Bochner integral by Wenjing Wu. The weak version of the Bochner integral is the Pettis
integral. Here, however, we are integrating continuous functions, and more elementary
definitions of integral can be used.


http://home.ustc.edu.cn/~anprin/Bochnerintegral.pdf
http://home.ustc.edu.cn/~anprin/Bochnerintegral.pdf
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Think of Banach space valued holomorphic functions: extending to them
the notion of Cauchy integrals requires integrating vector valued functions.
Having in mind holomorphic theory, we sketch here a construction of the
integral for a continuous function f : [a,b] — X, where X is Banach. The
definition of integral we discuss here does not require any foundational result
concerning Banach spaces. We only make use of linearity and completeness.
Let f : [a,b] — X be a continuous function with values in the Banach
space X. By theorem 1.7, f is uniformly continuous. For fixed n > 1, let

(6.7.1) Zf <2n) S EX

The sequence {S,(f)}>2, is Cauchy in X. The calculation is similar to the
one we met when defining the Lebesgue measure. For any fixed ¢ > 0, there
exists § > 0 such that ||f(s) — f(¢)]] <e€if |[s —¢t| <6. If 1/2" <6, then

St l(3)- ()

< Zb_na : ZH“’C(%)_ (2_1+2”l+m)H

< Z;— a)e.

[Snem(f) = Su(NI =

By definition,

(6.7.2) / F(#)dt = Tim S, (f).

n—oo

You might complain that this definition depends on the choice of very spe-
cial partitions of [a,b] (this makes additivity of the integral problematic,
for instance). Fortunately, the dependence is apparent. Given a partition
a=ty<t; <--- <ty <ty =>bof[a,b] and sampling points t;_; < t; <tj,
let

m

St} {5 )7) = D FE(t = ti0).

=1
The resolution of the partition is min;—; __,,(t; —t;_1) =0 ({tj};-”zo).

PROPOSITION 6.6. Let X be Banach and f : [a,b] — X continuous.
Then, for all € > 0 there is 6 > 0 such that if § ({t;}7y) < 6, then

|12 £t = sttty {t3m)
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PROOF. Let n > 1 be such that Hfabf(t)dt - S"(f)H < eand that || f(s)—
f@)|l < eif [s —¢| < 1/2". Consider a partition {t;}7, with resolution less
than § = 1/2", and a sampling set {t}}7., as above. Below, we denote by |I|
the Lebesgue measure of an interval I.

90 (f) = S({t;} 7o, {537

on

= D D (f(/2") = FED)IE— 1 0 [ = 1) /27, 1/2"]]
I=1 j:ft;_1,t;]0[(1—1)/27 1 /200
on

3 3 172 - 1)

I=1 jift;1,t5)0[(1—1) /27 1/2n]£0
< (b—a)e.

IN

At ] N (= 1)/2%,1/27]

O

EXERCISE 6.20. Let « : [a,b] — R be increasing (or, more generally, let
a: [a,b] — C be of bounded variation). For f : [a,b] — X continuous (where
X is Banach) provide a definition of the vector valued Stjelties integral

[ et

and show that it is well defined.

COROLLARY 6.5. Let f : [a,b] — X be a continuous function with values
in a Banach space X, and let T : X — Y be a bounded operator between X
and another Banach space Y. Then,

T (/abf(t)dt> - /abT(f(t))dt.

ProoOF. It suffices to pass in the limit for n — oo the two sides of the
equality

m

T <Z f(E5)(t — tj1>> =D T [f(t)] (t; — tj-1).

j=1
0

We give a sample application to Banach space valued holomorphic func-
tions. The reader might find it interesting and rewarding to translate in the
Banach valued world the chapter of a book of complex analysis concerning
complex integrals.
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COROLLARY 6.6. [Morera’s theorem for Banach space valued functions/
Let f : Q — X be a continuous, Banach space valued function. Then f is
holomorphic if and only if faT f(2)dz =0 for all triangles T' contained in Q.

ProOF. The function f is holomorphic if and only if it is weakly holo-
morphic, and by Morera’s theorem this holds if and only if

O:/aTl(f(z))dz:l( an(z)dz)

for all triangles and [ € X*, the second equality following from corollary 6.5.
Thus, [, f(z)dz = 0. O






CHAPTER 7

Tempered distributions and Fourier transforms

The basic idea underlying distributions is well represented by Riesz rep-
resentation theorem for measures. If we want to simultaneously manipulate
a set of (Borel, regular) measures, it is convenient to consider their joint
action on nice (continuous, compactly supported) functions. Each such mea-
sure defines a positive, linear functional on C.(R) and Riesz theorem ensures
that all such functionals arise in this way. In the 1940’s Laurent Schwartz
greatly extended the scope of such idea. He much restricted the space of
the ”test functions” (not just continuous, but also infinitely differentiable),
and correspondingly much enlarged the space of the linear functionals (the
"distributions”) defined on them. What is more important, operations on
test functions have analogs in the space of distributions. We saw an example
of this when showing that increasing functions have ”"weak derivatives”, and
such derivatives are Borel measures.

This allows a great freedom in taking derivatives, applying integral op-
erators, and so on. More precisely, distributions are the dual of a function
space where many manipulations of functions are allowed. The adjoints of
such operations are defined in the much extended universe of distributions.

The resulting body of knowledge has several striking applications. Of
course, after ”distributional” objects performing certain tasks are found, the
problem remains to see if they correspond to more terrestrial mathematical
objects (functions, measures...).

Here we give a basic introduction to distributions, with a special emphasis
on tempered distributions, which are well suited to deal with the Fourier
transform. We work on R, but everything we prove can be generalized with
no effort to R

More than a theory, distributions are a method, and different theories can
be developed in different contexts, depending on the problems one is consid-
ering, and the structures which are offered by the environment (smoothness,
algebraic structures, geometric structures, etcetera). For instance, on a lo-
cally compact metric space the natural class of distributions is that of the
(signed) Borel measures.

The best place to start learning in depth the theory of distributions is
still Laurent Schwartz, Théorie Des Distributions (1950/51, revised edition

177
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1966). A nice and easy reading which can usefully supplement these notes is
the 16 pages Tempered Distributions by Joel Feldman.

7.1. Tempered distributions

The Fourier transform with its different avatars is, together with deriva-
tives, integrals, and holomorphic functions, the most natural, important, and
useful single object of basic mathematical analysis. Tempered distributions
were developed as a version of distribution theory which could accomodate
Fourier transforms.

7.1.1. The Schwartz class: definition, topology, and basic oper-
ations. The Schwartz class S = S(R) is the linear space of the functions
¢: R — C for which the seminorms

(7.1.1) [Pl mn = sup(1 4 22)"/? ‘90 (z)] < o0
zeR

for all m,n > 0. Schwartz functions are C* and decay at infinity faster than
any polynomial, together with their derivatives of all orders.

EXERCISE 7.1. Show that each [-],,n defines a norm on S: if o € S and
[O)mn =0, then ¢ = 0.

An example of a function in S(R) which does not belong to C'2° is ¢(x) =
e~**. Schwartz functions come in great supply.

PROPOSITION 7.1. (i) C°(R) is contained in S.
(ii) S is dense in Cy(R) with respect to the uniform norm.
(i) For 1 <p < oo, S is dense in LP(R).

PROOF. Item (i) is obvious, and (ii) holds because C2°(R) is dense in
C.(R) in the uniform norm, and the closure of the latter with respect to the
uniform norm is Cy(R). About (iii), we first verify that S C LP:

[ et@rde = [ 10+ el s < ol

(1+a2)p

with C(p fR i HQ . We have density of & in L? because C2° is already
dense in Lp 0J

Indeed, S is dense in many other relevant function spaces, and this is one
of the reasons why the Schwartz class is so useful.


https://personal.math.ubc.ca/~feldman/m321/distributions.pdf
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Given a sequence of functions {¢;} and a function ¢ in S(R), we say that
lim; o 0 = ¢ in S if

(7.1.2) lim [p; — @lmn = 0 for all m,n > 0.

Jj—o0

This notion of convergence is rather strong. For instance, it implies LP-
convergence.

LEMMA 7.1. Let 1 <p <oo. If p; = ¢ in S, then ¢; — ¢ in LP.

ProoF. For 1 < p < o0,

[ 1o =gl = [ 10+)e) - @l iy < COle—eha

Also, [l — @jlle = [© — ¥jloo- O

Convergence in S can be captured by a distance on S(R):

1 [SO - w]mn
(7.1.3) d(p, ) == _— N
m%o 2m+ +2 [QO - ¢]m,n + 1

By definition, d is translation invariant: d(¢,v) = d(p — 1, 0).
PROPOSITION 7.2. (i) ¢; = ¢ in S(R) if and only if d(p;,p) — 0.

(ii) A basis of neighborhoods for 0 in S(R) is given by the cylinder sets:
(7.1.4) N(M,e) ={p e SR): [¢|mn <€ for all m,n < M}.

(iii) (S,d) is complete.

PrROOF. We can assume ¢ = 0 by translation invariance.

(i) If d(p4,0) — 0, then each sequence [¢;]m, has to converge to zero.
Viceversa, suppose that [¢;]y,, — 0 for all m,n > 0 and fix e > 0. Find
M > 0 such that 35 . 0o 27" "% < ¢ and find J > 0 such that if
J > J then [p;]nn < € for all max(m,n) < M. Then, d(p;,0) < 2e.

(i) If p € N(M, ), then

1
d(p,0) < M?§ + TR

hence, the ball B(0,¢) in (S,d) contains N (M, §) provided M, then ¢, are
appropriately chosen. In the other direction, if d(y,0) < €, then

max M < 92MH2¢
mn<M 1 4+ [Qp]m,n
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Choose € > 0 such that 22M*2¢ < § < 1/2, and observe that for such ¢ and
positive z, if -, then 2 < 24. Then, N (M, 26) contains B(0, €).
(iii) If {¢;} is a Cauchy sequence, then

sup(1 + 2%)"/2 gol(fj)(:c) — wgm)(x)) — 0 as [ — oo,

zeR

and this implies uniform convergence of ¢; to some infinitely differentiable
©, together with all the derivatives. Moreover, for m,n > 0,

go(m)(x) _ <P§m)<$)‘ +(1+ x2)n/2
(m) (m)

(1+2%)"2 [ (@)] < (1+a7)"

o (@)

S lli)[g(l + .TQ)n 901+j (Qf) - SOJ (Z’)‘ + [@j]m,n
< lirln sup[pj+1 — ©jlmn + [Pjlmn

—00
< oo,

hence ¢ € S(R), and in particular

([ =] = il e [ -

< lim Sup[gij - (Pj]m,m
l—00

which can be made as small as we wish by choosing j > j(m,n,€) large
enough. 0

The proof of the completeness contains a useful facts.

COROLLARY 7.1. A sequence {@,} in S is Cauchy with respect to d if and
only if it is Cauchy separately with respect to all the norms [-];m, [,m > 0.

EXERCISE 7.2. Prove corollary 7.1.
PROPOSITION 7.3. C2°(R) is dense in S(R).

PRrROOF. Pick n € C*, n > [—1,1], and for R > 1 let nr(x) = n(xz/R).
For ¢ € §, we have that png is in C2°, and

(oL =nr)™(@)] < |e!™ (@)L =nr(@)| +C Y R (2/R)| - | ()

j=1
m

< o™ (@)1 = na(x)| + CR™YY [nljo - ™ ()],

j=1
Then, for fixed € > 0,
(L+2%)"2(p(1 = nr) "™ (2)] < (1+2%)"2[p"™ ()1 — na(z)|

m

CR™ [nljolelm—jn

Jj=1
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< (1+x2)n/2+1|§0(m (ZE)| ( )—l-E
provided R > R(e) is arge enough
(
)

IA

(1 +m2)n/2+1|80(m) x)‘l_’_RQ
e(1+ )2 ™ (2)] + e,

IN

possibly choosing a larger value of R. Then,

[ = Pnglmn < €lPlmntz + €
which implies density. U
Many important operations on functions are continuous on S(R).

PROPOSITION 7.4. (i) The derivative ¢ — Dy = ¢’ is continuous
on S(R).

(ii) The multiplication times x M, : ¢ — zp is continuous on S(R).

(iii) Dilations ¢ — d:p(z) = Lo (%) and translations ¢ — 7,p(z) =
o(x — a) are continuous on S(R).

(iv) The multiplication -: S(R) x S(R) — S(R) is continuous.
(v) The inversion map ¢ — Up(x) = p(—x) is an isometry of S(R).

(vi) The convolution (p, 1) — ¢ * 1 is a continuous map *: S(R) X
S(R) — S(R).
PROOF. (i) It follows from [D¢]m.n = [@]m+1n-
(ii) After expanding (z¢)™ = mp™=Y + o™ we have [M,¢]nn <
m[@ln—1,m + [Plmn+1-

(iii) The easy verification is left to the reader.

(iv) For ¢, ¢ € S(R), we have:

[0V mm sup |(1+2%)"2 (o)™ ()]

m

< > C(m,Dsup|(1+ 2?)"2p0 () (z)|
1=0 r

(7.1.5) [elio[W]m—t.n-

NE

=0
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If p; = ¢ and ¢; — ¢ in S, then
[Py — @itilmn < o <¢ Vi)lman + [(p — @J)¢J]mn
S CZ l[)w %mzn—i-czw %lo%]mln

IN

(7.1.6) CZ Pliolt) = ilm-1n + Co Z[so = ilio[¥lm-tn;

=0

where the third inequality holds because [¢j]m—1n — [¥]m—in for
[ =0,...,m. The last expression vanishes as 7 — oo by hypothesis.

(v) Obvious.

(vi) Estimating 1+ (a + b)* < 2(1 + a?)(1 + b?), and differentiating the
convolution m times, we have

(1 + 222 (5 ) (2)] = \ [y ote gy
(7.1.7) < / L+ (& — 92"l — y)|-

(1422 [ (y)|dy

dy
< 1 & 2)2/2+1 | (m)
< Clen [+ ol
(718) < Cl[¢]0,n[¢]m,n+2-
We deduce (vi) from (7.1.7) the same way we deduced (7.1.6) from

(7.1.5).
O

7.1.2. Tempered distributions and the basic operations on them.
A tempered distribution is a continuous, linear functional 7: & — C. Since
the latter is a metric space, continuity is equivalent to sequential continuity,

(7.1.9) if o; = ¢ in S, then T(p;) = T(p) in C.

We denote by &’ = §’(R) the vector space of the tempered distributions.
The defining condition (7.1.9) involves all norms in S, since ¢; = ¢ in S
if and only if [p; — @], — 0 for all m,n > 0. We will see below that, for a
given distribution 7', only finitely many norms are involved.
The basic examples of distributions are based on functions. Let f € L}

and define
(7.1.10) Tr(p) == /Rgp(ac)f(a:)dx.

The integral converges, provided that f(z) does not grow too fast as |z| — occ.

locy
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PROPOSITION 7.5. If f € L},., and there isn > 0 such that [, (ljrfg)iﬂ dr <
oo, then Ty € &'
This condition holds, in particular, if f € LP for some 1 < p < o0.

PRroOF. It suffices to observe that

/0] < [¥lon | @,

(1+z2)yw/2"
|

Indeed, we can act on Schwartz functions by means of positive, Borel
measures fi:

(7.1.11) T.(0) = [ e@hinta)

The growth condition on p is that, for some n > 0,

(7.1.12) /ﬂ{% < o0.

This statement has a converse, which we state without proof.

THEOREM 7.1. A distribution on S is positive if and only if there exists
a reqular Borel measure with moderate growth p > 0 on R such that:

(7.1.13) T(p) = / wdp for all p € S.
R

See A note on tempered measures, by Michael Baake and Nicolae Strun-
garu for a detailed argument. We will prove a weaker statement in §7.3.

7.1.2.1. The order of a distribution. Although the distance between Schwartz
functions involves all derivatives, for any specific distribution 7', only finitely
many of them are involved in testing its continuity.

THEOREM 7.2. Let T' : § — C be a linear functional. Then, T is a
distribution (it is continuous) if and only if there are C' > 0, L, M € N, such
that

(7.1.14) 7@ <C Y [lm

0<l,m<N

forall o in S.


https://arxiv.org/abs/2202.09175
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The fact that for each tempered distribution 7" we can find finitely many
norms such that (7.1.14) holds, expresses the fact that tempered distribu-
tions have finite order. Since (7.1.14) implies continuity of 7" at 0, hence ev-
erywhere, we have that (7.1.14) characterizes tempered distributions among
linear functionals on S.

PROOF. By assumption, there is n > 0 such that |T'(¢)| < 1if d(p,0) <

2n. Suppose that
Z [Sp]m,l S m,

0<l,m<N

with N > 0 to be chosen. Then,

R e

2m+l+2 1 + [@]m,l

m.>0
1
< D Wt Y. m
0<m.I<N m>N or [I>N
1
S ntoy
< 2

if N is chosen large enough so that QLN < n. With this value of N, if
> o<imen@lmis < m, then |T(p)| < 1. By homogeneity, (7.1.14) holds with
C=1/n. O

COROLLARY 7.2. Let T be a tempered distribution. Then there exists
N >0 and, for all R > 0 there exists C(R) such that, if p € C° is supported
in [—R, R], then

(7.1.15) T()] < C Y [elmo-
m=1
PROOF. Under the hypothesis, [p]m.; < (1 + R2)Y2[¢]m.0- O

We will now define some basic operations with distributions. The heuris-
tics consist in assuming that the distribution we start with has the form T}
with an especially nice f, to download the difficulties on the testing function
v, and to finally write down a rigorous definition. Let’s see first how this
works with the derivative.
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7.1.2.2. Derivative of a tempered distribution. If f is differentiable and
not too large at infinity,

Tp(p) = f'(@)p(x)dx

—0Q0

—+00

= [flx)p(@)]T% - Fla)¢ (z)da.

DEFINITION 7.1. Let T' € § be a distribution. Then, its distributional
derivative T" is defined as

Linearity is obvious, and continuity follows from the fact that ¢ — ¢ is
continuous, by Proposition 7.4. We already had experience of distributional
derivatives.

THEOREM 7.3. Let a: R — R be an increasing function such that, for
somen > 0,

(7.1.16) / (O‘(ﬂ < .

1 + x2)n/2

Then, T, =T, where > 0 is a Borel measure such that, for some n >0,

(7.1.17) / (dﬂ < 0.

1+ a2)n/2
Also, « differs a.e. by a constant ¢ from the distribution function o, of ju:
Ta=T,, +cld.
PROOF. We can assume that (7.1.16) and (7.1.17) hold for the same n.
Let n € C®°, n > [—1,1], and let nr(x) = n(z/R), so that ng > [—R, R].

By the Theorem on the weak derivatives of an increasing function, we know
that there exists a measure p such that

(7.1.18) - / () p(2)dpu() = / (o) (2)alz)d.

for all p € S. We wish to apply Dominated Convergence on both sides as
R — 00. On the left,

nr(x)e(@)] < (1+22)"2lp(@)]/(1+2°)"? < [plon/(1+2*)",



186 7. TEMPERED DISTRIBUTIONS AND FOURIER TRANSFORMS

which is integrable with respect to u.
On the right, for R > 1 we can estimate

| (o) ()] o' (@) + lp(@)] - [n'(x/R)]

< |
< ([e)in + Mlolelon) /(1 + %)™,

which is integrable with respect to |a(x)|dz. We let R — oo in (7.1.18) and

find
- [ pladuta) = [ ¢ @pataas,
as wished. H

Here are some special cases of Theorem 7.3.

lifz >
(i) If Hy(z) = 1 =% is the Heaviside function with jump at a,
Oifr <a

then H] = ¢, is the Dirac mass at a.

(ii) If V' is Vitali’s function, that V' = puc is the probability measure
uniformly distributed on the Cantor set.

It is instructive working out (i) by direct calculation, with @ = 0. Often,
in fact, derivatives of distributions are computed ”by hands”, without using
sophisticated machinery.

Ty = Tu() = [ )
= [P = Jin (6B - p(0) = (0

= —do(p).

EXERCISE 7.3. Show that 0y(p) := Ty (p) = —¢'(0) is the "dipole” distribution.

7.1.2.3. Some more operations. Translation The calculation

[ nt@etade = [ f-aela)ds = [ f)etrady = [ fo)rwe)is

suggests to define, for T' € &',

(7.1.19) (ruT)(p) = T(r—ap).

EXERCISE 7.4. Show that 7,7 € S'.
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Dilation We consider here the dilation without L' normalization, &;(f)(z) =

f@/t)

Jas@ewis = [ /e = [ fwrotmis= [ 1w

we are led to define, for T' € §'.

(7.1.20) (StT)(SO) =T (d1/0).

EXERCISE 7.5. Show that 5, T € S'.

Multiplication times x Here it is clear that we want to define
(M T)(p) := T (Mzp),

for T € &'. By iterating and taking linear combinations, we can multiply 7’
times any polynomial.

Multiplication of distributions is a delicate operation, and it is not always
defined. For instance, f(r) = 1/|z|*/? defines a distribution T}, but f(z)? =
1/]z| does not. Or think of the Borel measure T' = §,. If we want to multiply
it times some function f, such f can not be defined a.e.: all the action takes
place at 0! However, something we can surely do is multiplying a tempered
distribution times a Schwartz function.

Multiplication times ¢ € S§. It is defined by

(MyT) () = T(Pe).

Convolution times ¢ € S. If T' = T}, the formal calculation is

(Ty = )(p) = /f*w:c da:—/ Oz —y) f(y)p(x)dds

:/f /z/;x— da;dy—/f [(U) = o] (y)dy,

(7.1.21) (T )(p) = T((UY) * ).

We have to check that (i) (Uy) * ¢ € S; (ii) ¢ — (Ut) * ¢ is continuous on
S. Both these properties were proved in Proposition 7.4.

We will see in theorem 7.10 that the convolution of a distribution and a
test function is a concrete and smooth object.

so we define



188 7. TEMPERED DISTRIBUTIONS AND FOURIER TRANSFORMS

7.2. The Fourier transform in S(R) and in S'(R)

7.2.1. The Fourier transform in S(R). Let ¢ be a Schwartz function.
Its Fourier transform F(¢) = ¢: R — C is defined as

400
(7.2.1) P(w) == /_ o(x)e ™ dy,

[e.e]

LEMMA 7.2. Suppose p € S.
(i) @ is differentiable, and

(7.2.2) D3(w) = —2mi(Myp)" (w).

(ii) One has

(7.2.3) (Dp)Nw) = 2miwp(w).

PROOF. (i) We can take the derivative inside the integral:

d | | |
@ gp(x)ef%mwmdx = /Sp(x)g_w (6727”“1:):) dr = _27Ti/x(,0($)62ﬂzwxdx_

The hypothesis of the theorem on differentiation under integral sign are
satisfied because |r¢(x)| is integrable.

(ii) We integrate by parts,

R R
/ gpl(x)e—%riwzdx _ [(p(x)e—zm‘m} ij . / (—27Tiw)<p(ac)e_2m“’mdx
—R —-R

— 2miwp(w) as R — oo,

since the decay of ¢ kills the boundary terms, and Dominated Convergence
takes care of the integral. O

PROPOSITION 7.6. The Fourier transform F: @ — @ is a linear, contin-
uous map of S(R) into itself.

PROOF. Linearity is obvious.
The basic estimate is

eriay e = | { s -2miamal} @
< [ |5 (2miameta) da
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<c Y /\xl O(2)] da

I<m,j<n

S C Z /1+ 2 ]l+2-

I<m,j<n

This implies both that @ belongs to S(R), if ¢ does, and that ¢ — @ is
U

continuous.

The proof of the following proposition is conceptually the same as that
of the analogous properties of the Fourier coefficients.

PROPOSITION 7.7. Let p,¢ € S.
(i) Flox ) = Flp)F ().
(i) F(dep)(w) = F(o)(tw), and F(rap)(w) = e 7> F(p)(w).
(iii) F(Up) = Flp)(-w) = (UF(p))(w).
(iv) F(rap)(w) = e7>7* Fop(w), where 1p(x) = p(x — a).
(v) Let eq(x) = €™ Fleap) = 7a(Fp).

Items (iv), (v) say that F intertwines translation and modulation.

PROOF. (i) The basic ingredients are the sum-to-product (group homo-
morphism) property of the exponential (from first to second line), Fubini
Theorem (from second to third), and invariance of Lebesgue measure under

translations (from third to fourth):

Floru)w) = [ ( / ol — )il )dy) o2

)dy> 27ri(:p7y)u.z6727r'£yu.zd3j

[([ste

= ([ e et
[(]
F(o)F

27rzzwdz e 27rzyw¢( )

(ii) For the first equality,
x 1 —2Tirw
Foow) = [o(F) e
= /(p (2) e 2Tt ], — F(p)(tw).

The second equality and (iii-v) are easy and they are left to the reader. [
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For t > 0, define N;(z) = (0,;N1)(x) = ﬁe’%, the heat kernel.!

LEMMA 7.3. We have Ni(w) = e=2™%" Also, F(N,)(z) = Ny().

PROOF. By Proposition 7.7 (ii), it suffices to show the equality for ¢ = 1.
Observe that N; € § and it satisfies the differential equation

Taking Fourier transforms of both sides, and using Lemma 7.2, we have

~ 1 ~ ] ~ ~
(7.2.4) 0 = 2miwN (@) — 5 -Nj(w) = %(wwz\a (w) + NI (w)).

The solution of (7.2.4) with the initial condition ]\71(0) =/ #e””édw =1
is Ny (w) = e 29",
The second relation follows from the same argument: N; satisfies (7.2.4)

with N;(0) = 1, hence, 1 = F(N,) satisfies ¢/ + z¢) = 0, with Jp (z)dx =
0. 0

The following lemma is a variation on the theme of approximations of
identity, and so is its proof.

LEMMA 7.4. Let f € Cp(R) be uniformly continuous. Then,
(7.2.5) lim NV, x f(z) = f(2)
t—0
uniformly on R.

PRrOOF. Fix e > 0.
+oo
N x () = f@)] = ‘ [ -~ f(x)]Nt@)‘

< sup [f(z —y) — F@)] + 2 Lo~ / Ni(y)dy

ly|<o ly|>d

— swp |fle = v) = f@]+2fl~ [ | Nl

lyl<6 j2>%

IWe dilate by v/t because (i) this is what we need when studying the heat equation; (ii)
this way we obtain the densities of a Brownian motion. Wait! What does heat diffusion
have to do with Brownian motion? The connection was first made by Einstein in 1905, and
it has since become a common theme in the theory of stochastic processes and in PDEs. See
e.g. Einstein and Brownian Motion for a short historical account. A more mathematical
reason to use y/f is that in this way (iii) Ns * Ny = N, 4, i.e. that {N; : ¢t > 0} is a
convolution semigroup. Indeed, (iii) is strictly related with (i), (ii), and with physics, as
well as with probability. Probabilistically, the semigroup property is closely linked with
the Markov property of Brownian motion.


https://www.aps.org/publications/apsnews/200502/history.cfm
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Choose first 6 > 0 such that the first summand is less that e, then use
Dominated Convergence on the second (as t — 00). O

THEOREM 7.4 (Fourier inversion formula). Let ¢ € S. Then,

—+00

(7.2.6) olz) = / B(w)er iy = (U o F o F)()(x).

In particular, F : S — S is a homeomorphism.

The Holy Graal of Fourier theory consists in couples of topological func-
tion spaces X,Y such that 7 maps X homeomorphically onto Y. We have
met one such instance when discussing Fourier series. For the Fourier trans-
form F we have the following:

e F maps & homeomorphically onto itself and, dually, the same does
with S’ (this is the content of theorem 7.4);

e F maps L?(R) isometrically onto itself (Plancherel formula, which
will appear shortly);

e F bijectively maps the "cone” of the positive, finite Borel measures
on R onto the "cone” of the ”continuous, positive definite, bounded
functions” on R. This last statement is Bochner’s theorem, which
plays a prominent role in Fourier analysis, probability, and operator
theory (especially operators’ semigroups). If you are interested in
the precise statement, and references for the proof, you might start
here Yitao Lei, Bochner’s Theorem on the Fourier Transform on R.

e Building on L?, you can construct other nice spaces having norms
defined by derivatives (Sobolev spaces).

PROOF. Once we have proved (7.2.6), we have that F has a two sided
inverse, F ! = U o F (see also (iii) in Proposition 7.7), which is continuous.
We would like to compute:

/(ﬁ(w)e%riwxdw — /(/ g0(y)€—27riwydy) 62m’wrdw
R R R
= / ( / ez”i“(my)dw) p(y)dy,
R R

but we reach a dead end since the inner integral diverges; we were not careful
in verifying the hypothesis of Fubini theorem, w being the troubling coordi-
nate.


https://eclass.uoa.gr/modules/document/file.php/MATH121/04-%CE%95%CF%81%CE%B3%CE%B1%CF%83%CE%AF%CE%B5%CF%82/04-1.%20%CE%A4%CE%B1%20%CE%B8%CE%AD%CE%BC%CE%B1%CF%84%CE%B1/53.%20Bochner.pdf
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But we can downsize the integrand by inserting the heat kernel’s Fourier
transform. For ¢t > 0, use Lemma 7.3 in the second equality:

It(l’) — / (/ e27riw(acy)€27r2tw2dw) @(y)dy
R R

= [ Mo - ety
— fﬂ({x) ast — 0,

by Lemma 7.4.
In the other direction,

[t<x> — / @(w>62ﬂiwx672ﬂ*2tw2 dw
R

— / @(w)e%i“’xdw
R

as t — 0 by Dominated Convergence.
The hypothesis of Fubini theorem were satisfied, since

miw(x— —272tw?
Fy,w) = 22 o (y)
is integrable with respect to dydw. ([l

In the following calculation, Fubini can be applied. If ¢, 9 € S:

/ (@) (FO)(@)dz = / / (@) D) drdy = / (F10) () )y,
(7.2.7) (Fiblg)ie = (WIF o)

the inverse Fourier transform is the Hilbert space adjoint of the Fourier trans-
form.

THEOREM 7.5 (Plancherel formula in S). For ¢ in S, we have

(7.28) [ e@Pds = [ o).
R R
PROOF. Applying (7.2.7) to ¢ = Fn we obtain

(7.2.9) (FOIFn)re = (WI(F " o Fn)ra = (bl e,

which is Plancherel’s formula when ¢ = 7. U



7.2. THE FOURIER TRANSFORM IN S(R) AND IN S'(R) 193

Formal manipulation The inversion and the Plancherel formulas could
have deduced with no approximation of the identity if had postulated that:

(7.2.10) / @) gy = §,(y).
R

In fact, (i) on T, the analogous formula expresses orthogonality of imagi-
nary exponentials; (ii) it is what we need to carry the formal calculations to
conclusion. Let’s see how this works for the inversion formula:

/@(w)eZWiwxdw _ /(/ (p(y)€27riwydy) 627riwxdw
R R R
- ([ eeroas) s
R R

_ / 6.(y)(y)dy

= ¢(x).

Now, it is not in our power to ”postulate” pieces of a calculation. Nonetheless,
physicists and electrical engineers have trusted for a long time that expres-
sions like (7.2.10), if used to work on mathematical objects whose meaning
is clear (a particle, a signal), will lead to the correct result.

As mathematicians, we have a choice: using formal formulas as a magic to
speedily arrive at the end of a calculation, knowing that later we have to put
the same calculation on solid ground by less magic means; or we can extend
the theory to include the formula. In the case of (7.2.10), we will see shortly
that it can be given a solid meaning in terms of tempered distributions.

7.2.2. Extension of the Fourier transform to L! and L.
7.2.2.1. Fourier transform in L'. For f € L'(R), the Fourier transform
is well defined pointwise,

(7.2.11) Flw) = / f@)e =erd, |Fw) < 1l

THEOREM 7.6. (i) If f € LY, then f is continuous.

(ii) [Riemann-Lebesque lemma] If f € L', then lim,, 4 f(w) = 0.
(iii) If f € L' and f >0, then ||f]|z= = | f]l1.
PROOF. (i) Fix e > 0. If p € S, then,

@) < 1Fw) = 8w+ [3w)
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< F = el + 2wl

Choose first ¢ sch that the first summand is less than €, then R > 0
large enough so that |p(w)| < € if |w| > R.

(ii) With € > 0, h real, and ¢ € S, estimate

o~

Flw+h) = f@l < [flw+h) = @w+h)|+ 8w +h) - §w)|

() — Flw) i
< 2f =l +12(w + k) — P(w)].
Choose first such that the first summand is less that €, then § > 0

such that for |h| < § we have that the second summand is less that
€, too.

(iii) This is obvious, but useful.
Having proven that F : L'(R) — Cy(R) is bounded, it is natural to ask
whether it is surjective. The answer is negative.

PROPOSITION 7.8. There exists functions g in Co(R) which are not the
Fourier transform of any f in L'(R).

PROOF. If F: L'(R) — Cy(R) were onto, since it is injective and bounded,
by the inverse mapping property for operators it would have bounded inverse
F1: Co(R) — LY(R). To contradict it, we exhibit {g, },>1 in Co(R) N L} (R)
with norm bounded by 1, but with [|[F~1g,|;1 — oo as n — oc.

Define

In = X[-n/2,n/2] * X[-1/2,1/2]-
Using the definition of convolution, we see that ||g,||r~ = 1, and ||ga||z: < n
by Young’s inequality. On the anti-Fourier side,

Flgn(z) = Xi=n/2,/2/ (%) X[-1/2,1/2 (2)
sin(rnz) sin(mx)

Y

sin 7ry

T T
hence,
2
/|]:_1gn(ac)\da; > _/ sin 7TTLZE) e
R T Jz|<1/2
2
_ / sin(my) ‘dy
@ \y|<n/2
2
T

A

as n — oo. [l
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sin(my)

EXERCISE 7.6. Show that, as stated in the proof, fR Ty

‘dy:oo.
U

7.2.2.2. Fourier transform in L?. For f € L?*(R), we need to make sense
of the Fourier transform of f, since the integral (7.2.11) might diverge. We
can use density of S in L? and Plancherel identity (7.2.8). More explicitly,
consider an approximation of f in L? norm by means of Schwartz functions
©i, ll¢; — fllzz = 0. Then, for all € > 0,

|@ntj — @nllzz = | onsj — enllz <€

if n > n(e) and j > 1. Let h be the limit of {$;} in L?. We define F=hto
be the Fourier transform of f.

THEOREM 7.7. The Fourier transform on S extends uniquely to a linear
isometry F : L*(R) — L*(R).

Indeed, it is nice having a uniform, linear procedure to approximate f €
L? by functions whose Fourier transform can be computed explicitly. Here
is a way for doing so. For f € L%, fi(z) = e 2" %" f(x) defines, as t — 0,
an approximation of f in L? by L' function, whose Fourier transform can be
computed,
fi=Ny*feConL?

We have then that ||f — fi|lz2 — 0 as t — 0.
EXERCISE 7.7. Show that limy_,q || f — fi||z2 = 0.

7.2.3. Fourier transforms of tempered distributions. The raison
d’étre of the tempered distributions is that on them we can perform (i) deriva-
tives; (ii) Fourier transforms; and that (iii) they contain Borel measures (with
controlled growth: some price has to be paid somewhere). We see now how
the Fourier transform of a distribution is defined. We start from a formal
calculation.

[ Fwpwids = [[ fae e pwydsds
- [ f@pla)d.
We make it into the definition of the Fourier transform of T' € S:

(7.2.12) T(p) = T(3)-

Since T = T o F is the composition of continuous operators, it defines a
tempered distribution.
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In order to be of some use, the definition must be computable in simple
cases, and it has to retain some properties of the bona fide Fourier transform.
Let’s compute the Fourier transform of a Dirac delta.

5a(90) = 5a(+@:§5<a)
_ /_ o2 (1) .

o0

In this distributional sense,
(7.2.13) 0y = M, snia = ¢~ 2T
which provides a graphic interpretation of the imaginary exponentials in R.
PROPOSITION 7.9. Let T € 8" and ¢ € S.
(i) T" = 2miwT = 2wiM,T .
(i) 7" = —2mi(M,T)".
(iii) ¢+ T =T o Mj.
PROOF. (i) For ¢ € S, we have:

T'(p) = T'(p)=-T(DP)
= —T(~2miM.D) = 2mi(MT)(®)
= M (T(®)) = 2miM, T ().

(ii) Exercise.

(ili) For ¢ € S, we have:

vxT(p) = (*T)(P)
T((Uy) * F(p))

T(F(F(¥)))

= T(F()p))

= To MJ((,O)

O

Again on formal calculations with (7.2.10) We have seen in (7.2.13)
that the Fourier transform of J, is the imaginary exponential w +— e =27 =:
e_q(w). The Fourier inversion theorem can be read in a similar, distributional
sense:



7.2. THE FOURIER TRANSFORM IN S(R) AND IN S'(R) 197

= %(®)
= 61’(90)7

i.e.

(7.2.14) €y = 0p.

All equalities are definitions, but for the one from first to second line. This

is not a proof! The inverse Fourier transform theorem has to be proved in

some way. It is a translation of the theorem in the language of distributions.
We end with an alternative proof of Plancherel formula,

[ ety = [ 3P

which is based on the heat kernel.

PRrROOF. Here, too, we make a false start and try to learn from it.

el = / (/ ele)e” Qde) ( / w(y)e%i‘“ydy) dw
- J[ () otz

and the inner integral diverges. For ¢ > 0, set

J, = // </ eQﬂiw(y’”)e%thde) @(x)@dmdy
R2 \JR

=[] Mt~ petaiolidady

The limit is justified because Ny converges uniformly to ¢, and | Nyxp(z)| <
INe||z1 |l = |||z, then we can apply Dominated Convergence.
On the other hand,
/ |S0 |2 —272tw? dw

> [ P

as t — 0, by Dominated Convergence. O
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Having the Fourier inversion theorem, we can deduce Plancherel’s for-
mula. We start with a calculation in which Fubini can be applied, if ¢, € S:

[ e = [ [ cipien iy = [(F 00000,
(7.2.15) (Folo)re = (| F )

(the inverse Fourier transform is the Hilbert space adjoint of the Fourier
transform). Applying (7.2.15) to ¢ = Fn we obtain

(7.2.16) (FO|Fn)r2 = WIF~" o Fn)pe = (d|n) 12,
which is Plancherel’s formula.

7.3. The support of a distribution

To provide motivation for the definition to follow, consider the distribu-
tion T'(¢) = fol o(x)dz — p(0) (which is in fact a signed measure). Intuition
suggests that T" is supported on [0, 1]. Evidence for the intuition is provided
by the fact that, if ¢ is a Schwartz function (more generally, a continuous
function) with support on R\ [0,1], then T(¢) = 0. The set R\ [0, 1] is
largest with this property.

Let T be a tempered distribution. An open subset A of the real line is an
annihilation set for T if T'(¢) = 0 whenever ¢ has support in A. The support
supp(7’) of T is the complement of the union of all its annihilation sets. It is
not a priori clear that the union of annihilation sets is itself an annihilation
set, so we prove it here below.

LEMMA 7.5. If {A;}icr is a family of annihilation sets for the distribution
T, then A =J,c; Ai is an annihilation set for T'. In particular, R\ supp(T)
1s an annihilation set for T'.

Proor. It suffices to show that for any ¢ € C(R) with supp(y) C A
we have T'(¢) = 0. In fact, we saw in proposition 7.3 that any ¢ in S can be
approximated in S by a sequence {¢,} in C2°(R), and the proof shows that
we can take supp(y,) C supp(¥). So, if supp(¢)) C A, by the continuity of
T,

T () = lim T(¢,) =0.

n—oo

Since the support of ¢ is compact, supp(¢) C Ul ;A4;, we can apply the
smooth partition of unity and find h; < A; with Ay +---+h,, = 1 on supp(p).
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We have then,

T(p) = T (Z hW) = ZT(hlSO)

=0 ,
because h;p is supported in A;,, which is an annihilation set for 7' O

As a consequence, the complement of the support of T' is maximal with
the property of being an annihilation set.

COROLLARY 7.3. If T is a tempered distribution and A is an annihilation
set for T, then A C R\ supp(T).

PRrROOF. If such were not the case, then AU (R \ supp(7’)) would be an
annihilation set for 7" which is not contained in R\supp(7'), which contradicts
the definition of support. Il

For compactly supported, tempered distributions 7', we have a simpler
bound for |T'(¢)|.

LEMMA 7.6. Suppose T' € S8’ has compact support, contained in [—P, P].
Then, there exist I' > 0 and N > 0 such that

(7.3.1) T <T > [elo

0<I<N
forallp e S.

The minimum value of N for which an estimate like (7.3.1) holds is called
the order of the compactly supported distribution 7'.

PROOF. Let n > [-P — 1, P + 1], so that supp(p(1 —n)) C R\ [-P, P],
and let N > 0 and C > 0 such that

T@I<C > [#lm

0<l,m<N

Then,

T(p) =T(pn) +T(p(1—n)) =T(pn) <C [en]im.-
0<i, N

3
IA
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We compute

[onlim = sup(l+22)™?|(en) " (2)]

z€R
< ) C(,4)sup e ()] - supsup(1 + 2%)™2 ") ()]
j=0! zeR zeR xzeR

(L, ) [elsonli—jm.

(]
Q

j=0!

Summing over [,m and taking the maximum of the constants, we obtain

(7.3.1). 0

7.3.1. Distributions supported at the origin. An especially inter-
esting class is that of the tempered distributions having compact support.
We consider here a rather extreme case.

THEOREM 7.8. Let T be a tempered distribution which is supported on
{0}. Then, there exist an integer N > 0 and scalars ay, . ..,ay such that

(7.32) T(e) = > ap"(0).

PROOF. Suppose T satisfies the assumptions in the theorem, and observe
that, by density of C2°(R) in S, it suffices to show that (7.3.2) holds for
compactly supported ¢’s. Let N be a positive integer such that (7.3.1) holds.
Suppose that ¢ is supported on [—R, R], .

Let ng = [-R — 1, R+ 1]. Then, using Taylor’s formula,

N ,0)
ox) = nr(x)e(x) =np(z) (ZSO "(O)

Vi

x! + RN(x)>

N o) ,
— Z 14 ,!(O>x]77R(x) + Ry (z)nr(z)

=0 7
N o oW(0)

= > & (o) + (o),
[

where the remainder Ry is C*°, thus h € C2° is supported in [—R, R] and
h(0) =--- = hM(0) = 0.
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The terms in the sum are easily handled,

N oo , N oL@ ,
T(Zwﬂ(mxm(mo - 3" ~,(0)T($”7R(x))

=

o
<

N .
B Z ()0(9)(0) |
- .‘ aR,]a

Vi

J

where Ap; = T (2zng(x)). Actually, these scalars are independent of R.
Since 27 (ngry1(x) —nr(x)) vanishes on [-R —1, R+ 1] and T is supported at
{0}, T (@11 (@) = T (#9nala))

The theorem is proved, then, if we show that 7'(h) = 0, which is what
we do next. Pick ¢ € C®°, ¢ = [-1,1], and let ¢, (z) = ¢ (nz). We have
T(h) = T(hpn) + T(R(1 — 4,)) = T'(htp,) because T is supported at the
origin and h(1 — 1,,) is supported on R \ {0}. We want to estimate

(7.3.3) IT(W)] = |T(n)l < C Y [hbulmo
(7.3.4) = CZ sup |(h¢n)(m)(x) :

m=0 |x\§%

where we used that 1, is supported on [—1/n,1/n|. We estimate each sum-
mand,

C(m, )V (@) " ()

NE

(7.3.5) | (hpn) ™ ()| =

0

J

(7.3.6) = ZC(m,j)h(j)(:t)nm_j@/)(m_j)(nx) _
=0
Since h(0) = --- = hM(0) = 0, for |z| < 711,
RO ()] < Aja[MT <A

where the positive numbers A; depend on h. Putting this in (7.3.5), we have

() ()| < 2

for some B,, > 0 which depends on h, and by (7.3.3),
¢
n

T(h)| <

As n — oo, we obtain T'(h) = 0 as wished. O
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7.3.2. Positive distributions having compact support. A distri-
bution T" € &’ is positive if and only if T'(¢) > 0 for all ¢ > 0in S.

THEOREM 7.9. Let T' be a positive, compactly supported tempered distri-
bution on S. Then, there exists a positive, compactly supported Borel measure
>0 such that:

(7.3.7) T(p) = / wdu for all p € S.
R

Moreover, p and T have the same support.
Here, R \ supp(u) is the largest open set E such that u(E) = 0.

EXERCISE 7.8. State and prove the converse statement of theorem 7.9.

Proor. If T has support in [—R, R], its action can be studied on func-
tions ¢ supported in [-R — 1, R + 1]. The idea is one we have used before:
if we fix [-R—1/2,R+1/2] <n<(—R—1,R+1) and if p € S, then ¢n
is supported on [—R — 1, R+ 1] and

T(p) =T(pn) +T(p(1=n)) =T(en)

because ¢(1 — 1) vanishes on (=R —1/2, R+ 1/2) D supp(7T).
Step I. We show that there is C such that |T(¢)| < C||¢||r= if supp(y) C
[—R—1, R+1]. It suffices to show it for real valued ¢, because [T (a+i5)| <
VIT(@)P +T(B). Let [-R -1, R+ 1] < ¥, so that || < |lp|z=, ie.
lleliet < ¢ < llglliwts. By positivity of T, —glli~T() < T(9) <
llollLT'(1), and we can let C' = T'(¢) (in the real case).

The space C°(R) is dense in C.(R) with respect to the uniform norm
|| - ||z, hence T extends to T': C.(R) — C:

(7.3.8) T(f) = lim T(pn),

n—oo

it C* 3 ¢, = f € C. in the uniform norm.
Step II. By Riesz representation theorem, there is a positive Borel measure
pon (—R—1,R+ 1) such that

(7.3.9) T(h) = / hdy
R
for all h € C.(—R — 1, R+ 1). In particular,

(7.3.10) T(g) = T() = / odp
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holds for all ¢ in C*(—R — 1, R + 1). Actually the representation extends
to all ¢ € § by the reasoning above.

We finally have to prove that the supports of p and T coincide. Suppose
¢ has support in R \ supp(7’). Then,

/RwduzT(sO):O-

Hence,

u(R\ supp(T)) = sup{ / pdyt - supp() C R\ supp(T)} = 0,

which shows that supp(x) C supp(7'). In the other direction, if ¢ has support
in R\ supp(p), then

T(p) = /Rsodu =0,

hence, R \ supp(p) is an annihilation set for T, which shows supp(T) C
supp(4). O

7.4. Convergence of tempered distributions

Let {T,,}52, be a sequence in &’ and T' € &’ be a tempered distribution.
We say that lim,, oo T, =T in S if

(7.4.1) lim T,,(¢) = T(p)

n—oo

for all ¢ in §. This is just pointwise convergence, since tempered distribu-
tions are functions on S. In the language of functional analysis, it is weak”
(sequential) convergence. In §7.4.4 we will see that this notion of convergence
can be captured by a suitable topology, which is in fact the weak™ topology
on §&’. However, below we use the simple sequential definition.

7.4.1. More on the convolution in §. Proposition 7.4 (vi) has the
following interesting consequence.

LEMMA 7.7. Let p,v € §. Then, the S-valued integral

142 [ ety = lim S (1) (21) €S

j=—n2n

exists as a limit in S. Also,

(7.43) /R (r0)o(y)dy = v+ .
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PROOF. Let h,, € S be the sequence element of which we take the limit
on the right hand side of (7.4.2). For n,m,s > 0,

1) @) = B

2m . . .
1 1 7 J 1
_ _— - ah(8) J) . (s) .
on Z om — |:7—2an (.’L’)(p (2n> Tzin"rQnimw (SL’)QO <2n + 2n+m):| ‘

1 1 —
< Q—HZQ—mZA“(x),
j i=1

where

s J J J {
o) = 00 (= 55)| o () - (3 5|
N A WIS N S A S Y I A AR
o6 (= 50) 00 (=5 )| | (35 )|

Making use of the estimate for A;;(z), we estimate the sum over j separately
for small and for large j’s. Recall the elementary estimate

1+ (a+b)?<2(14a*)(1+b*) ifa,b>0.

Let t > 0. For small j’s we use Lagrange theorem:

t/ om
(14 2%)"?small = uz# Z %ZA”@)
‘Q%‘SR =1
C(1+ R2)t/2 ] X
S (—;—”) Z <[w]s,t{¢]1,02_n + [¢]3+17t[gp]0’02_n)
bl<r
] < R2P
- |92|2; L (W8loalihio + Wlerneleloo)
Ci1R(1+ R?)t/2

< on (Wselelio + [Ylst14leloo) -
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For large j’s,

1+$2 t/2 1 2"
(1+ 2%)large = A+ Z —ZAN(QL’)

2" Usr 2" i=1
Q [©]1,t+k [©]o,t+k
= s (W]”u Gz TG g
— o) ¥ ! !

(1+ (j/2m)2)2 2"

U>R

The last term in the estimate for (1 + 22)//?large is a sequence of Riemann
sums for f|z|>R (H‘zjﬁ, and it can be made smaller than any given € > 0
by choosing R = R(e) large enough, independently of z, n, and m. For that
value of R, the estimate for (1 + 22)//2small can be made smaller than e by
choosing n > n(e) large enough, independently of = and m.

We have proved that
[hn - hn+m]s,t S CE

provided n > n(e,s,t). Hence, {h,}>°, is a Cauchy sequence, which con-
verges to a function in § by completeness.
The verification of (7.4.3) is elementary. With h,, € S defined as above,

n—o0

lim Ay (z) = / bz — y)o(y)dy = (b * 9)(@).

On the other hand, if h,, = h as n — oo in S, then h,(z) — h(z). Hence,

(e )e) = (Jim ) ) = [ 7oty o),
as wished. ]

7.4.2. The convolution of a distribution in &’ and a function
in §. A distribution might be a strange object, but, after convolving it
with a function in &, it becomes the functional ”integral with a smooth
weight”. That it becomes a functional of this kind is not a surprise: tempered
distributions are modeled on functionals of this form. The proof, however,
requires some care.

)
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THEOREM 7.10. Let T be a tempered distribution and 1 a function in S.
Define

(7.4.4) g9(x) = T(r.(UY)).

Then, g € C*, all of its derivatives have polynomial growth, and T x = Tj.
Moreover,

(7.4.5) 9" (x) = T(r,(Uy™)).

Proor. We prove first that g € C°°. In order to prove the existence and

compute the derivative

d

g(a) = = T(nUY),

we have to pass the derivative, which is a pointwise limit, inside the functional
T, which is defined on functions, not on points. Using the continuity of
T:5S—Cand7,:S5—S,

, d
(7.4.6) J1) = T(RUY)
— lim T(Tx+hU¢) B T(TxU¢)
h—0 h
. (hm TainU) — vaw)
h—0 h
(7.4.7) — Tor, <1im M) ,
h—0 h
provided limy,_,q M exists in S.
Since the pointwise limit is
mU(y) —Uv(y) . dlh—y)—v(=y)
lim - = lim - = ¢'(—y) = (UP)(y),

what we have to prove is that limy,_,o 224=%% = (Uy)’ holds in S as well.
Let m > 0. Using Lagrange Theorem twice,

m [, — / U™ () — Uy :
(m)(h — ) — (™ (=

[ (O©1h — y) — Y (—y)|
20,010 — y)| - |Al.
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where 0 < 01,0, < 1. Then, if n > 0 and |h| <1,
U — Uy : B e d™ [ UP(y) = Uv(y) ..,
z Ui o Sup a - (UY)(y)
|h| sup ‘(1 + )2 (0,0, h — y)‘
)
< |hsup |(1+ (J2] + 1)) 2 ()]

< C|h|[¢]m+2,n7
which tends to 0 as h — 0. Returning to (7.4.6), we have proved that

(1+4%)

IN

(7.4.8) S T(rU) = T(n(UW),

hence (7.4.5). Also, using theorem 7.2, (7.4.8), and the elementary estimate
(see the beginning of the proof of (vi) in proposition 7.4)

[Tz¢]m,n = sup(1l + y2)n/2|¢(m) (y —2)| < Cu(l+ xZ)n/2 [¢]m,n7
yeR

we have, for £ > 0,

9P @) = ITEUINI<C Y U™

0<m,n<N

S Cl Z [Uw]m-i-km(l + 1’2)”/2

0<m,n<N

= O Y Wkl 22

0<m,n<N
< Cy(1 + N2,

Hence, ¢'®) has polynomial growth.
To conclude the proof, we have to show that 7" x 1) = T;,. For ¢ € S, the

map

b (Uf) %= / U)o (y)dy

R
is continuous on &, by lemma 7.7. Thus,

(T ) (@) = T(UY)*e)

- ( / Ty(Uw)sO(y)dy)

- / Ty (U)o (y)dy

= Tg (@) )
as wished. O
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It would be nice if ¢ were always in S, but this is not the case. Consider
the case of Tp,(¢) = [ p(x)dx (ie. T, is the Lebesgue measure), and let
Y € S with [(¥(z)dz = . Then,

9(z) = Tu(raliy) = / bz — y)dy

= «

is a constant function.

7.4.3. The density of S in &'. In this subsection we show that any
tempered distribution 7" is the limit of distribution T, (¢)) = [ ¢n(2)¢(z)dx,
with ¢, in §. Before we do that, we consider some special cases and related
facts, having short proofs. They will be used in the proof of the main theorem.

Recall that dp(z) = 1 (£) if t > 0. We write ¢, = 01 /40.

t

PROPOSITION 7.10. Let ¢ € S with [ (x)dx = 1.

(i) We have
lim T% = (50

t—0

inS'.
(ii) We have
lm @y + ) =y
in S.

(iii) If T € S, then
IimT xp, =T
t—0

m S’

(iv) Let n = [—1,1], n € C=(R), and let nr(z) = n(z/R) for R > 0.
Also let g € C®°(R) be a function with polynomial growth, |g(x)| <
C(1 + 22)N/2 for some N. Then,

lim 7,

R—o0 19

T,

g-

Statements (i), (ii) and (iii) are avatars of the same basic principle, which
we already met with approximations of identity. Since ngrg € C2°(R), in view
of theorem 7.10, (iii) and (iv) suggest that C2°(R) is dense in S’. However,
proving the latter involves a double limit, and I do not know how to deduce
the result from these simpler statements.
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PROOF. (i) For ¢ € S,
Tho@) = [ 0(F) vlalda
= [ ety

= do(¥)

by dominated convergence.

For ¢ € §, we want to estimate [(él/tgo) * ) — w} _» which a varia-

m,

tion on the theme of approximations of identity.
(14222 |[G19) + 6] ™ (2) = 6 (@)
= L+ [[G10) * ™) (@) — ()|
1
< @y [ o (D)) 16— ) - v @y
R
= A+ B,

where A is the integral over |y| < § and B that over |y| > 0. Using
Lagrange mean value theorem, there is © = O(x, y)1[—1, 1] such that

A = (1+x2)n/2/
ly|<d
< Clmsrndllel

which vanishes ad § — 0. Choose § such that A < e (with € > 0
fixed).

About B, assuming 0 < t < 1 in the last few lines

Lo (D] . ptmio :
o ()] 10+ 0] ldy

1o (D)0 = e = )] 142y

1
C
= /lyza’f t
ro ()] a2 o) ay

T / !
ly|>d t

t
2 222 2| dz
Ot (/lzzé/twn(m 2 *AZ&/J“"( >rd)
Ol / ()L + (1 + 2)"?)d
|2|>6/t

IN

IN

— 0
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as t — 0, by dominated convergence. By choosing ¢ small enough,
then, B <e.

(iii) Fix ¢ € S, and recall that (Txp:) () = T(Ups)xp) = T((Up)ex1)).
Using (ii) and the continuity of T,

ImT((Up)xt) =T (%%(Ugo)t * ¢)) =T(¥),

t—0

where the limit in the argument of 7" is a limit in S.

(iv) For ¢ € S,
IT,(6) = Tymg(w)| < / 11— nr(@)] - l9(@)] - [(2)|dz
z)| - x)|dx
< /M’g( |- ()]

< c / (14222 |p(a)|de
|z|>R
- 0

as R — oo, by dominated convergence.

We now come to the promised density theorem.

THEOREM 7.11. Let T € S'. Then, there exists a sequence {h,} in S
such that lim, o Ty, =T in S'. In fact, we can choose h,, € C°.

n

PROOF. Fix ¢ € § such that [, p(z)de = 1, and let ¢, = d1/,p. Let
then g, be the function in C*° whose derivatives have polynomial growth
such that T x ¢, = T,, (see theorem 7.10). As before, let n > [—1, 1] and
set nr(z) = n(x/R) = [—R, R]. We can ask supp(n) C [—2,2]. The function
hn = gnnr, belongs to C°.

For ¢ € § fixed, we estimate:

T(2) = Toppon (W) < T (W) = To, (V) + |5, (¥) = Ty (¥)]
= A+ B.

Fix ¢ > 0. We have
(7.4.9) A=TW) = (T *en)(W)] <€

if n > n(e) by proposition 7.10 (iii). We also have

(74.10) B < / 192(@)] - [9(2)] - |1 — i, (2))dz < / CCRTEIS
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We need an estimate for |g,(z)|. For some N > 0 and C' > 0,

(7.4.11) 92(2)] = I T(mUea)| < C Y [m(Uen)lm,

0<I,m<N

and we proceed to estimate the summands.

1+ y)™? | [r(Upn)] ()|

m r—Y
= (142 /2<p(l)( . )

CrM (14 22) (1 + (2 — y)2) ™2 - o0 (%)

oo (L (2 = )"

(T4 (i — gl /)

wjo (L = )"
(25 (&= )P

IN

IN

Clelimn'™™H (1 + 2?)

— C’[g&]l,mnHmH(l 4 $2)
< C[So]l’mn2N+l<1 + (IJ2)N/2.
The latter is an estimate for [7,(Upp)]im, thus (7.4.11) gives
)| <C Z mn2N+11+x)N/2

0<lI,;m<N

Inserting in (7.4.10), we obtain:

B < / 0n(2)] - [80(2)|dc

IN
Q
<
3
3
N
2
*
g\»
v
2y
3
=
=
+
8
IS
&

nQN“ N+1

iy |, IO+

nQN“ N+3 dz
g _— 1 2
P PR e A /| PN T

n2N+1

< Cl]onts Z [%]LmW?

0<l,m<N

IA
aQ
M

and the latter goes to 0 as n — oo if, for instance, R, = n?V*2.

In total, with this choice of R,,, there is ny(€) > 0 such that, for n > n(e),
T(¢) = Ty, g (V)| < A+ B < 2.
U
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7.4.4. The topology on &’ by means of cylinder sets. The sequen-
tial definition of convergence in S can be interpreted in terms of a topology
on §’. Define cylinder sets at the origin,

(7.4.12) N(p,e0) ={T € S": |T(p)| < e},
where p € § and € > 0, and
Nl on,60) = N(1,60) N - NN (pn, € 0).
Cylinder neighborhoods centered at S € S’ are defined by translation,
N(o1, ... ,on, 6S) =S+ N(p1,...,0n,65).

A subset U of & is open if and only if U contains a cylinder neighborhood.
Let 7 be the corresponding topology.

THEOREM 7.12. Let {T,,}32, be a sequence in 8" and T € S'. Then,
lim,, o0 T () = T(p) for all ¢ in S if and only if lim, oo T, = T in the
topological space (S',T).

ProOF. By translation invariance, we can assume 7" = 0. Suppose T,
converges to 0 sequentially, and consider a cylinder neighborhood N (1, ..., ¢n,€;0)
(any open neighborhood of the origin contains one). By hypothesis, there are
n;(€) such that |T,(p;)| < € if n > n;(e). For n > max(nj(e) : j=1,...,n)
we have that T € N (1, ..., on,€;0). This shows that lim,, ., 7, = 0 in the
topological space (S’, 7).

Viceversa, suppose that lim,_,., 7, = 0 in the topological space (S’, 1),
and fix ¢ € S. Then, for all £ > 1 there is ny such that |T,,(p)| < 1/k if
n > ny. Then, lim, ., T,(¢) = 0, as wished. O

Critical analysis of the proof shows that the line of argument above has
little to do with tempered distributions. This way, in fact, one constructs
weak”™ topologies on the dual of topological vector spaces.
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