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Preface

These lecture notes merge the contents of two versions of a one-semester
course in Functional Analysis and Operator Theory I taught in 2024, then
in 2025, for the Master in Mathematics at the University of Bologna. In
2024 1T did the basics of Gelfand’s theory and spectral properties of compact
operators, but the spectral theory of self-adjoint operators for the bounded
case only. In 2025 I skipped Gelfand’s theory and compact operators, and
I did instead the spectral theory of unitary and of possibly unbounded self-
adjoint operators. All students were familiar with the basis of Hilbert space
theory, and the chapter on Hilbert spaces appears here just to keep the notes
reasonably self-contained. The structure of the course, on the other hand,
stemmed from a course in Functional Analysis I taught in 2022 for the "SMI”
Summer School in Mathematics of Perugia.

The goal of the course, as it happens with most courses we teach, is to
give an introduction to the subject which might be useful (i) as general math-
ematical culture; (ii) for those who will use these tools or some of their many
avatars in more specialized topics; (iii) as an invitation to study Functional
Analysis in greater depth (there are many beautiful treatises, old and new,
the study of which might even be pleasant after an introductory course has
cleared some ground). Having (i) in mind, I have preferred narrowing the
front and moving in depth in the direction of spectral theory, which is one of
great achievements of the first thirty or so years of the XX century. Concern-
ing (ii), I unfortunately had to sacrifice the ”quick introduction to Calculus
of Variations from the viewpoint of functional analysis” I always have in the
back of my mind. Time is short and choices have to be made.

The choice of much background material is based on the concrete groups
of students attending the class. What some of them had not seen before,
I stated and proved (the exception being some notions on Borel measures,
which I just enumerated without proofs). All of them were familiar with
Fourier transforms, for instance, but many had just a vague idea of what
Fourier series are about.

All this accounts for the Frankensteinish structure of the lecture notes,
where a number of repetitions and inversions of topics occur. For instance, in
the chapter on preliminaries I use Banach-Alaoglu theorem, which appears
two chapters downstream. In cases like this, I have preferred to keep most
contents of the same kind in the same chapter, where the student can find
them better contextualized. The chapters on Hilbert and Banach spaces are
copied from notes for other courses and I did not make much of an effort to
harmonize them with the rest.


https://www.dmi.unipg.it/didattica/scuola-matematica-interuniversitaria/edizioni-precedenti-corsi-estivi-smi/451-corsi-estivi-smi-2022

PREFACE iii

Some chapters have introductions explaining why we study this or that
and which sources I am using. Let me just mention the main references:

(1) Hilbert and Banach spaces: Michael Reed, Barry Simon, Methods
of Modern Mathematical Physics: Functional analysis, Academic
Press, 1972;

(2) compact operators and their spectra: Reed and Simon;

(3) Banach algebras: Functional analysis, by Peter D. Lax, Wiley-Interscience,
2002, see this review by Meijun Zhu;

(4) spectral theory: for the unitary operators, Michael Taylor’s lecture
notes The Spectral Theorem for Self-Adjoint and Unitary Operators
(2018); for the unbounded, self-adjoint operators, The spectral the-
orem and its converses for unbounded symmetric operators (2011)
by Terence Tao.

Functional analysis, unlike Athena, was not born fully grown and armored
from the head of Zeus. Its origins lie in rather concrete and specific problems,
especially those concerning integral and differential equations, and calculus
of variations. Then quantum mechanics was invented, and it needed what
functional analysis was available, and much more. The presence, and the
usefulness, of abstract theories emerged gradually, but not so slowly. There
are several places where the story is told. One of them is The Establishment
of Functional Analysis (Historia Mathematica 11(3) 1984, p. 258-321) by
Garrett Birkhoff and Erwin Kreyszig.

It is a pleasure to thank Nikolaos Chalmoukis, Giovanna Citti, Giovanni
Dore, and Davide Guidetti, with whom I had a number of conversations on
the material while teaching the class. Some material was included to answer
questions from attendees of the Spring 2025 class; often ones I would not
have ever thought of (and point in fact to important chapters of the theory).

The KETgXsource is dowloadable, in case you wish to rearrange and modify
the material according to your taste and needs. For comments and pointing
out mistakes, you can write me at nicola.arcozzi@unibo.it.

Bologna 2025
Nicola Arcozzi
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CHAPTER 1

Some tools from real and complex analysis

This section recalls some results from real and complex analysis which
will be used in the sequel. Many of them are probably well known by most
students with a bachelor in maths or physics, but perhaps not all of them.
When in doubt, I provide proofs. I recommend browsing through the material
and, only when needed, reading more carefully the parts which are necessary
to prove this or that result in spectral theory. The prerequisites are basic no-
tions from advanced calculus, and real and complex analysis. From advanced
calculus: Green’s formula, closed and exact fields (or 1-forms); from real
analysis: measure theory and Borel measures (including F. Riesz represen-
tation theorem for measures, which is the only non-elementary prerequisite),
the basic density theorems, Fourier transforms; from complex analysis: the
Cauchy-Riemann equations, Cauchy theorem and Cauchy formula, the open
mapping theorem, expansion of a holomorphic function as a power series. In
one proof we use the Banach-Alaoglu theorem, which is proved in the chapter
on Banach spaces. Some basics on Fourier series are also in the chapter on
Hilbert spaces, with slightly different proofs.

Notation. If X is a topological space, we denote by A the closure of a subset

A of X. We make an exception for the complex plane C, where the closure
of AC Cis ClA, while A= {z:z € A}

1.1. The definition of Banach space

1.1.1. Normed linear spaces. An especially important family of met-
ric spaces is that of the normed linear spaces. A normed linear space is a
vector space X over C (or over R) endowed with a norm: a function

- [I: X = [0, 00),
satisfying the properties:
(i) |||l = 0 if and only if z = 0;
(i) [|Az|| = [Al||z] if x € X and X € C;

(iid) [z +yll < lzll + [lyll-
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In practice, when we introduce a perspective norm on some concrete vector
space X, we have to verify that it has a finite value for each x in X, and we
have to verify the conditions above, (iii) being sometimes subtle.

A normed linear space becomes a metric space when endowed with the
distance

d(z,y) = |z =yl

In addition to (i-iii), this distance satisfies properties linking it with the
algebraic structure.

(iv) d(A\z, \y) = |A|d(z,y) if z,y € X and A € C;
(v) dx + a,y +a) =d(z,y) if z,y,a € X.

The map x — Az is a (complex) homothety, and z — x + a is a translation.

EXERCISE 1.1. Show that if a metric d on a vector space X satisfies (iv-v), then
|lz|| :== d(x,0) defines a norm, and that d(x,y) = ||z — y||.

For a continuous function f: [a,b] — C we define:

b 1/p
||f||m:( / |f<a:>|p) for 1 < p < oo, the L norm,

| fllLge = max [f(x)| = sup |f(x)|, the uniform norm.
z€la,b] z€la,b]
They make (C[a,b], | - ||zr) and (Cla,b],|| - ||.) into normed linear spaces.

1.1.2. Complete metric spaces and Banach spaces. A basic prob-
lem in applications is the convergence of a sequence of objects to an object.
Consider for instance the convergence of an algorithm. This notion can be
formalized as the convergence of a sequence of points to a point in a metric
space. Often, however, the nature of the objects in the sequence is clear,
but so is not that of the limiting object. Think of the approximation of /2
by means of decimal (or binary) numbers having finitely many digits. The
notion of ”familiar” objects converging to a "nonfamiliar”, ”ghost” one is
encoded in the notion of Cauchy sequence. The conceptual tool to make

"ghosts” into "real” objects is the completion of a metric space.

A sequence {z,}>°, in (X, d) converges to the limit a € X, lim,, o x, =
a, if for all € > 0 there is n(e) > 0 such that if n > n(e), then d(z,,a) < €.
The sequence {z,}>°, is Cauchy if for all € > 0 there is n(e) > 0 such that if
n > n(e) and j > 0 one has d(z,, z,+;) < €.

EXERCISE 1.2. Show that, if limp oo, = @ and lim, 0o yn = = in (X,d), then
limy, o0 d(@n,yn) = d(x,y) exists in R in the usual sense.
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All convergent sequences are Cauchy, but the opposite implication gener-
ally fails. The space (X, d) is complete if all Cauchy sequences in it converge.

For instance, if Q C R is the set of the rational numbers and {z,,}5°, is
a sequence in Q converging to v/2, then (with respect to the usual distance
function d(z,y) = |z — y|) the sequence {x,}>, is Cauchy, but not conver-
gent, in Q. Familiar examples of complete metric spaces are R and C, with
respect to the distance d(z,y) = |y — z|.

Any metric space can be canonically imbedded in a complete one.

THEOREM 1.1. Let (X,d) be a metric space. Then there ezists a complete
metric space (X, d), the completion of (X, d), and an injective map i: X —
X such that:

(i) d(i(2),i(y)) = d(z,y);
(i) 4(X) is dense in X.

The completion is unique in the following sense. For any other complete
metric space (Z,9) endowed with an injection j: X — Z satisfying properties
(1) 0(§(x),j(y)) = d(x,y), and (ii) j(X) is dense in Z, there is a unique map

F: X — Z which is a surjective isometry, §(F(Z), F (7)) = d(Z, 7).

PROOF. We start with the construction of (X, d). Let C' be the set of all
Cauchy sequences in X and for {z,},{y,} € C set

{z,} ~{yn} < lim d(x,,y,) = 0.
n—oo

The relation ~ is an equivalence relation (check it!). Write [{x,}] for the
equivalence class of the Cauchy sequence {z,}, and let X = C/ ~, be the
corresponding quotient space. Define

A([{a}) Hynh) = T d(za, o).

It is easy to see that d is well defined, and that it defines a distance on X.
(check that it is independent of the representatives). Finally, for z € X
set i(z) = [{z, = x}], the class of the corresponding constant function.
Properties (i) and (ii) are easily verified (exercise). Some work is needed to
prove completeness, using a diagonal trick.

Let {i,}, &n = [{2"}2°_,], be a Cauchy sequence in X. For k > 1 select
integer n(k) > n(k — 1) (if n(k — 1) was already selected) such that, for
n >n(k) and j > 1,

? > j(inai'n-i-j) = n!Ll—Igo d<x2wxrrtz+j)'
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Select then m(k) > m(k — 1) such that, for i = 0,1, m > m(k), and j > 1

. , 1
n(k-+i n(k+1i
() it a5 < o

which we can ask because each {z7,}°°_, is Cauchy, and
2

n(k n(k+1
() d<xryf(13)7xnf(k) )) < ok

which we can ask because 2% > cz(fn, Tp+j). Set then ay = x:f(kk))

The sequence {ay}2, is Cauchy in X:

n(k+1
d(ay, ary1) = d(z, m(;w m(k—:-l)))
nk 1 (k+1 n(k+1
< d(ay, (+ ) +d(x m(k+ )7'rm((k—:-1)))
2 1
< %—F?

by (x) and (*x), and, by geometric sums, d(ax, ari;) < 5. Let a = [{ax}].

We want to prove that J(in(k), a) — 0. Using the fact that lim,, oo (2, yn) =
lim,,, o0 d(25,,, Yk,,) for all subsequences {j,,} and {k,,} of the positive inte-
gers, provided the initial sequences {z,} and {y,} are Cauchy (check it), we
have

~ n(l
d(Znmy,a) = llif?o d(x 7 m((l)))
< limsupd(z) ; n(k )+ hm d(x :B;(él)))
l—00
1 6
< gt

by (*) and the fact that {a; = x:ffk))} is Cauchy (the precise value 6 is indeed

unimportant).

We now come to uniqueness. Let (Z,6), 7 as in the hypothesis, and let
i = [{z, : n>1}] be an element in X, where {z,} is a Cauchy sequence in
X. Then, {i(z,): n > 1} is Cauchy in X and {j(z,) : n > 1} is Cauchy
in Z. Define F(Z) = lim,,_,o j(2,), which exists because Z is complete. The
definition is well posed, since for two equivalent Cauchy sequences {z,}, {y,}
in Z we have

6(](In)a]<yn)) = d(zna yn) — 0 asn — oo,

hence, they have the same limit in (Z,5). Moreover, for ¥ = [{z,}] and
J=U{yn}l in X,

o(F(7,9) = o(F([{za}]): F([{yn}]))
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= 0(lim j(,), lim j(y))

= tim 3@ () = im d(z,.) = lim d(i(,).i(0)
= d(z,7).

The equalities from second to third, and third to fourth line, follow from
Exercise 1.2 applied to ¢ and cz, respectively.

The isometry F': X — Z is surjective. If z € Z, by hypothesis there is
a sequence {z,} in X such that d(j(x,),2z) — 0, so that {z,} is Cauchy in
X. Hence, {i(z,)} is Cauchy in X and lim,, .o, F(i(x,)) = lim, 00 j(2) =
zZ. Il

A normed linear space is a Banach space if it is complete with respect to
the distance induced by the norm.

Let (X,] - ||) be a normed linear space, and let (X, d) be its completion
with respect to the distance d(z,y) = ||z — y|| on X. We want to introduce
on ()N( ,ci) a structure of normed, linear space, in such a way that X be-
comes a Banach space. To this aim, we define algebraic operations between
equivalence classes of Cauchy sequences,

Hond] + {ynd] = Kan +undls Al{zn}] = {Azn}];

and of the norm:

I{zn I = lim .

PROPOSITION 1.1. Sum, multiplication times scalar, and norm are well
defined, and make X into a normed linear space. Moreover, if z,w belong to
X, then .

d(z,w) = ||z — wl,
so that, in particular, (X,||-|]) is @ Banach space. Also, the imbedding map
1: X — X s linear.
PROOF. The statement can be split in a number of statements, whose

proof is left to the reader.

(a) About the sum, we have to show that (i) {x,, +y,} is Cauchy if {z,}
and {yn} are; (ii) that [{zn +yn}] = [{z0 + wa}] if {zn}] = [{z0}]
and [{yn}] = [{wn}]

(b) Similar statements must be verified for the product of a vector with
a scalar.

(¢) We have to verify that for [{z,}] in X, lim,_ ||2,|| exists and does
not depend on the particular representative.
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(d) For z,w in X, d(z,w) = ||z — w]|.

(e) The imbedding i is linear.

EXERCISE 1.3. Prove the assertions above.

1.2. Borel measures

1.2.1. Borel measures on the real line. We quickly review some facts
from measure theory. A good reference is Gerald B. Folland, Real Analysis:
Modern Techniques and Their Applications, Wiley 2nd Edition (1999).

Let X be a topological space. The Borel o-algebra B(X) is the smallest
one for which the open sets are measurable. A function X 1Y from X
to another topological space Y is Borel measurable if the preimage f~'(A)
of any open subset A of Y is Borel measurable. In particular, a continuous
function is measurable. The composition of two Borel measurable functions is
measurable (it is not true, in general, that go f is measurable if R LR R,
and f and g are Lebesgue measurable: Borel measurability is more stable
with respect to composition). A Borel measure is a measure on the Borel
o-algebra. (Unless otherwise stated, a measure is positive).

A topological space X is locally compact if any point x in it has a compact
neighborhood. A continuous function X = C wvanishes at infinity, ¢ €
Co(X), if for each € > 0 there exists K compact such that |p(x)| < € if
x € X \ K. The space Cy(X) is a Banach space with respect to the uniform
norm,

¢l ee = sup |¢(x)],
rxeX

and the space C.(X) of the functions having compact support is dense in it.
A Borel measure on a locally compact space is a Radon measure if

(i) u(K) < oo if K is compact;
(i) p(E) =inf{u(V):V 2 E, V open in X} for all measurable FE;
(iii) (V) =sup{pu(K): K C E, K compact in X}.

Let p be a finite, positive Borel measure on X which is bounded on compact
sets, and define A : Cyp(X) — C,

(1.2.1) A(@):/Xgpd,u.

Then


https://www.wiley.com/en-us/Real+Analysis%3A+Modern+Techniques+and+Their+Applications%2C+2nd+Edition-p-9780471317166
https://www.wiley.com/en-us/Real+Analysis%3A+Modern+Techniques+and+Their+Applications%2C+2nd+Edition-p-9780471317166
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(i) A is linear and positive: if ¢ > 0, then A(p) > 0;

(ii) A is a bounded functional,
[Mlleox)- = sup{[A(p)] - ¢ € Co(X)} < Cllollzge

The following is a version of the F.Riesz-Markov-Kakutani representation
theorem for measures provides a converse to the fact just stated.

THEOREM 1.2. [F.Riesz-Markov-Kakutani theorem for positive measures]
Let A : Co(X) — C be a positive, linear functional. Then, there exists a
unique Radon measure p such that (1.2.1) holds. Moreover, p is finite and

[Alegcys = 1(X).

Two positive measures u,v on the same og-algebra on X are mutually
singular, L v, if X = AU B with A, B measurable, AN B = (), u(B) =
0=r(A).

Radon measures on the real line, or on the unit circle, play an important
role in spectral theory, and it can help having an insight on the vastity of
their catalogue. All positive Borel measures on R (in fact, on C, and on a
large class of locally compact spaces) which are finite on the compacts are
Radon measures, and viceversa. We will use the terms ”finite Borel” and
"finite Radon” as synonimous. If u is one such measure, and it is finite,
then it can be uniquely decomposed as the sum of three positive, mutually
singular, finite Borel measures,

(122) o= Mac—l',usc'f—,udv
where

(i) dpae = fdm is the absolutely continuous part of u, m is the Lebesgue
measure and f >0, f € L'(m);

(i) pa =D, Anls,, the discrete part of p, is the sum of positive multi-
ples (A, > 0) of point masses d,,, at points z,, € R, with >\, < 00;

(iil) pse, the singular continuous part of p, is singular with respect to the
Lebesgue measure and it has no point mass, us.({z}) = 0 for all z.

The natural Hausdorff measure supported on the Cantor set is a nontrivial
example of a continuous, singular measure. If y is a finite Radon measure
on R and «(t) = u(—o0,t] is the (increasing, right continuous) distribution
function of p, then the decomposition in (1.2.2) corresponds to the decom-
position o = . + a5 + g, where the functions on the right are increasing,
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Qe 18 absolutely continuous, ag is pure jump, and ay. is continuous and it
has derivative vanishing a.e.. with respect to Lebesgue’s measure.

A finite complex measure on a measurable space (X, F) (where F is a
o-algebra) is a map u : F — C such that, if {E£,}7°, is a sequence of disjoint
measurable sets, then

f (G En) = iu(En),

and the series converges absolutely. A finite, complex Borel measure is one
defined on a Borel o-algebra.

Any finite complex measure can be uniquely be decomposed as a linear
combination (Jordan decomposition) of four positive finite measures,

1= pir+ — pr— +i(prs — pr-),

with the requirement that pur. L pr- and p; L py—. The four measures
are Radon if u is Radon. The integral with respect to p is defined as the
linear combination of the integrals with respect to the measures in the de-
composition.

The total variation |p| of a real valued measure y = pgry — pg— is the
positive measure |u| = pgry + pr—; that of a complex measure p, more
generally, is defined by

|pn|(E) = sup {Z |W(E;)| : E= U E, is a disjoint decomposition of E} :
n=1

n=1

and clearly F and all F,’s in the definition are measurable. Although it is
not obvious, the two definitions agree for a real valued measure.

Complex measures intervene in the following version of F. Riesz repre-
sentation theorem.

THEOREM 1.3. [F.Riesz-Markov-Kakutani theorem for complex measures]
Let X be a locally compact space, and A : Co(X) — C be a bounded, linear
functional. Then, there exists a unique finite, complexr Radon measure p such
that (1.2.1) holds. Moreover,

[Alleox)- = 1pl(X)-

Conversely, (1.2.1) defines a bounded, linear functional on Co(X) if p is
finite, complex Radon measure.
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1.2.2. Borel measurable functions and the Lebesgue-Hausdorff
theorem. The content of this section will only be used to prove some unique-
ness statements in spectral theory, and to provide one of two proofs of Stone’s
theorem. I suggest you just read the statement of theorem 1.4 and of its corol-
lary. There are properties which we will first prove for continuous functions
on R, and that are preserved under pointwise limits. The punchline is that
such properties hold for all Borel measurable functions. My source for this
material is [18], S.M. Srivastava A Course on Borel Sets, Springer 1998.

THEOREM 1.4. [Lebesque-Hausdorff theorem] Let F be a class of functions

R L C which (i) contains the continuous functions; (ii) is closed under
pointwise limits: if f, € F and f,(x) — f(z) for all z € R, then f € F.
Then, F contains all Borel measurable functions.

Clearly, there is no loss of generality in assuming that we consider func-

tions R 5 R, and in fact the theorem holds in a much broader context. A
slight modification of the proof gives the following variant.

COROLLARY 1.1. Let F be a class of functions R Iy C which (i) contains
the bounded continuous functions; (i) is closed under pointwise limits of
uniformly bounded functions: if f, € F, || fullLge < C, and fo(x) — f(x) for
allz € R, then f € F.

Then, F contains LP(R).

The smallest class B = B(R, R) which contains C'(R) and is closed under
pointwise limits is called the Baire class of R. The symbol B* is the smallest
one containing bounded continuous functions, and closed under pointwise
limits of uniformly bounded functions.

In order to prove theorem 1.4 we need to define a hierarchy into the Baire
class. If A is a class of functions f : R — R, let lim A be the set of the
pointwise limits of sequences of functions in A. If A is a class of bounded
function, lim* A is defined similarly, but requiring that the functions’ se-
quence is uniformly bounded.

Let w; be the smallest uncountable ordinal.

(i) Set By = C(R).

(ii) If o is a countable ordinal,

B, = lim (U Bﬂ> :

B<a


https://books.google.it/books?id=FhYGYJtMwcUC
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(iii) The classes B are defined similarly, starting with By® = Cy(R),
the bounded and continuous functions, and using lim™ instead of
lim.

With this definition, By O By contains pointwise limits of continuous func-
tions, By O B contains pointwise limits of functions which are of the form
F(@) = Tim lim fr,(2),

n—oo MmMm—0o0

where each f,,, is continuous, and so on. The definition looks more inter-
esting at limit ordinals' such as

wo = sup{n : n is a finite ordinal},

the first infinite ordinal. If « is a limit ordinal, then f € B, if and only if
there is a sequence f,, € B,, with a,, < «, such that f is the pointwise limit
of the f,’s.

Let wy = sup{a : « is countable ordinal} be the first uncountable ordi-
nal.

LEMMA 1.1. We have the decomposition:

B= | B, and B* = | J BY.

a<wi a<wi

PROOF. We first prove the trivial D. Surely Bo = C(R) C B. We have
to show that the definition of B, from the form the preceding Bg’s, 5 < «,
preserves membership in B if Bg C Bg for all such §’s. Let f,, € B,, with
a, < a, and f =lim f,. Then f is pointwise limit of functions in B, hence
it belongs to B.

To prove C, it suffices to show that (J,_,, Ba is closed under pointwise
limits. Let f, € B,, with o, < wy, and f = lim f,,. The supremum of a
countable family of countable ordinals is a countable ordinal?, o := sup{a, :
n > 1} < w;. Hence, f, € B, for all n, which implies that f € B,.1, and
a+1<w.

The proof for the class B> is the same. OJ

COROLLARY 1.2. The Baire class B is closed under the following opera-
tions.

'Recall that an ordinal « is a limit ordinal if it is not the successor of any ordinal,
a#pB+1forall §<a.

2We can identify each ordinal a with the set [0,@) of the ordinals less that a: «
is countable if and only if [0, «) is countable of a set. The ordinal sup,, v, is the one
associated with (J,,~[0, a;,), which is a countable set. Hence, sup,,~; a;, is countable.
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(i) If f,g € B, then max(f, g), min(f,g) € B.
(ii) If f,g € B and a,b € R, then af + bg € B.
Stmilar statements hold for B*.

PRrOOF. The two statements hold for By = C'(R). Suppose they hold in
B; for all g € [0,«), and that f,g € B,. Then, f = lim f,, with f, € B,,
(an < @), g =limg, with g, € Bg, (8, < ), so that af, +bgn € Bmax(a,,8,)
and lim(af, +bg,) = af +bg € B, by definition of B,. The same reasoning
can be done with max(f, g), min(f,g).

By transfinite induction, they hold for all B, with a < w;. By lemma
1.1, they hold the Baire class B. U

Next, we have to formulate a different definition of the Borel class.

PROPOSITION 1.2. Recall that the Borel class B = B(R) on R is the
smallest o-algebra containing the open sets. Then, B = C, where C is the
smallest family of subsets of R which contains all open sets and it is closed
under countable intersections and countable disjoint unions.

PROOF. It is clear that B has the two stated properties, hence B O C.
To show the opposite inclusion, it suffices to show that C is closed under
complements, if A € C, then R\ A € C. If this holds, C is a o-algebra
containing the open sets, hence it contains B. Let

D={AeC:R\AeC}.

Since all closed sets in R are countable intersections of open sets (the universal
notation for the class of such intersections is Gy), they belong to C and they
complements do as well, hence, D contains open and closed sets.

We next show that D is closed under countable intersection. Suppose
A, € D for n > 0, so that 4,,R\ 4, € D, and N,>0A, € C. The sets
By =R\ Ap, and B, = R\ A4,)NAN---NA,_1 (n > 1) are pairwise
disjoint and belong to D. Then, since C is closed under disjoint unions,

C> UBn:R\(ﬂAn).

n>0 n>0

Thus, (>0 4n € D.

It is now clear that D is closed under countable, disjoint unions. If B,, €
D are pairwise disjoint, n > 0, then (J,-, B, € C by definition, and R\
(Ups0 Br) = Nhso(R \ B,) NC by the previous step. Hence, | J,~, Bn € D.
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Since D contains the open sets and it is closed under countable intersec-
tions and countable unions of disjoint sets, D = C. Hence, C is also closed
under complements, hence C = B. 0

We are now ready to prove the Lebesgue-Hausdorff theorem for charac-
teristic functions of sets.

ProPOSITION 1.3. If B is a Borel set in R, then xg € B® C B.

PROOF. Let
U={BCR:yxpecB™}

If U is open, there are closed sets F,, such that F,, ~ U, and for each of
them, by Urysohn lemma, there is f,, : R — [0, 1] continuous, with f, |z, =1
and f,|gp\y = 0. Since {f,} is uniformly bounded and f, — xu, we have
Uel.

Suppose {B,, : n > 0} is a family of disjoint subsets in ¢/, having union

B, and set
fn = ZXB'VL'
j=0

Then, 0 < f, <1, and f,, — xp by corollary 1.2, hence B € U.
Let {B,, : n > 0} is a family of subsets in &, having intersection B, and

set
n

Jn = minxs,.
Then, 0 < f, <1, and f,, — xp by corollary 1.2, hence B € U.

By proposition 1.2, we have that U = B*°. O

PROOF OF THE LEBESGUE-HAUSDORFF THEOREM. The characteristic func-
tions of a Borel set belong to B> by proposition 1.3. Any (Borel) measurable
function f is the pointwise limit of finite linear combinations f, of charac-
teristic functions of (Borel) measurable sets, hence f lies in B. If f is also
bounded, we can take the f, to be uniformly bounded, hence f € B>®. [

1.3. Fourier transforms and series

In this subsection we recall without proofs some basic facts in Fourier
theory. These are well known by virtually all students, but there are various
equally popular normalizations for the Fourier transform and the Fourier
series, and it might be helpful to have the formulas for the choice we make
here.
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1.3.1. The Fourier transform. The Fourier transform, defined in the
first line, enjoys some properties. Below, D =i 13 is the symmetric version
of the derivative (the momentum operator of quantum mechanics).

(1.3.1) ﬂ@z@%%ﬁzéﬂ@f”w;

(1.3.2) o(x) = ! /go(w) T s

(1.3.3) /Rgo(x = —/
(1.3.4) Dy(w) = wp(w) = M,p(w).

The formula in the third line is the Plancherel identity, which is especially
interesting when ¢ = 1. The definition makes sense for f € L'(R), but it can
be extended to L*(R) in the appropriate sense. The two central identities
hold, in the appropriate sense, if ¢ € L?(R), while the fourth holds if, e.g.,
¢ € CH(R). For functions f in L'(R) we the following hold:

~

(1.3.5) FeCyR) (ie. feCR) and limf(w) = 0);
(1.3.6) f=0 = f=0.
The convolution f x g of f,g: R — C is defined as

(f * 9)a /fx—

For 1 < p < oo Young’s inquality holds,

(1.3.7) 1f * gllee < I fllzrllgllze-
We have the fundamental:

— ~

(1.3.8) fxgw) = fw)g(w).

This holds if, e.g., f,g € L? U L*.
The convolution between a function in Cy(R) and a finite Borel measure
is defined in the natural way,

(13.9) w*muwzéwu—ummm.

The Fourier transform of the measure p is obviously

i) = [ e duta),
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the convolution-to-product relation still holds, with the same proof, if e.g.
o € L'(R) N Cy(R).

(1.3.10) G+ = O

We might define the convolution between a finite Borel measure and a func-
tion in L*(R), or even between finite Borel measures. The definition in (1.3.9)
can not be generalized naively, since a function in L'(R) is defined a.e with
respect to the Lebesgue measure, while the measure p might be orthogonal
to the Lebesgue measure.

We end with some elementary, but useful formulas. Let (Jp)(z) = ¢(—x)

the operator "reflection with respect to the origin” in R, and (Cp)(z) = ¢(z).
Then,

(1.3.11) CJ=JC, CF = JFC, JF = FJ.

1.3.2. Fourier series. We briefly review some useful formulas concern-
ing the Fourier series of ¢ € L*[—m, 7|, where integrals are taken with re-
spect to the Lebesgue measure. We might identify (—m, 7| with the torus
T = {e" : t € (—m, 7]} (the unit circle in the complex plane), and we can
think of functions on (—m, 7| as of functions on T (f(t) = f(e")), or as
2m-periodic functions on R.

First, we state an important result.

THEOREM 1.5. Let e,(t) = e™, e, : [-m,7], n € Z. Then, T =
{(2m)~"2e, : n € Z} is a orthonormal basis for L*[—, ).

If you have never seen any of the numerous proofs of this result, I provide
one after we have introduced the Poisson kernel on [—7,x]. It is readily
verified that 7 is a orthonormal system,

™ 2m if m = n,
1.3.12 s €n) 2 = —imtgint gy — iy |7
( ) (em»en) L2 /_ﬂe e |:€i((n_m))t:| —0ifn +m.

By general Hilbert space theory, the trigonometric system 7T is a orthonormal
basis for a closed subspace H(T) of L*[—m,]. Theorem 1.5 says that

H(T) = L*[-7, 7).
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For a function ¢ € L'[—7, 7], we define its Fourier coefficients (Fp)(n) =
©(n), and list some of their basis properties.

(1.3.13) p(n) = /_7r o(z)e "™ dx for n € Z;
(1.3.14) o(z) = % S Bln)e;
(1315 (00 21mr) = 5= (B Dy
(1.3.16) Dep(n) = nd(n) = (Ma3)(n).

The first equality is the definition of the Fourier coefficients of . The second
holds for ¢ € H(T), and the equality has to be interpreted in the L? norm.
The third relation is equivalent to the second, and it holds if either ¢ or 1
belong to H(T). while the last relation holds if ¢ € Cj,,, the space of the
C!', 2m-periodic functions ¢ : R — C. The second and third relations say
that

F:H(T)— ()

is a bijective isometry, but for a factor,

IFellz = 2nllolLenm-

This is in perfect agreement with the Fourier transform, and it can be ex-
tended to the context of locally compact Abelian groups, and to a more gen-
eral non-commutative universe, with some highly nontrivial adjustments. For
the commutative theory, see e.g. Fourier Analysis on Groups (1962), Wiley-
Interscience, by Walter Rudin.

The fourth relation in (1.3.13) can be used to give the Fourier series
expansion a more concrete meaning. We give here a statement having an
elementary proof.

LEMMA 1.2. Let ¢ € H(T)NC2 [—7,7]. Then,

per

and the series converges uniformly.

Here C? ([, 7]) is the space of 2m-periodic functions in C?.

PROOF. The series converges in L?, and it converges to ¢ because ¢ €
H (7). Hence a subsequence converges a.e.,
1 .
(1.3.17) o(t) = lim — Z p(n)e™ a.e. t

j—+oo 27
n:—N]-


https://onlinelibrary.wiley.com/doi/book/10.1002/9781118165621
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for some sequence N; oo, and |g/07(n)] < 9" || 1 {=n,x], hence the sequence
{¢"(n) : n € Z} is bounded. On the other hand,

—

—¢'"(n) = D*p(n) = n*@(n),

hence, the series

1 - ~ int
5u(7)(0) = 57 3 Bne
converges uniformly. By (1.3.17), Sw(¢) converges uniformly to ¢. O

We can define the convolution of functions on [—m, 7| by thinking of them
as 2m-periodic functions (or functions on T):

(fxg)(t) = /_” f(t—s)g(s)ds.

LEMMA 1.3. If f € H(T) and its Fourier series converges absolutely (e.g.
if feC [—nx]) and g € L'[—mn, 7], then f+g € H(T) and f xg(n) =
f(n)g(n).

PROOF.

1 = 7 " —ins mn
= 5 Z (n)/ g(s)dse™
1 = 7 -~ int
= 5 Y Fwgmen,

which converges absolutely to a function in H(7 ), having Fourier coefficients
f(n)g(n). O
1.4. Basic theory of harmonic functions

A function U : Q — C is harmonic on the open subset Q C Cif U € C*(Q)
and

(1.4.1) AU(2) i= 85U (2) + 0,,U(2) = 0

for all z € . In this two-dimensional context, it is well known that, if 2
is also simply connected, then a real valued U is harmonic if and only if
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it is the real part of a function F' holomorphic in € (the ”if” holds with
no special assumption on €2). The proof of this fact easily reduces to the

o.U =0,V
Cauchy-Riemann equations for a holomorphic F' = U4V, Y

o,U = -0,V.
Equation (1.4.1) implies that —0,Udz + 0,Udy is a closed 1-form, which
is then exact. Let V' be one of its potentials. Then, 9,V = —0,U and

0,V = 0,U, which are the Cauchy-Riemann equations. Viceversa, that the
Cauchy-Riemann equations imply (1.4.1) for both U and V' is easily verified.
We list here the few facts that we will need.

(i) [Series expansion| IfU is harmonic in D(a, R) = {z : |z—a| < R},
with 0 < R < oo, then U can be written in the form

+o0
U(a+ret) = E anr!™e™,

for 0 <r < R. Moreover, if 0 <r < R, then

1

1.4.2 -
(1.42) n = 5T

27
/ Ula +re)e ™ dt.
0

PrRoOOF. We can assume a = 0 and that U = ReF' is the real part
of a holomorphic F. If F(z) = Y °  b,2z" is the Taylor expansion
of F', then

A F(eit F (it - A o0 ,
U(,r,ezt) _ (6 ) + (6 ) _ Re(bo) + Z b_nr\n\emt + Z bnrneznt’
n=1

2

n=—oo

The formula for the coefficients follows by integrating term by term.
d

(ii) [Liouville theorem| A bounded harmonic function on C is con-
stant.

PROOF. For n # 0, by (1.4.2),
U]z

r‘n|

la,| < —0

as r — o0. O

(iii) [Identity principle| If U is harmonic on Q, connected, and if U
vanishes on an open set, then it vanishes identically. More generally,
if U is constant on an open subset of €1, then it is globally constant.
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PROOF. Let
Z ={a € Q:3D(a,r) C Q such that U vanishes on D(a,r)}.

By (1.4.2), if a € Z, then all series coefficients of U vanish, Z con-
tains the largest disc centered at a which is contained in €2. The set
Z is nonempty and open. Let Z 3 a,, — b € Q, and let D(b,r) C .
Pick a, such that |b — a,| < r/4. Then b € D(a,,r/2) C Z. Being
() connected, Z = (). O

A PROOF USING THE OPEN MAPPING THEOREM. If () is simply
connected, then U = ReF with F" holomorphic in €. Since F'(D(a,r))
fails to be open, then F', hence U, is constant. Suppose 2 is just
connected, and let b € 2. Consider a simple, broken line [ in €2 which
joins a and b, and let A = {z €  : dist(z,1) < €}. If € is small, then
A is simply connected (exercise) and contained in Q. The previous

case applies, then U(b) = U(a) = 0. O
(iv) [Mean value property.] IfU is harmonic in 2 and ClD(a,r) C €,
then
1 2 )
Ula) = —/ Ua + ret)dt.
2 Jo
PRrOOF. It follows from (i). O

(v) [Maximum principle| Let U be real valued and continuous on €2,
open and connected. If U satisfies the mean value property and it
achieves its mazximum, then it is constant.

PROOF. Let M be the maximum of U, and Z = {a € Q :
U(z) = M}. By the mean value property and intuition, if a € Z
and D(a,r) C Q, then D(a,r) C Z. This shows that Z is open, but
Z is also closed in the relative topology of €2, then Z = Q. 0

(vi) [Local maximum principle| Let U be real valued and harmonic
on 2, open and connected. If U has a local maximum in 2, then it
15 constant.

PROOF. Suppose a is a maximum in D(a,r) C €2, and let F' =
U + iV be holomorphic in D(a,r). Then, F(D(a,r)) C C :={w =
u+iv: u < U(a)} and F(a) € OC, which contradicts the open map-
ping theorem. Thus F' is constant, hence U is constant on D(a,r).
By the identity principle, U is constant. O
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(vii) [Poisson representation| If U is harmonic in 2 and ClD(a,r) C
QQ, then for z € D(a,r):

(1.4.3) Ula+2z) = ! /Zﬂ—r e Ula+ re')dt
4. a+z : a-+re .
o o |re?t — zJ?
The expression

1 r*—|z?

o |reit — z|2

Pr(e™) = dt

is the Poisson kernel at z.

Proor. It suffices to show it for U = F" holomorphic, and a = 0.
We start with Cauchy formula,
1 F 1 27 it
F(z)=— (w) dw = — c

27 w—z 2w Jo ret —z

F(re™)dt.

|w|=r

The difference between the kernel in the last expression and the
Poisson kernel is

rett r? — |2|? B ret(re”® —z) — (r? — |2]?)
reit —z [rett — 2|2 (ret — z)(re” — %)
B 2|2 — Zret
— (reft — 2)(re~it — %)
_ z
N _Te it — 7

Integrating term by term, we see that

1 [2"[ reit r? — |z|? -
— . - F(retdt =0
o [re” —z  ret — 2]2] (re®) ’
hence that

1 2 it ) 1 2T 2 2 ]
F(z) = — / " peretyit =~ [ L pratya,

27 rett — z 21 Jo  |ret — z|?

as wished. Since the Poisson kernel is positive (thus real), the rela-
tion holds for the real and the imaginary part of F' separately. [



20 1. SOME TOOLS FROM REAL AND COMPLEX ANALYSIS

There are indeed other ways to guess the Poisson kernel and to
prove the Poisson representation. Here is one using Fourier series,
starting from (i). It does not really make use of the completeness
of the trigonometric system, since in the Plancherel formula below
one function (there denoted by @) belongs to the span H(7) of the
trigonometric system.

PROOF. Let a = 0and 2z = pe®, with 0 < p < r, and C1D(0,7) C
C. By Plancherel’s formula,

+oo +o0o
U(pels) — Z anp\nle’ms — Z anr|”|(p/7~)|n|€—is

= 27T<Q7 Ur>L2 [0,27]»

where

4 1 ,
UT(ezt) _ % Z anr\n|eznt

1 )
— U it

and (by computing geometric series)

7 1 = n| _—ins in
(144) QUM = 5= Y (ol
1 1 1
1.4.5 = — A —— — 1]
( ) 2 [1 — Leilt=s) + 1 — Leilt=s) ]
1 r? — ,02

(1.4.6) -

o reit — peis|?”

Summarizing,

) 1 2 7"2 . eis )
U(pe”) = 21(Q, U,) 120,21) = / —pF(relt)d@
0

o reit — peis|?

as promised. O

(viii) [The Poisson extension of a continuous function on the cir-
cle] Let o = p(t) : D(a,r) be continuous, and define

1 27 r2_p2? i .
(1.4.7) Ula+ pe”) = 2 Jo W@(a +ret)dt if 0 < p <,
p(re) if p=r.
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Then, U is harmonic in D(a,r) and continuous on CID(a,r).
The proof is similar to that of proposition 1.4 below.
ProOOF. We have the following three properties.

(a) The function z +— P(e’) is harmonic and positive in D(0,r).
(b) Consider the function s — P7(e**) on [, 7]. Then,

/_7r Pj(e*)ds = 1.

(c) For each § > 0,

lim sup PJ(e”) =0.

P 5<|s|<m

(a) Positivity is clear, and harmonicity holds because, by (1.4.4),

. 1 72—
(148) P;"(ezs) _ r’ ‘Z| Zr n —ins n_i_zr |n\ zns—n

or |reis — 2|2

and the functions z", Z" are harmonic.

(b) Integrate the series (1.4.8) term by term.

(c) We have
2o r2 _ 2 - r2 _ 2
lreis —p[2 12 —2rpcos(s) +p2  (r— p)? + 2rp[l — cos(s)]

r2 _ g2
(r — p)% 4+ 2rp[l — cos(d)]
— Oasp—r.

Differentiating with respect to z = pe® under the integral on the
right side of (1.4.7), and using (a), we see that U is harmonic. We
only have to show continuity at points a + re®*. We can assume
a = 0, and verify continuity at r. Fix ¢ > 0. We estimate separately
the summands on the right of:

U(pe™) — o(r)] < [U(pe™) — p(re™)] + [p(re™) — o(r)].
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The second summand can be made less than € by choosing |s| < n(e),
by the uniform continuity of . For the first, using (b),

1
21

€ r? — p?

R T

. |7”€it _ peis|2

dt

9. it _ ois|2
21 Jis—tj<n(e) Ire™ — pe®]

A | g
21 Jjs—tzn(e) |7 — pe'TI?

o oy el
s

if we choose p(e) < p < r, by (c). O

[The completeness of the trigonometric system| We prove
here theorem 1.5. Let f € L?*[—m,n] and fix ¢ > 0. We want to
show that there is a trigonometric polynomial p = p(e®) such that
|f — pllze < Ce. By density of Cp.[—7, 7| in L?|—m.7], there is a
continuous function ¢ such that ||f — ¢||z2z < €. Consider now the
Poisson extension of ¢ in theorem 1.5 (with @ = 0 and r = 1), and
set U,(e") = U(pe™). There is p = p(€) such that

U, — ¢llr2 < V2r||U, — ¢ll1= <,

since by our estimates the convergence of U, to ¢ is uniform.

Last, we have that

, 1 — 4

is\ __ -~ In| ins
Ulpe®) = 5 n_EoosO(n)p e
1 N o ins

Let p(e’) = o= > @(n)pl"le™s, which is a trigonometric poly-

nomial. Then

Pl n
10— ol < 02 S i <
[n|>N

provided we choose N large enough.

[The inverse mean value property| Let V' be continuous on €,
open, and suppose it satisfies the mean value property. Then, V is
harmonic in Q.
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Proor. Consider ClD(a,r) C 2, and consider the Poisson ex-
tension U of the restriction of V' to dD(a,r), which is harmonic in
D(a,r), and continuous in ClD(a,r) by (viii). The function V' — U
satisfies the mean value property in D(a,r) by (iv), hence its maxi-
mum is achieved at the boundary by (v). Since the boundary values
vanish, V' < U. The same reasoning applies to U — V', then V = U
is harmonic in D(a,r). O

(xi) [The reflection principle] Let Q@ C C, be a domain such that
OQNR s a finite union of the closures of the open intervals Iy, . .., I,
and let U :  — R be harmonic and such that lim,_,, U(z) = 0 for
allr € O0NR. Let Q= {Z: z € Q} be the reflection of ) in the real
azis, and define U(Z) = —U(2) forz € Q, andU =0 on [,U---UI,.

Then, U is harmonic on QU QU I U--- U I,.

PROOF. We apply (x). The extended function is harmonic in
QUQ, hence it satisfies the mean value property there. We only have
to verify the mean value property at the points x € I1U- - -UI,, where
the function vanishes: the property there holds by symmetry. U

1.5. The Dirichlet problem for the Laplace equation in the upper
half plane

Let f : R — C continuous and bounded. A solution of the Dirichlet
problem for the Laplace equation in the upper half plane C, = {z =z + 1y :
y > 0} with boundary conditions f is a continuous function U : CL UR — C
such that

(1.5.1) AU(z) = (Opg + 0y )U(z +1y) = 0 for z € C.
(1.5.2) U(z) = f(z) for x € R
(1.5.3) U is bounded.

For z =x + 1y € C,, let

Iy
1.5.4 P,(x) ==~ .
( ) (7) R

be the Poisson kernel.

PROPOSITION 1.4. The unique solution of 1.5.1 is given by

(15.5) Ul +iy) = (py*f)<x):%éf(u)mdu.
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There are various ways to guess the formula (1.5.5) and the form of the
Poisson kernel, which are interesting in that they point to extensions and
generalizations. We provide one of them here below, and two more after the
proof of proposition 1.4.

The Poisson kernel via Fourier transforms. By Fourier inversion for-
mula, also assuming for the moment that f € L!'(R),

f(z) = / Flw)erdu

is the superposition of the bounded functions z +— ¢“* (with w € R fixed).
If we extend each of them to a bounded harmonic function on the upper
half-plane, by superposition we can extend f to the same. A natural guess
is 2z = e“* = %% which is holomorphic, hence harmonic, for z € C.
We have boundedness on C, , however, only when w > 0. When w < 0, the
function z — €% is bounded on C, and anti-holomorphic, hence harmonic.
We are then led to look for a solution to (1.5.1) having the form

1 ~ .
(1.5.6) Ulx +1iy) = Q—/f(w)e‘mwewfvdw = (P, * f)(z),
T Jr
where
1 —ylw| jiwz
(1.5.7) P,(z) = o Re e dw
(1.5.8) L [P emggr L [0 e
5. = — e dw + — e dw
2 0 2m —00

1 eizw +oo eiEw 0
(1.5.9) = — - + | —=
27 (22 (7

(1.5.10) _ L(_Lri) z-Z

omi\ z  z) 2mi|z|?
Iy

1.5.11 = ——
( ) T I2 + yQ ?
which is the formula we wanted.

The Poisson kernel satisfies the following crucial properties:
(i) P,>0and [, P,(z)dx = 1;

(ii) for each 6 > 0, P,(z) — 0 as y — 0 uniformly in |z| > d;
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(iii) z = x4y — P,(z) is harmonic on C,, and the same holds for z —
P,(z—u) for each fixed real u. This means that [0,,40y,|(P,(z)) =0
for all z = x +1iy € C,.

The first two properties say that {P,},~¢ is an approzimation of the identity
on R, whose special nature is encoded in the third. Property (i) follows
from the expression for P, in the "time” x variable and from that in the
"frequency” w one. Property (ii) is easily verified, and property (iii) follows

by differentiating (1.5.7) under the integral sign.

PROOF OF PROPOSITION 1.4. We start by showing that the expression
in (1.5.5) is a solution to the Dirichlet problem. By differentiating under the
integral and property (iii) of the Poisson kernel, U is harmonic on C,. It is
bounded by property (i) and an elementary estimate. We have to show that
for all x in R,

(1.5.12) lim U(z) = f(x).

Cioz—x

We estimate each of the two summands on the right of
Uz +iy) — f(xo)| < |U(x +iy) — Ulzo +iy)| + [U(xo + iy) — f(xo)]-

Fix € > 0. For the first term, fix 6 < 1 such that supy, < [f(z —u) — f(z0 —
uw)| < eif |x — x| < 9§, so that (by uniform continuity of f on compact
intervals)

. ) 1
Ulatin)~Ueo+in)l = = | [ 1= = flaa =l
L Wb [F(e — ) — fzo — )
B T
2 o0
Al [y,
2 [e'e]
oo M
0 s
provided 0 < y < ..
For the second term,
. 1 Yy
U - = = —u) — ——d
U+ iv) = feol = 7| [ 170 =) = flan) Y
2 [e'e]
<Ml [y,
T T lu|>5 U +y
e Al

s ™
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provided 0 < y < y.. Overall, if 0 < y < max(y.,y.) and |x — x| < 0, then
U(z +iy) — f(xo)| < Ce.

To show uniqueness it suffices to show that a bounded function U which
is harmonic in C,, continuous on CIC,, and that it vanishes on R, has to
be constant. Extend such function to one which is defined on the whole of
C by setting U(z) = —U(z). By the reflection principle, it is harmonic and
bounded on C, hence is has to vanish identically by Liouville’s theorem. [

The Poisson kernel via (at this point, formal) spectral theory. The
operator A = 9, is symmetric on the domain C?(R) which is dense in L*(R),
and —A is positive,

(—Ap, )2 = /R | (z)Pdz > 0.

We are looking for a function U : [0,00) — L*(R) such that

(1.5.13) U"(y) + AU(y) = 0,
(1.5.14) U(0) = f,
(1.5.15) U(+00) = 0.

Interpreting A as a "negative constant”, the first equation in 1.5.13 has

formal solution
Uly) = eV 2A+e"2B,

with A, B ”constants” in L?(R). Imposing the boundary conditions we have
B =0 (at least on an intuitive level), and A = f. Thus,

(1.5.16) Uy) = e V297,

or, thinking of U as a function of (z,vy),

Ule,y) = |20 ().

This simple, so far formal, calculation has the advantage that it works for
any positive operator L instead of —A. For instance, L might be minus the
Laplace-Beltrami operator on a geodesically complete Riemannian manifold,
or the generator of a random walk on a graph, or minus a fractional Laplacian,
etcetera.

In our case, the Fourier transform provides a ”spectral representation”
for the operator —A;

F(=ANw) = w?[Ffl(w)-
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which is another way to say that —A acts like multiplication times w? on
the frequency side. The operator e~¥V=A_ then, acts as multiplication times
e Y%l and we are back to the previous deduction of the the Poisson kernel’s
expression.

The Poisson kernel via the fundamental solution for the Laplace op-
erator. A third way to construct Poisson kernels is by means of Green’s for-
mula and the fundamental solution for the Laplace operator. Let G(z,w) =
o= log |z — w|™!, z,w € C, which satisfies

(1.5.17) AG(z,w) =0, (w),
(1.5.18) G(z,w) = O, (log|2]).

The first equation means that
/ G(z,w)Ap(w)dudv = p(z)
C

for all p € C?(C).

Let €2 be a bounded domain in C with smooth boundary 052, and denote
by v the external unit normal. Let D(z,¢€) be the disc with center z and
radius €. Suppose H(z,w) is defined for z,w € CIQ), z # w, and has the
properties:

(1.5.19) AyH(z,w) = 0if z # 0;

(1.5.20) H(z,w) = Oy, (log |z — wl);

(1.5.21) O H (2, =+ rel) = %(HOHO(U);
m

(1.5.22) H(z,§) =0if £ € 00 and z € Q.

The first three properties also hold for G, while the fourth is linked with the
domain . If a function U : CIQ) — C is C? and AU = 0 in , then, by

Green’s formula,

0 = / [H(z,w)AU(w) — Ay H(z,w)U(w)]dudv
Q\D(z,€)
= [ HEOAUO - 0OV o)
ON—0D(z,€)

_ / Oy H (=, OYU(C)do(C) — / 0, H(=,OU({)do(C)
dD(z,¢€) o0

o0
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as € = 0. (We did not use the second equation in (1.5.19), which becomes
relevant when solving the Poisson equation: the nonhomogeneous version of
the Laplace equation). At the end of the day, we have the inspiring formula:

(1.5.23) U(z) = | 0,H(z,Q)U(C)do(C),
Gle)
which reconstructs the interior values of a function U harmonic in €2 by its
boundary values. We set P(¢) := 8, H(z,¢) the Poisson kernel for 0 at z.
This formula can not be immediately applied to the upper-half plane,

which is not bounded. We might however borrow the general idea. The
function H : CIC; x CIC, \ {(z,2) : z € CIC,} — R,

1
(1.5.24) H(z,w) =G(z,w) — G(z,w) = . (log |z —w|™" —log |z — w|™")

satisfies all conditions in (1.5.19) with 2 = C,. The normal derivative at
the boundary is —0,,,

. 1 y -y
otz i) = 5o (s )
_ 1 y
o 7 (r—u)?+y?

1.6. The Fourier transforms of Borel measures

We start with an approximation lemma for finite Borel measures. I in-
clude the approximation by point masses because it has many applications
and generalizations, although we will only make use of the approximation by
L' functions.

LEMMA 1.4. Let i be a finite Borel measure on R, not necessarily finite.
We can find a sequence {u,} of measures made of a finite number of atoms

n—o0

such that p, —— p

Another approximation of p is provided by the Poisson integral.

y—0

(16 Pl 25
We also have that || Py[p]||rr < |p|(R), hence p can be w*-approzimated by
L' functions.

PRrOOF. It suffices to show the statement for a positive u, since any fi-
nite complex Borel measure is a linear combination of four positive ones. Let
a,(t) = a(t) = u(—oo,t] be the distribution function of y, which is increas-
ing, right continuous, a(t) — 0 as t — —oo, and «a(t) — p(R) as t — +oc.
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For ¢ € Cy(R), the following limit is easily proved using its uniform conti-
nuity:

(162 [pda=lm 3 p(27) a2 - alli- D27

J:lj2—"<n

(1.6.3)

Equation (1.6.2) provides the desired limit with

= D0 a2 = al(G — )2 i

J:lgz="I<n

About the second statement, let ¢ € Cy(R). Then,
1 y
Rw(x)Py[M] ()de = | elo)o (x—ng(U)dx

_ / - / m_uﬁ“y o) dwdu(u)

~ [ Rielwinw),

From the proof of proposition 1.4 it is clear that P,[¢] converges uniformly
to p as y — 0 if ¢ is bounded and uniformly continuous, which is the present
case since p € Cy. Then, the last term in the chain of equalities tends to
J p(x)dz, as wished. The estimate ||P,[u]||,: < [u(R)| holds because the
Poisson kernel has integral one. U

PROPOSITION 1.5. Let p be a finite Borel measure on R. Then, i : R —
C is bounded and uniformly continuous.

PRrROOF. We have |p(w)| < [u#(R)], hence 11 is bounded. Uniform continu-
ity is proved as in the case of L' functions,

Aw) - AW < / [ — 7] dl | ()

<z dpl@s [ e )
x:|z|>R z:|z|<R

For fixed € > 0, choose first R such that the integral in first summand is
bounded by € (dominated convergence), then choose ¢ such that ‘ei(“’*”)‘”‘ <e
if |w—n| < 0.



30 1. SOME TOOLS FROM REAL AND COMPLEX ANALYSIS

THEOREM 1.6. Let pu be a finite Borel measure on R. If up = 0, then
nw=0.

PRrROOF. Let P,[u| = P, * pu be the Poisson approximation of p. For all
Y2 - C()(R)

| Ria@p@ie = o [ Rll@fwd

As y — 0, by lemma 1.4 we have that

| #@idutz) = ting [ Plul(@elalde = o.
R y=0Jr
Since this holds for all ¢ € Cy, p = 0 as a measure. 0J

We close with a useful variation on Plancherel formula, which holds if u
is a finite measure and ¢ € L'(R):

1 PORNN
(1.6.4) [ et-oduta) = o~ [ .
R T JR

In fact,

/R o(—a)du(z) = / = / B(w)e“dudp(x)
1 PN

= o ) P(w)ii(w)dw.

1.7. Herglotz representation

The theorem of Herglotz we present here will be the key to determine the
spectral measures for a self-adjoint operator, which will be the ones associated
with holomorphic functions indexed by vectors in a Hilbert space.

Let u be a finite Borel measure on R. Its Poisson integral on C, is defined
in the natural way.

(1.7.1)
PU(E) = (P )(e) = [ e =widn(e =~ [ ——He—autu).

R ﬂ-
If we want to fix the height y, we write
Pylp)(z) == Plp](z +1y), Pylu]: R —R.

The function P[u] is (i) harmonic in C, (differentiate under the integral);
(ii) positive, if the measure pu is positive.
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REMARK 1.1. Let p > 0 be a finite Borel measure on R. Then Plu] :
C, — R s a positive harmonic function, and
R
(172 Plul(e +iy) < 2

since Py(x —u) < ﬂiy

The remark has a surprising converse.

THEOREM 1.7. [Herglotz theorem for positive harmonic functions] Let
U:Cy — [0,00) be a positive, harmonic function, and suppose that U(x +
iy) < % for some constant independent of x,y. Then, there exists a positive,
finite measure p on R such that U = Plu]. Moreover, such measure is unique.

Proor. We do some bootstrapping followed by an application of the
Hahn-Banach theorem. For fixed € > 0, let Uc(z) = U(x + i€), which is posi-
tive and harmonic for z in C,, continuous up to the real line, and bounded,
Uc(z) < % Since the Poisson kernel is integrable, we can form

1 Y
PlUJ(2) = B,[Ud(z) = — /R m(fe(u)d%

Step I. We will show the semigroup law U.y, = P,[U] for all y > 0. Let
Ge(r+iy) = P,[U](z) and H.(x+1iy) = Uiy (z). Both functions are positive
and harmonic on C,; they continuous on C, UR, the closure of the upper-
half plane; G () = U(x + ie) = H(z) for x € R; they are both bounded.
Their difference K. = H. — G, is then harmonic on the upper-half plane,
bounded, continuous on its closure, and vanishing on R. We can use the
reflection principle to extend K. to a harmonic, bounded (K (Z) := —K(2))
function defined on C, which vanishes on the real line. By Liouville theorem,
a bounded harmonic function on C must be constant, hence K.(z) = K.(0) =
0 for all complex z. This proves our claim.

Step II. We show that 1/7 [, Uc(u)du < C, where C' is the constant in the
hypothesis, which is mdependent of e > 0. In fact, by the assumption on the
decay of U(x + iy) with respect to to y, and using Step I,

CR
e+R —

- /R@: T e

(x —u
1-—
< ) +R2>U(u)du
U,

(u)du as R — oo,

RU. gr(7) = RPR[UE] (z)

%\%\»
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by monotone convergence. We proved the claim, since the limit as R — oo
of the first term in the chain is C.

Step III. Consider the family of finite positive Borel measures du.(u) =
Uc(u)du. Since their norms p.(R) < C' are uniformly bounded, by the
Banach-Alaoglu theorem there exist a sequence €, — 0 and a positive Borel
measure p with p(R) < C such that g, — Recall that (by the Riesz

representation of measures) the space of the finite Borel measures on R is
the dual of Cy(R), the space of the continuous functions tending to zero as
x — £oo. In particular, for all x + iy in C,,

1
Ulx +iy) = 1i_>m U, (z +iy) = lim —/(
n—oo R

n—oo 7r
1 Yy
= — | ——=—d
as wished.

Step IV. We prove uniqueness. The Herglotz representation formula can be
written as U, = P, * p. It is well known (and easy to verify) that

(1.7.3) P,(w) = e ¥,

If U, = P, * p, then @(w) = e Y“Ifi(w). This shows that [ is uniquely
determined by U, and it is known that p is determined by . ([l

COROLLARY 1.3. [Herglotz theorem for holomorphic functions f: Cy —
C.UR/ Let f: Cy — CLUR be holomorphic and such that
(1.7.4) Imf(x+iy) < g
)

Then, there exist a unique finite, positive Borel measure p and a real number
a such that

(1.7.5) f(z) = l/Rd’“‘(u) +a

™ Z—U

PROOF. We have that

1 1 1 (u—2x)+iy ,

- - -\ T _ Pl(r—

Tu—(z+iy) 7(u—1x)?+1y? Qy(zr —u) +iPy(z — y)
is holomorphic with respect to z = x+1iy. If f = ¢+t is as in the hypothesis,
then, 1 satifies the hypothesis of Herglotz theorem, then there exists u > 0
(Borel, finite) such that ¢ = P[u]. The function

Qe +in) = = [

T Jg (u—2x)2+y
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is harmonic in C and Q[u] + ¢P[u| = Q[u] + it is holomorphic. Hence,
Q[u] — ¢ is a constant.
Uniqueness is easily checked. U

1.8. Bochner’s theorem

This is here because it’s the key for one of the proofs of Stone’s theorem
on groups of unitary operators. The result itself is one of the cornerstones of
Fourier analysis and has applications to analysis, probability, and statistics.

A function f: R — C is positive definite if

n

D elan — x5)citr = 0

jk=1
for all choices of n points z1,...,x, in R and n complex scalars cq,...,c,.
This is the same as saying that for all choices of xy,...,2 — n, the matrix

rr — x;)|7 ., is definite positive.
(% 1/1k,j=1
Consider the points 0, z. The matrix

(s;[()g) ZZ((CSD

is positive definite (hence, Hermitian, since the scalar field is C), thus

THEOREM 1.8. [Bochner’s theorem/| For a function f : R — C the fol-
lowing are equivalent:

(i) f is continuous and positive definite;

(ii) there exists a finite, positive Borel measure y on the real line such
that 1 = f.

The idea of the proof can be best appreciated in a finite environment.
Let Zy = {0,1,..., N — 1} be the group of the integers modulo N, and for

f:Zn — C, let its discrete Fourier transform f : Zy — C be

N-1

flw)y =" e f(n).

n=0
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The usual formulas hold:

1 N-1
— 2minw /N
Pl = 5 3
N-1 N-1

where

Using all this, if f,c: Zy — C,

2
r

18 LAY fwrwr - LY @R

w=0 w=0
1

(1.8.4) = > cm)lf *d(n)

(1.8.5) = Z f(n—m)e(n)e(m).

Comparing the first and the last terms in the chain of equalities, it is clear
that if f is positive, then f is positive definite. Conversely, if f is positive
definite, then the first term is positive for each choice of c. For any fixed wy
in Zy, we can choose ¢ such that ¢(w) = d,, ., obtaining f(wg) > 0.

In the general case, the idea is the same, but there are complications. We
start with a useful result in linear algebra.

If A, B are N x N matrices with complex entries, their Schur (or Hadamard)
product is the N x N matrix A o B having entries [A o B];; = A;;B;;. The
matrix A is positive definite if

0 S ZC_iAijcj = <C, AC>(CN

for all ¢ € CV. Sometimes this property is called semi-positive definiteness.
We say that A is strictly positive definite if (¢, Ac)cn > 0 whenever ¢ # 0.

THEOREM 1.9 (Schur product theorem). If A, B are positive definite N x
N matrices, then Ao B is positive definite.
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For the proof, we lift the problem to a more general one living on the
tensor product CN @ CV, the space having as basis {e; ® ¢; : 1 <1i,j7 < N}.
The tensor product ® is bilinear by definition,

(ax +by) @z =a(x ® z) + b(y ® 2),
z2® (ax +by) =a(z®@x) +b(z®y),
for all z,y,2 € CY and a,b € C; and no other relation is imposed.

Here is a concrete model of the tensor product. The elements of CY @ CV
might be seen as linear combinations of vectors of the form

h®k=hkt € CV*V,

where k! is the transpose of the column vector k. This way, we have a linear
isomorphism CV¥ @ CV¥ — CN*¥, which identifies elements in the tensor
product with matrices.

A linear map A : CV¥ — C¥ induces two linear maps

ARILIRA
ey

cVecCh cVecCh,

where

More generally,
(A B)(z@y)=(Ax1)(I® B)(r®y) = (Ar ® By).

In the columnxrow model, you might think of A ® B as the linear map
zy' — (Az)(By)' = Azy'B".

The vector space CV @ C¥ is endowed with the inner product making
tensor products e; ® e; of standard basis elements of CV into a orthonormal
basis. This gives

(1.8.6) (x@u,y®@v) = (x,y) - (u,v).
In fact,

<‘T & u,y & U> = Zl‘_iujmvm<ei X 6]'7 € 0% €m>

ijlm
= E ZE_Z‘U,]‘EUJ'
ij

= (z,9) - (w,0).
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In the column xrow model,
(zu', yo') = y'To'u.

A consequence of (1.8.6) is that we can replace the standard basis of CV by
any other orthonormal basis in the calculations. In fact, (1.8.6) might be
takes as the definition of the inner product on CV x CV.

LEMMA 1.5 (Tensor product preserves positivity). If A and B are posi-
tive, then A ® B is positive.

PROOF OF LEMMA 1.5. Choose a orthonormal basis {¢;} for CV with
respect to which B is diagonal, B;; = d;;\i with Ay, ..., Ay > 0. For a vector
V= Zij vijei @ €; € CVN @ CN, we have

(V.(A@B)V) = Y Tjvmle®¢, (A® B)(e @)

ijlm

= Z Ui Uim (€i, A€r) (€5, Bem)

ijlm

= E W’jvlmAilBjm

ijlm

= Z Bjm <Z W'jvlmAil>
jm

il

= ) (Z@%/‘lz‘l>
j il
> 0,

since the sums in the parenthesis are positive and so are the A;’s. O

PROOF OF SCHUR’S THEOREM GIVEN LEMMA 1.5. By the lemma above,

0<(V,(A®B)V) =Y TivimAaBjm.

ijlm

Choose in particular v;; = d;j¢;, to obtain
0< ZC_iClAile‘la
il

as wished. 0
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The topic we have just sketched can be interpreted in terms of, and
applied to, the theory or Hilbert spaces with reproducing kernel, which is a
very active area in pure mathematics and in its applications to a number of
areas, including statistics and machine learning. See e.g. An Introduction to
the Theory of Reproducing Kernel Hilbert Spaces (2016) by Vern I. Paulsen,
Mrinal Raghupathi, Cambridge University Press.

PROOF OF BOCHNER’S THEOREM. If ;4 > 0 is a finite Borel measure,
then [z is continuous and bounded. About positive definiteness,

Z ﬁ(wl — wj)clc_j — / Z e*i(wz*wj)xclc—jdlu(x)
lj Ry5
2
_ / Z e—iwlx
R

dp(z)
l
>0

In the opposite direction, suppose that f : R — C is positive definite, hence
bounded, and continuous. For y > 0, let f,(w) = f(w)e ¥l which is still
positive definite by Schur’s theorem, and it lies in L'(R) (hence in L?(R)).
Set my(z) = 5= [o fy(w)e™dw = [F~'f,](x), so that m, € L*(R) N Co(R).
For all functions ¢ € S(R) (the Schwartz class, but if you are not familiar
with that object, you might even consider ¢ € C°(R)), we have:

/R my(2)|p(a)Pdr = / my (@) ()| (@)

- =/ Rfy<w—n>a< P dnde
= o o Z £y (N = m/N) B /N)Em /N <5
> 0

because f, is positive definite. Hence, m, > 0 is a positive function with

[lmy || = My (0) = £(0).


https://www.cambridge.org/core/books/an-introduction-to-the-theory-of-reproducing-kernel-hilbert-spaces/C3FD9DF5F5C21693DD4ED812B531269A
https://www.cambridge.org/core/books/an-introduction-to-the-theory-of-reproducing-kernel-hilbert-spaces/C3FD9DF5F5C21693DD4ED812B531269A

38 1. SOME TOOLS FROM REAL AND COMPLEX ANALYSIS
For ¢ € S(R), let
1 —ylwl 5
Aylp) = | myle)p(e)de = o | flw)e™™P(-w)dw
R T Jr
1
— Py /R f(w)p(—w)dw.
as y — 0.

On the other hand, by Banach-Alaoglu there exist a sequence y,, — 0 and
a finite (positive) Borel measure y such that u(R) < f(0) and m,, dm — p,

hence

fim [ m, @)eahde = [ pla)duta).

n—o0

We have shown that
% /R f(w)P(~w)dw = /R p(@)dp(z) = % /R p(w)Pp(—w)dw

holds for all ¢ € S (use (1.6.4) for the second equality), hence f = [i. O



CHAPTER 2

Hilbert spaces

Among function spaces, Hilbert spaces are probably the most ubiquitous
in mathematics and its applications. At its inception, ”Hilbert theory” dealt
with concrete L? spaces, but soon an abstract theory was developed. The
advantage of the abstract theory is that it makes it easier to recognize when
a Hilbert space structure underlies a cluster of mathematical objects and
phenomena, and it helps in generating Hilbert spaces in which better state,
and solve, theoretical, as well as practical problems. Although all Hilbert
spaces are isomorphic to some L? space, the point of view that knowledge
of L? is all that’s needed is far too simplistic, and basically incorrect. Most
Hilbert spaces are spaces of functions defined on some set of points, and
such ”points” constitute further structure, which often is at the core of the
problem we have at hands. Is this chapter, however, we are mostly interested
in the abstract theory.

Another useful way of thinking is that of viewing at Hilbert spaces as
generalizations (often infinite-dimensional, with complex rather than real
scalars) of the Euclidean space. Even if in applications each vector in the
Hilbert space represents a functions, we can think of each of them as a ”point”
in a linear space where notions like orthogonality make perfect sense. This
intuition is helpful in translating complex phenomena in simple pictures, and
pictures into statements (which are sometimes true, sometimes false).

2.1. Basic geometry of Hilbert spaces and Riesz Lemma

2.1.1. Definition and basic properties. An inner product on a vector
space V over C (or R ) is a map (-,-) : V' x V — C such that:

(i) (x,2) > 0 and (z,z) = 0 if and only if x = 0;

(il) (z,ax + By) = a(z,z) + B{z,y) for z,y,z € V and «, € C;

(iil) (z,y) = (y, ).

Two vectors z,y are orthogonal, x L y, if (x,y) = 0. We define ||z| :=
(z,x)"/? to be the norm of x € V. A simple calculation gives:

39
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LEMMA 2.1. [Pythagorean relation] Let x,y € V,x # 0. Then,

o = o= Gl (i)

Proor. Expand the right hand side using the definition of norm and the
properties of the inner product. 0

2

EXERCISE 2.1. Ezxplain why the lemma is called as it is with a picture, or observing

Izl

that the vectors = <H;E—H,y> and y — ﬁ <ﬁ,y> are orthogonal and their sum is y.

COROLLARY 2.1. [Cauchy-Schwarz inequality/For x,y € V we have

[{z, )| < l[[[lyll.
with equality if and only if x,y are linearly dependent.

Proor. If x = 0, there is nothing to prove. Otherwise, the inequality
follows from dropping the first summand from the right of the Pythagorean
relation. In case of equality, either x = 0 or the first term in the right of
the Pythagorean relation vanishes, in which case z,y are linearly dependent.
Conversely, if they are linearly dependent it is easy to see that equality holds
in Cauchy-Schwarz. O

PROPOSITION 2.1. The function x — ||z|| defines a norm on V.
PRroOOF. It is an immediate consequence of Cauchy-Schwarz:
lz +ylI* = (z +y, 2 +y)

= 2" + @, 9) + (v, 2) + Iyl

= [lzl* + 2Re({z, ) + [lylI*

< el + 2yl + llylI*

= (=]l + llyl)*.

OJ

An inner product space (H, (-,-)) is a Hilbert space if it is complete with
respect to the norm induced by the inner product.

EXERCISE 2.2. Show that the inner product can be written in terms of norms by means
of the polarization identity:

1
(2.1.1) (y) =7 [z +ul* = llz —ol*) =i (= +iy[* + ll= — ayll*)]
LEMMA 2.2. [Parallelogram law] Let x,y € V. Then,

lz+ylI* + llz = l* = 2 (ll* + llyl*) -
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PROOF. Expand the expression on the left using the definition of ||-||. O

EXERCISE 2.3. Show that, if || - || is a norm on a vector space which satisfies the
parallelogram law, then it comes from an inner product as defined by the polarization
identity.

EXERCISE 2.4. Show that the (two-dimensional) Banach spaces £({0,1}),1({0,1})
are not inner product spaces (i.e. that their norm does not come from an inner product).
A Hint. The parallelogram law fails.

2.1.2. L? as a Hilbert space. Let (X, F, u) be a measure space. Ob-
serve that, if f,g € L?(u), then fg € L'(u):

[ Faldi < 112l

by Hélder’s inequality with p = p’ = 2. We can then define

(f,9)e = / fady,
b's
which satisfies the properties of a inner product, with associated norm (f, f);2 =
[ f117:. We saw that L*(u) is complete with respect to this norm.

2.1.3. Projections onto subspaces. Let M C H be a closed, linear
subspace of H. Its orthogonal complement, M+ = H & M, is:

={zeH:z Lyforalye M}.

LEMMA 2.3 (Projection Lemma). Let M C H be a closed, linear subspace
of H. Then, for each x € H there exists a unique u € H such that

|l —ull = inf{{lz —y[| : y € M7}

PROOF. Let {yn},, be a sequence in M such that |y, —z| — ¢ =
inf{|lx —y|| : y € M}. We show that it is a Cauchy sequence- By the
parallelogram law,

2
1(Ym =) = (yn = 2|
2
2 (Il — l” + NIy = 21”) = llym + o — 22|

2
Hym - ynH

2
ym+yn_

2

2 (lym — 2l + llgm — a?) — \

<2 (Hym - x||2 + Hyn - ‘75”2) - 452

Ym T ¥y

because “eM

—46% — 46 = 0.
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We now let u = limy,, € M (because M is closed).

If v/ is another point with the same property, then “E“, € M and

u+u

=) = 2 (Jhu = 2l + ' = 2]*) — 4

—x” < 46% —48° =0,

hence, u = u’. O
We call u = mp(x) the orthogonal projection of x onto M.

PROPOSITION 2.2. Let E C H and define E+ = {x € H : x L y for all
y € E}. Then,
(i) E* is a closed, linear subspace of H, and E N E+ = {0};
(ii) if M is a linear subspace of H, then M+ = Ml;
(iii) of M is a linear subspace of H, then (]\4L)L = M s the closure of
M i H.

PROOF. (i) Let 2,y € E+, a, 3 € C, and let 2 € E. Then,

(2,02 + fy) = alz,2) + B{z,y) = 0,

hence, ax + By € E+.
Let now E+ 3 z,, and lim,, o ||z, — z|| = 0. Then, for z € E,

[(z,2)| = [(z,2) — (z,2)[ < l2]| - [[# — zn]] = 0,
as n — 00. S0, |(z,x)| is smaller than any positive ¢, hence (z,z) = 0, i.e.
r € Et.

Finally, if v € EN E+, then 0 = (v,v) = v? hence, v = 0.

(iii) (ML)L is linear and closed by (i), and (ML)L O M: ifx e M,
then, for 2 € M+ we have that (z,z) = 0, then x € (ML)L. We have thus
proved that M, the smallest closed linear subspace containing M, is a subset

L
of (M ) .

Consider = € (]\4l)L \ M. By the Projection Lemma, z = u + v with

weM,and v e M= M- So,vE M*+n (ML)l, hence, v =0 and x € M,

contradicting the assumption. 0

EXERCISE 2.5. Let E be a subset of H. Show that (E+)* = span(FE) is the closure of
the linear span of E in H.

THEOREM 2.1. [Orthogonal Decomposition] Let M C H be a closed, lin-
ear subspace of H. Then, for each x € H there is a unique decomposition
r=u+v withu € M andv € M+,
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PRrROOF. Let u € M be as in the Projection Lemma, and for t € R and
w € M, so that u + tw € M, define f(t) = u + tw — z||*>. By minimality,
f(0) =0, and

d
f(0)=— Ju — z + twl|®
a )
d
= — (Hu—x]|2—|—2tRe(<u—x,w>) +t2|\w||2)
dt],_,

= [2 Re({(u — z,w)) + 2t||w||2L:0

= 2Re((u — z,w)).
Hence, Re({u — z,w)) = 0. The same reasoning with ¢(t) = ||u + itw — x|
gives Im({u — z,w)) = 0. Hence, (u — x,w) for all w € M, ie. v:=x—u €

M+,
If T have two decompositions x = u + v = u' + v' with w,u’ € M and
v,/ € M+ thenu — v =v —veMNM* hencew —u' =v —v=0. O
In the theorem on the orthogonal decomposition of a vector, we saw that,
if M is a closed subspace of a Hilbert space H, and x € H, then there exist

unique v € M and v € M+ such that 2 = u + v. Define my; : H — H by
myv(z) = u, the (orthogonal) projection of x onto M.

EXERCISE 2.6. Let M be a closed, linear subspace of a Hilbert space H.
(i) Show that wpr : H — H is linear and that ||mprzx|| < ||z|| for all z in H.

(ii) Show that 7%, = mpr and that ma is self-adjoint, i.e. that

(T, y) = (z, Tay)
forxz,ye H.
(iil) Verify that mar + mppo = I is the identity operator (I(x) = x), and that wpr o
TarL = 0.

It is an interesting fact that the Exercise 2.6 has a converse: all operators
sharing the properties of projections are in fact projections on closed sub-
spaces. We can, that is, indifferently work with the lattice of the closed sub-
spaces of H, or with the lattice of the projection operators. Since projections
operators are spacial instances of linear operators on H, this identification
gives much more flexibility in theory and calculations. (This is similar to
the case of g-algebras, where characteristic functions of measurable sets are
special instances of measurable functions, and measurable functions have a
rich structure).

PROPOSITION 2.3. Let m: H — H be a linear operator satisfying:

(i) m% =m;
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(ii) 7 =m;
(iii) [|w(x)] < C||lz|| for some C > 0.

Then, there exists a closed, linear subspace M of H such that m = my;.

PrROOF. Let M = {n(z): = € H} be the range of 7. For n(z),n(y) € M
and «, f € C we have an(x)+ fn(y) = m(ax+ By) € M, hence M is a linear
space. Let M > w(x,) = y in H. Then, 7(z,) = 7*(z,) — 7(y) because

l7*(2n) = ()]l < Cllm(2n) =yl = 0 as n — oo.

Thus, y = w(y) € M, showing that M is closed.

Finally, let = be an element of H, and write x = u+v = my(x) + 7y (),
as in Theorem 2.1. By definition of M, u = w(w) for some w. For y € H we
have:

(m(v),y) = (v, 7(y)) =0,

since 7(y) € M and v € M*. Hence, 7(v) = 0, and so
m(x) = m(u) = 7*(w) = 7(w) = u = mp(x),
showing m = ;. O

2.1.4. F. Riesz representation in Hilbert spaces. F. Riesz repre-
sentation theorem in Hilbert spaces, like the one we saw concerning measures,
shows that any element from an abstract collection of objects can be rep-
resented as an object from a very special and concrete subclass. The first
theorem we saw represented positive functionals on C.(X) in terms of mea-
sures; the present one represents bounded, linear functionals on H in terms
of inner products.

EXERCISE 2.7. Let y € H and define Ty(xz) = (y,x). Then, T, : H — C is a linear
operator (a linear functional) and || T,|| = ||ly|.

THEOREM 2.2 (F. Riesz Lemma). Let T : H — C be a bounded, linear
functional. Then, there is a unique yr in H such that T'(z) = (yr, x).

PrOOF. Let N =KerT. If N = H, set yr = 0. If not, by the Orthogonal
Decomposition Theorem there is some xg € N+\{0}, and we can assume that
||zl = 1. We write

o= (o 7b ) + g = u-t Az

The second summand is in span ({zo}) € N+, with X\ = (z¢,2), while u

clearly lies in N (incidentally, this shows that Ker(/N) has codimension one
in H).

T(z) = AT (20) = (0, 2) T () = <mxox> ,

hence, yr = T (x¢)xo. O
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EXERCISE 2.8. Riesz Lemma provides an identification, in fact an isometry, C : T —
yr of the dual space H* = {T : H — C such that ||T|| < oo} with H itself. The map C
s conjugate linear,

C(aS + bT) = aC(S) + bC(T).

Prove this and prove that, if A: H — K is a bounded, linear map between Hilbert spaces,
then C(TA) = AxC(T), where the (Hilbert space) adjoint operator A* : K — H is defined
by (Az,y) = (z, Ay).

2.2. Orthonormal systems

2.2.1. Orthogonal vectors. A family S = {f,:a € I} of vectors is an
orthogonal system if any two vectors in it are orthogonal, and an orthonormal
system if, in addition, each f, has unit norm. An orthonormal basis (0.n.b.)
for H is an orthonormal system which is maximal: no other vector can be
added to it without breaking the orthonormality condition.

EXERCISE 2.9. . Show that the orthonormal system {eq : a € I} is a o.n.b. for H is
and only if span {e, : a € I} is dense in H.

THEOREM 2.3. [Bessel Inequality] Let {e; :i =1,...,n} be an orthonor-
mal system in the Hilbert space H, and let x € H. Then, the vector v —
o (x, i) e; is orthogonal to span{ey, ... e,}, and

n
lzl® =) es, 2)I.
i=1

If {eq :a € I} is an 0.n.b., the numbers (e,,x) = Z(a) are the Fourier coef-
ficients of x w.r.t. the basis.

PRrooOF. The first assertion is clear:
<x — Z (x,e;) e, ej> = (z,e;) — Z (x,e;) (e;,ej) =0,
i=1 i=1

by orthonormality of the system. As a consequence,
2

n 2 n
2] = ||z — Z (65, ) eif| + Z (€:, ) €;
i=1 i=1
n 2 n
2
= x—Z(ei,@ei +Z|<ei,x>|
i=1 i=1

Before proceeding, we need to clarify some concepts about infinite sums. If
{¢qa : a € T} is a family of positive numbers, then

an ::sup{z% Aay, ... a,} Q[}.

acl i=1
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COROLLARY 2.2. Let M = span{ey,...,e,}. Then,

n

v (z) = Z (x,e;)e.

=1

PROOF. The first assertion in Bessel’s inequality says that x = u+v with
w=> 1 (r,e)e; € M and v € M, hence, u = my (). O

EXERCISE 2.10. Show that, if Y .;ca < 00, then {a € I : ¢, # 0} is at most count-
able. If {c, :a € I} is a family of compler numbers, we say that ) . ca converges ab-
solutely if Y ,crlcal < oo converges. In this case we say that ), . ca converges in C
absolutely, hence irrespective of how I is ordered (prove it if you have never done it be-

fore!).
2.2.2. Fourier analysis and synthesis of a vector.

THEOREM 2.4. Let {e,}acr be a 0.n.b. of H. Then,

(i) For all x in H,

(2.2.1) xr = Z(ea,x>ea (Analysis of x)

acl

converges in H;

(ii) we have

(2.2.2) lz||* = Z [(eq, z)|* (Plancherel Isometry);

acl
11) 2] \Cqgract 1S QG SEqUENCE 1T sSuc a Cq|” CONvVETGES, en
iii) 4 ‘ n H such that ", ;|cal? th

(2.2.3) anea converges in H. (Analysis of x)

a€cl

PROOF. By Bessel inequality, if A C I with §(A) < oo, then >, [{eq, 2)|* <
|z||*. As a consequence, I(z) := {a € I : (e4, )} = {an}n is countable,
hence, (2.2.2) holds with <. Set now x, = > "_,(ea;, )eq,. We show that is
defines a Cauchy sequence in H:

l
”xn—i—l - anQ = Z |<6aj7$>|2 —0
j=1



2.2. ORTHONORMAL SYSTEMS 47

as n — 00, by the convergence of the series on the right of (2.2.2). Let
y = lim,,_,o @, (the limit is taken in H-norm):

<'/I; - y’ ea'm> = <x - T}L)I& Z<eaj7 I>eaj7 6(Mn>

7=1
= lim <.1' - Z<eaj7 x>eaj7 eam>
n—o0
j=1
= lim ({e,,,,x) — {(€q,,,2)) = 0.
n—o00

The same argument shows that (x —y,e,) =0if a ¢ I(x). Hence, x —y L e,
for all elements of the orthonormal basis, hence x = y, which shows (2.2.1).
We finish the proof of Plancherel’s identity:

n

T — Z(eaj, T)eq,

Jj=1

= (HCL’H2 - Z !<6aj,93>\2>

[e's)
= J2l* = e, 2)”
n=1
= el =) Kew 2)%,

a€el

0 = lim
n—oo

as wished. O

2.2.3. Orthonormal basis in separable Hilbert spaces.

2.2.3.1. Gram-Schmidt algorithm. A Hilbert space is separable if it sep-
arable as a metric space, i.e. if it has a countable, dense set. Most Hilbert
spaces encountered in theory and applications are separable, and in this case
the existence of a orthonormal basis is constructive. We will then treat first
the separable case, then we will see how things work in the general case,
where Zorn’s Lemma is required, and we have no way to "see” the basis.

THEOREM 2.5 (Gram-Schmidt). Let H be a separable Hilbert space. Then,
H has a countable basis.

PRrROOF. We start with a countable, dense subset G = {g,, : n > 1} of H.
Inductively removing vectors linearly dependent from the previously chosen
ones, we obtain a linearly independent subfamily F = {f, : n > 1} such
that span(F) = span(G) is still dense in H. We then transform F' into an
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orthonormal system:

.o S
Hle’

ey = — (e1, fa)eq
Hfz (

Zn €j, fn)€;

1
S 1
n = 1
=1 e]?fn>€JH

an—Z

)
e, fayer||’

(

{

The denominators do not vanish because F' is a linearly independent family,
and inductively we see that span{ei,...,e,} = span{fi,..., f.}. Hence,
{en : n > 1} is a orthonormal basis for H.

0

EXERCISE 2.11. Let H = L?[0,1] with the Lebesque measure, and consider the func-
tions 1, x,x2. Apply Gram-Schmidt’s algorithm to find three orthonormal vectors in H.

2.2.3.2. The classification of separable Hilbert spaces.

THEOREM 2.6. A Hilbert space H is separable if and only if it has one
countable orthonormal basis B. If it does, all o.n.b. of H have the same
cardinality. Moreover,

(i) if 4(B) = d < oo, then H is isometrically isomorphic to C4;
(i1) if #(B) = oo, then H is isometrically isomorphic to (*(N).

PRrooF. If H is separable, then Theorem 2.5 provides a countable o.n.b.
B. Suppose viceversa that H has a countable basis B. If §(B) = d < oo,
B = {e1,...,eq}, then each x in H can be written as = = Z;.l:l<ej,x>ej by
the Analysis part of Theorem 2.4 (or by a much more elementary argument).
The map
Lg:xw— ((ej,x))?zl
is an isometric isomorphism of H onto C?. Since H is finite dimensional, all
its basis have the same dimension. In the countable case, B = {e, }°°,, and
we define Lg : H — (*(N) in the same way, Lg : © — {{e,, )} - ;. Theorem
2.4 implies that Lg is a isometric isomorphism.
In the opposite direction, suppose H has a countable o.n.b., and consider
the countable () family of the vectors ¢ = Z? 1 gj€j, where n > 1, the ¢;’s

are complex rationals, ¢; € Q +4Q. If x =3 °7 ¢je; and € > 0, then

Z Cj€j — Z q;€;

7=1

7=1

= Z |CJ|2+Z|CJ g%

j=n+1
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Choose first n such that the first sum is dominated by €, then ¢, ..., g, such
that each summand in the second sum is dominated by €/n. This shows
separability.

We are left with proving that, if one o.n.b. B is infinite countable, then
any other o.n.b. By is. Let By = {e, }qer, and observe that, for any e, # e, in
it, ||e, — ep]|* = 2. Let {g,}°2, be any countable, dense set in H. Then, for
each a € I there is n = n(a) such that |le, — ¢.|| < v/2/2, and if a # b, then
n(a) # n(b). This provides an injective map I — N, hence [ is countable. [

2.2.4. Intermezzo: orthonormal basis in general Hilbert spaces.

2.2.4.1. Ezistence of o.n.b. A widely used version of the Axiom of Choice is Zorn’s
Lemma, which we are stating below. We work with a partially ordered set (A, <). A chain
in A is a subset B C A on which the partial order is in fact a total order: for any x,y in
B, either z < y or y < x. An element m in A is mazimal for C C A if z < m for all z in
C and if n < m has the same property, then n = m.

THEOREM 2.7 (Zorn Lemma). Let (A, <) be a (nonempty) partially ordered set with
the property that any chain B in A has a maximal element in A. Then, A has a maximal
element.

As a consequence, we have that an orthornormal basis exists for any Hilbert space.
THEOREM 2.8. Every Hilbert space H # {0} has a orthonormal basis.

PROOF. Let A be the set of all orthonormal systems of H, ordered by inclusion. It is
nonempty because {z/||z||} € Aif z # 0 is an element of H. If B is a chain in A, then

G=UrepF €A

is a maximal element for B: it is an orthonormal system, and all orthonormal system
containing all F in B contain G.

By Zorn’s Lemma, A has a maximal element H and, unravelling definitions, H is a
maximal orthonormal system in H, hence a basis. O

2.2.4.2. The dimension of a Hilbert space. By Theorem 2.4, if H be a Hilbert space
and B = {e, : a € I'} an orthonormal basis for it, then the map

Lp:z= Z<6a,$>ea = {<6a,$>}a€]

acl

is an isometric isomorphism from H onto ¢%(1).
A natural question is whether different orthonormal basis of H have the same cardi-
nality, as we verified the separable case. The answer is positive.

THEOREM 2.9. Let {eq: a €I} and {fy: b€ J} be o.n.b. of the same Hilbert space
H. Then, §(I) = 4(J).

The cardinality in question is the dimension of the Hilbert space.

COROLLARY 2.3. All separable Hilbert spaces which are not finite dimensional have
countable dimension, and are isomorphic to each other.
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PROOF. If both I and J are finite dimensional, the statement is a well know fact from
linear algebra (go back to see its proof!).

If I is finite dimensional then J is finite dimensional as well. For, suppose [ is finite
dimensional and let S = {z € H; ||z|| = 1} be the unit sphere in H. Being H a finite
dimensional Euclidean space, and S both closed and bounded, S is compact. Suppose
now J is infinite and let {f,, : n > 1} an infinite countable subset of {f; : b € J}, which
is contained in S' if a subsequence of it (which we might denote the same way) converges
to some x in S, by continuity of the inner product (z, f;,,) — ||z||> = 1 as n — oo. On
the other hand, x = >, ;{(z, fp) fo, hence (z, fp,) — 0 as n — oo, because, for instance,

> [ o, ) < lzfl* = 1.
The remaining case is that in which both I and J are infinite. To each a € I there
corresponds an at most countable subset J(a) of J such that

€q = Z <ea7fb>fb~

bel(a)

The number of the involved f;’s is

# (Uaerl(a)) < 4(1).

Suppose a basis element f;, was not used. Then, fp, is orthogonal to all e,’s, hence to H:
contradiction.
We have then that §(J) < #(I), and the opposite inequality holds as well. O

2.3. The trigonometric system and Fourier series

00
n=-—oo’

In item (IX) of section 1.3.2 we saw that the trigonometric system {e, }
where

eznt

T o

is a complete orthonormal system (an orthonormal basis) for L?(T).

It should be kept in mind that a great amount of work goes on all over the
world into finding, studying the special properties of, and applying, new or-
thornormal basis (ONB) for old and new Hilbert spaces of functions. Broadly
speaking, when the functions e, in an ONB share some qualitative feature,
so do their linear combinations; hence, using that ONB to approximate a
function f means finding closer and closer approximations of f which ”look
like” the functions in the basis. To wit, ”if all you have in your toolbox is a
hammer, then everything you look at seems a hammer”. The trigonometric
system, however, remains the most natural one, because of its interaction
with the gropu structure of the torus,

(232) em(Sth) — einseint.

(2.3.1) en(t)

This is the reason why the trigonometric system diagonalizes translations.
Let 7,f(t) = f(t — a) (mod 27):

Tatn =€ "ep;
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hence the derivative operator, which is a linear combination of ”infinitely
close” translations,

T_pen(t) — Toen(t) einh — 1 _
dt o ih = fim ——en(t) = nealt).

In fact, the trigonometric system diagonalizes all "reasonable” linear opera-
tors on L?(T) which commute with translations. The main example is that
of the convolution operators f +— f x g.

Next, we translate into the special context of the trigonometric system
the general Hilbert spaces results we have seen.

(I) Fourier analysis. For f € L*(T) and N > 1, let

~

Swf() = 5= 3 Fwe

In|<N
Then.
]\}1_{20 |Snf = flle2ery = 0.
1.e.
1 — ~
(2:3.3) f#t) =S f (8) = o 3 Flm)e™,

where the convergence is in L*(T).

(IT) Fourier synthesis. Let {c,}>>__ € (*(Z),

n=—oo

ek el = 3 leal? < oo.

neL

Then, there exists f € L?(T) such that

f(n) = ¢
Explicitely,
(2.3.4) f(t):i i cpe™
cJ. o S n )

where the series converges in the L? norm.
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(III) Plancherel formula.

o

1
Hf”%?(qr) = o Z leal?.

n=—oo

The foundational problem of Fourier theory is understanding for which f, and
in which sense, the series in (2.3.3) converges. For f € L?(T), we have consid-
ered a quantitative answer, using the fact that {e, }./>°  is an orthonormal
basis, and the general theory of Hilbert spaces.

Fourier series provided, in the second half of the XIX century, the moti-
vation for some of the most important innovations in mathematical analysis
and in the foundations of mathematics. In S.M. Srivastava How did Can-
tor Discover Set Theory and Topology? [Resonance, Vol. 19, p. 977-999,
(2014)], for instance, you can find the history of how Cantor came to develop
the theory of infinite sets to solve open problems concerning the convergence
Fourier series.

It is noteworthy the role of Lebesgue integration. For the Fourier analysis
of a function, the definition of integral provided by Riemann was considered
wholly satisfactory, as it enabled to compute the Fourier coefficients of all
functions mathmaticians of the age could think of (it was precisely to compute
Fourier series that Riemann invented the definition). The problem is with
Fourier synthesis, since it was not obvious (and in fact it is not true!) that the
function f designed by (2.3.4) is Riemann integrable. The problem is that,
as it came to be gradually realized, integrability in the sense of Riemann
is not preserved under many limiting procedures, including those which are
basilar in Fourier theory. Borel, then Lebesgue came, and this foundational
problem was solved.


https://www.ias.ac.in/article/fulltext/reso/019/11/0977-0999
https://www.ias.ac.in/article/fulltext/reso/019/11/0977-0999

CHAPTER 3

Banach spaces

In this chapter we introduce some basic tools in Banach theory, Hahn-
Banach extension theorem and Baire’s category theorem and it consequences.
The latter are, on the one hand, (Banach-Steinhaus) uniform boundedness
principle, and on the other the sequence: open mapping theorem, inverse
mapping theorem, closed graph theorem. We will also consider some conse-
quences and applications of these cornerstones of functional analysis.

3.1. Zorn’s lemma and some of its consequences

In the proof of Hahn-Banach Theorem we will use Zorn’s lemma, which is
a consequence of the axiom of choice, and it is in fact equivalent to it. In most
courses Zorn’s lemma is just stated as a principle, then used alongside the
axiom of choice. One reason is that most instructors hope that the relation-
ship between the two statements has been clarified in some other course. The
other, probably, is that most instructors are research mathematicians with
little taste for nonconstructive principles: they know them and use them,
but feel that such principles are a sort of magic of last resort, and having a
magic tool generating others, or having a supply of independent ones, does
not really make to them much of a difference. A problem with highly non-
constructive existence theorems, in fact, is that we do not know much of the
object we have proved the existence of. It is surprising, in view of this fact,
that such theorems can be used to obtain more practical statements.

There is a price tag attached to it. Nonconstructive arguments allow us
to prove the existence of counterexamples to very reasonable guesses. If we
allow the logical basis of the nonconstructive arguments, we have to keep in
mind that such monsters exist and have to be taken into account.

So much for the small talk. Before we move to Banach theory, in order to
satisfy readers with a taste for logics we state Zorn’s lemma and prove that
it follows from the axiom of choice (but not the opposite implication).

THEOREM 3.1 (Zorn’s lemma). Let (X, <) be a partial order on a set
X, and suppose that each totally ordered subset C' of X has an upper bound:
there s uw in X such that uw > ¢ for all c € C. Then, X has a mazximal
element w: w > x for all X in X.

53
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Proor. While reading the proof, it is very helpful drawing pictures. A
partial order is a special instance of a directed graph, and a totally ordered
subset of it might be thought of, in pictorial terms, as a subset of the real
line (although it is clearly false that all totally ordered sets arise this way,
for instance because there is no a priori restriction on their cardinality).

Suppose by contradiction that X has no maximal element. In particular,
by the axiom of choice, for each totally ordered subset C, including C' = (),
we can choose an upper bound u(C') in X'\ C (if the only upper bound, which
exists by hypothesis, belonged to C, then it would be maximal for X'). Now,
to each subset F' of X and f € F we associate its tail set F.; <= {x € F :
x < f}.

A subset A is a u-set if

(i) A is totally ordered;

(ii) A contains no infinite descending sequence a; > as > ... (e.g. A can
have the order type' of N, but not that of —N), hence, any subset
A’ of A has minumum;

(iii) if a € A, then u(A-,) = a.

The last property says that wu-sets are linked in a very special way to the
choice function u, and, as we will see below, they share many properties with
the ordinals.

If Aisa u-set and a € A, then A_, has properties (i-iii), hence, it is a
u-set.

If A and B are u-sets, by properties (i) and (ii) they have minimum, and
{min(A)}, {min(B)} are u-sets. By property (iii),

min(A) = u({min(A)}cimin(a)) = u(0) = - - - = min(B).

The proof of Zorn’s lemma mostly consists in a ”transfinite iteration” of this
argument, to show that all u-sets are tail sets of a largest u-set E, and by
further applying v to it we reach a contradiction.
Claim Let A # B be u-sets. Then, A = B, forsomeb € B,or B=A_,
for some a € A.
Let
C={ce AnB: A.= B.}.

Sub-claim C = A or C'= A_, for some a € A.

1By order type of a partially ordered set (Z,<) we mean the equivalence class of all
linearly ordered sets which are in an order-preserving bijection with Z.
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We show the sub-claim first. Suppose C' # A and let a € A\ C be
minimal, so that A, C C. In the opposite direction, if c € C'\ A, C A,
then ¢ > a. Hence,

a€ A, =B..CB,

thus a € B and A., = B.,, implying that a € C', which is a contradiction.
This implies that C'= A_.

We now prove the claim. If A # C # B, by the sub-claim we have that
A., = C = By, for some a € A, b € B. By property (iii) of the u-sets,
a=u(A-,) = u(Bs) = b, and we have that

By definition, then, a € C, but this contradicts the fact that A, = C. The
assumption A # C' # B can not hold, hence we have that, again by the
sub-claim, either A = C' = B_;, or, the other way around, B = C' = A_,.
(Hidden in the proof is that the cases a = min(A) or b = min(B), in which
C = (), are covered because we defined u(()).
The claim allows us to glue together whatever u-sets we have into one.
Let
E=Uja, u-setA-

We first show that, if A is a u-set and a € E, then A_, = F_,. The direction
A., C E_, follows from A C E. In the other direction, let x € E_, and let
B > x be awuset. If BC A, then z € A. If not, by the claim A = B_, for
some b € B, in which case © < a < b, and so x € B, = A. In both cases,
x € A, hence, E., C A, which clearly implies £, C A_,.

It is now easy to verify that F is a u-set.

(i) Let a,b € E, and A > a, B 5 b be u-sets. Then A, = E_, and
B., = E_;, are u-sets, hence, by the claim above, either they are
equal, then a = u(A-,) = u(B) = b, or A, = B, for some ¢ in
By, and ¢ = u(B..) = u(A-,) = a, or the other way around. In
the second case, a = ¢ < b, and in the remaining case the opposite
inequality holds. Hence, E is totally ordered.

(ii) Suppose a; > a > 2 > ... is a descending sequence in E, and that
a; € A, a u-set. For i > 1, a; € E,, = A,,, hence the sequence,
being contained in A, can not be infinite.

(iii) If a € F and A 3 a is a u-set, then u(F.,) = u(A<,) = a.

Since E is a u-set, F U {u(E)} is still a u-set which is not contained in E,
and we have reached a contradiction. U
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In the spirit of the section, we use Zorn’s lemma to prove a purely alge-
braic result.

THEOREM 3.2. [Hamel’s basis of a vector space] Any vector space X over
a filed F has a basis. That is, there is a set {v, }aer of linearly independent
vectors of X such that X = span({vs}aer)-

PROOF. Consider the set V of all families V' = {v}},ey of linearly inde-
pendent vectors of X, partially ordered by inclusion. If {V,}.cp is a totally
ordered subfamily in V), then (J .y V. is an element of V, and it is an upper
bound for {V,}aecm. By Zorn’s lemma, there exists in V a maximal element
{va }aer, which is a basis for X, since a vector u which is not in span({v }aer)
could be added to the family, contradicting maximality. OJ

Below we use basic facts about cardinal numbers. For properties of cardi-
nal numbers, and of ordinal ones, you might look into Reed Solomon, Notes
on ordinals and cardinals.

THEOREM 3.3. Let X be a vector space over a field F, and let U = {U, }aer
and V' = {wvp}acs be two basis of X. Then, §(I) = 4(J), I and J have the

same cardinality.

PrROOF. We know from linear algebra that £(/) is finite if and only if §(J)
is, and they coincide. We can suppose then that both index sets are infinite.
To each a € I associate the set B(a) := {b1(a), ... ,by@)(a)} = {b1,...,bn}

J, where
Us= Y AV,
=1

with 0 £ \; € F, is the unique expression of U, with respect to the basis V.
The map B is one to one from [ to the family of the finite subsets of J. Since
the latter class has the same cardinality as J, we have (/) < #(J), and the
other inequality is proved in the same way. 0

By theorem 3.3, we can attach to any vector space X the cardinality of
one, hence all, of its basis. Such number is called the algebraic dimension,
or sometimes the Hamel dimension, of X. Let’s denote it by dimg(X). The
algebraic dimension is clearly a linear invariant: if L : X — Y is a linear
bijection, then dimg(X) = dimg(Y).

Infinite dimensional, but separable, Hilbert spaces have a countable or-
thonormal basis in the Hilbert sense, but their algebraic dimension is more
than countable. This shows that Hilbert theory, and more general Banach
theory, or even more generally topological vector spaces theory, is not re-
ducible to linear algebra alone, even at the most basic level of dimension.


https://www2.math.uconn.edu/~solomon/math5026f18/OrdCard2.pdf
https://www2.math.uconn.edu/~solomon/math5026f18/OrdCard2.pdf
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PROPOSITION 3.1. As a wector space, any infinite dimensional Hilbert
space H does not have countable dimension.

PROOF. Let {v,}22, be any countable, linearly independent subset of H.
Using Gram-Schmidt algorithm, find an orthonormal set {e,,}5°_; such that
span({v, }7 ;) = span({e,, }>°_,). Consider then

Then, z € H \ span({e,, }5o_,) = H \ span({v,, }>2 ). This show that {v,}>2,
was not an algebraic basis for H. O

The completeness of H was used in that x exists in H since the series
converges.

Using Hamel basis, we can construct such monstrous objects as every-
where defined, unbounded linear functionals on a Hilbert space.

PROPOSITION 3.2. Let H be an infinite dimensional Hilbert space. Then,
there exists a linear functional | : H — R which is not bounded.

PROOF. Let {v,}aer be a Hamel basis for H, let {v,, }22; a countable
subset of it, which we might assume to be orthonormal after applying the
Gram-Schmidt algorithm to it. We then define [ on the basis by

l(va) =0if a # v, for alln > 1
[(Va,) = n.

The operator extends to a linear operator [ on H by linear algebra. On the
other hand, [ is not bounded,

12z = Sup 1) = [l(va, )| = n,
hence, ||l||z+ = oo. O

3.2. The Hahn-Banach Theorem and some of its consequences

EXERCISE 3.1. Let H be a Hilbert space, M C H a closed, linear space, and S : M — C
a (bounded) linear functional on M. Show that there exists an extension T of S to H with
IT|| = |IS||. Moreover, such an extension is unique.

In general Banach spaces matters are more intricate.
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THEOREM 3.4 (Real Hahn-Banach Theorem). Let X be a real vector
space, and p : X — R a real-valued, convex functional:

plaz + (1 —a)y) < ap(z) + (1 — a)p(y)

ifx,y € X and a € [0,1]. Let 1 :Y — R be a linear functional such that for
reyY

1(y) < p(y).
Then, there exists linear L : X — R extending [ to X, and such that

L(z) < p(z)
on X.

PROOF. The main step consist in extending [ on Y to A on span(Y, z),
where z ¢ Y, which we do by a sort of separation of variables. Then we use
Zorn’s Lemma. We must have A\(y + az) = [(y) + a)(z), and it suffices to
determine A(z). We start with an inequality involving z and p. Let a,b > 0,
r,y €Y:

bl(z) + al(y) = (b+a)l( b i@ y)

b+a +b+a

< (b+a)p( ’ - y)

b+ax+b+a

a
“+a

— (b+a)p(bja(x—az)+b (y+bz)>
< bp(x —az) + ap(y + bz).

That is,

l() = p(z —az) _ ply+b2) — Uy)
a - b
holds for all a, b, z, y as above. There is then real k such that [(z)—p(z—az) <
ka and kb < p(y + bz) — l(y), or

l(z) — ka < p(z —az), l(y) + kb < p(y + bz).

It follows that A(z) = k works.

Consider now the set A having as element (Z, \) where Z is a subspace
of X containing Y and \ is an extension of [ to Z in such a way A(z) < p(z)
on Z. We partially order A saying that (Z, \) < (W, p) is Z is a subspace of
W and p extends A.

Given a chain {(Z., A.) : ¢ € C} in A, we have that Z = U.ccZ, and A
such that A|z. = A. are a well defined element in A, and (Z, \) is maximal
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for C. By Zorn’s Lemma, there is a maximal (W, v) in A. Now, if W # X
we might apply the one-dimensional extension, and (W, r) would not be
maximal. Hence, W = X and the theorem is proved. Il

When proving Hahn-Banach’s theorem for a separable Banach space X
with p(z) = ||z, as it is often the case, Zorn’s lemma is not necessary. In
fact, we can proceed in a way which is much similar to the Gram-Schmidt
construction of a orthonormal basis for a Hilbert space.

EXERCISE 3.2. Let (X, ||]]) be a separable Banach space and let {x,}22, be a dense set.
Let Z be a subspace of X and letl: X — R be a linear functional such that |l(x)| < K||z||
for some constant K > 0.

(i) Let Zo = Z be the closure of Z in X. Show that | has a unique extension ly to
Zy with |l (z)] < K||z]|.

(ii) Let x;, be the first x,, in the sequence such that x,, ¢ Zy, and let Z, = span(Zy, x;,).
Verify that the inductive step in the proof of the real Hahn-Banach theorem shows
that ly extends to a linear functional l; on Zy such that |l (x)| < K||z||.

(iii) Write down how to iterate the procedure in (ii). What happens if it stops afetr
finitely man steps?

(iv) Suppose the procedure can be iterated indefinitely, exhausting {x,}, and let Zoo =
UX g Zm, and ls : Zoo — R be such that |z, = lyn. Show that Zs, is dense

m=0

in X and |lo(x)] < Klz||. Use then again (i) to show that lo has a unique
extension \ to X which coincides with lo on Zo, (hence, it coincides with | on
Z), and |A\(z)| < K|z

THEOREM 3.5 (Complex Hahn-Banach Theorem). Let X be a complex
vector space and p : X — R be such that

plaz + by) < [alp(x) + [b|p(y)

whenever a,b € C, |a| + 0] =1, and z,y € X. Letl:Y — C be a linear
functional defined on a subspace Y on X, satisfying |l(y)| < p(y). Then,
there exists a linear functional L : X — C which extends l, and such that

|L(z)] < p(x) on X.

PrRoOOF. We consider X as a real space of "twice the dimension”. Let
A(z) = Re(l(x)), a real functional on Y, and observe that

Aixz) = Re(l(ix)) = Re(il(z)) = —Im(l(x)),

so that I(z) = A(z) — iA(iz) reconstructs [ from A. By the real Hahn-Banach
theorem, there exists a real functional A : X — R which extends A to X,
and such that A(z) < p(z). We define L(x) = A(z) — iA(ix), which defines

a complex linear functional on X:

L(iz) = Aiz) — iA(—x) = i(A(z) —iA(iz)) = iL(x).
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We also have, for some real ¢,
|L(z)| = ¢"L(z) = L(e"x) = A(e"z) < p(e"x) = p(x),

where the third equality holds because L(e"z) is real, and the last follows
from the fact that p(ex) = p(x) for all ¢’s. O

3.3. The dual of a Banach space

Let X be a Banach space over C (virtually all we say holds for real Banach
spaces). Its dual space X* is the space of the continuous linear functionals
on X. It is a Banach space in itself. In fact more is true. Let £(X,Y") be
the linear space of the bounded, linear operators 7' : X — Y, normed with
the operator norm,

EXERCISE 3.3. Show that the operator norm is in fact a norm on L(X,Y).

THEOREM 3.6. Let X, Y be Banach spaces. Then, L(X,Y) is complete.

PrOOF. Let {A, : n > 1} be Cauchy in L(X,Y), so that {A,xz : n > 1}
in Cauchy in Y for each fixed x in X, and Az = lim,,_, A,z is well defined,
and linear. Also, |||An] — [|4n]l] < ||Am — Asll, hence ||A,]| — C has real
limit as n — oco. We have:

| Az] = lim [ Aue]| < lim [ A, ]l2] < Cl],

hence, ||A]| < C.
We still have to show that A, — A in £(X,Y) norm. But we have:

(A~ Al = Jim [[(A, — Ay)al] < lim A, — Ay - ]

hence,
[ A= Al < T[4, — Agl| < ¢
n—oo
if m > m(e), so ||A— A,| — 0 as m — oc. O

EXERCISE 3.4. Let S € L(X,Y) and T € L(Y, Z). Show that TS :==T oS € L(X,Z)
satisfies | TS| < |IT|IIS|I-

The above inequality, when X =Y = Z, expresses the fact that £(X) :=
L(X,X) is a Banach algebra with respect to the composition product. It is
also a wunital one, since the identity operator Ix = x satisfies A = Al and
HI”Welx;vill often use without mention the following fact.

EXERCISE 3.5. Let fo : Xo — Y be a continuous map from a dense subspace Xy of

a metric space X and a complete metric space Y. Then, fo can be uniquely extended to
a continuous map f: X — Y. If X is a normed space, Y is a Banach space, and fy is

linear, then f is linear and ||f||z(x,vy = | follz(xo,v)-
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On the space £(X,Y") we will make use of three different topologies, which
naturally arise from the theory of operators and its applications.

(UOT) The uniform operator topology (UOT) is the one induced by the
operator norm:

T,, — T if and only if ||T,, — T'|| — 0.
vor

(SOT) The strong operator topology (SOT) is defined by:

T, — T if and only if ||T,, 2 — Tz|| — 0
sor

for all z in X.
(WOT') The weak operator topology (WOT) is defined by:

T, — T if and only if [(T,, o — Tz) — 0
wor

forall zin X and all [l € Y*.

The Hahn-Banach Theorem has important consequences about X*.

COROLLARY 3.1. Leti:Y — X be the inclusion in the Banach space X
of Y, a subspace of it. Then, the restriction map | — Lo i from X* to Y*
15 surjective: each \ in Y™ has an extension [ in X*. Moreover, there exists

one extension | such that ||l||x~ = ||A|ly+-

PRrROOF. Apply the Hanh-Banach Theorem with p(x) = ||A|ly« - ||z]. O

COROLLARY 3.2. Let y € X, Banach. Then, there exists | € X*, [ # 0,

such that l(y) = ||| x+|lyl|-

PROOF. Set A(ay) = ally|| on span(y), and extend it to [ : X — C by
Hahn-Banach. Since |[A(ay)| = ||ay||, we have ||I|| = ||A]| = 1, and I(y) =

Ay) =yl O

COROLLARY 3.3. Let Z be a subspace of a normed linear space X, and
let d(y,Z) = inf{||ly — 2| : =z € Z}. Then, there is L € X* such that
L(y) =d(y,Z), | L||x~ =1, and L(z) =0 for z € Z.

PROOF. We only have to define such L on span(Z,y), then use Hahn-
Banach. We are forced to define L(z + ay) = aL(y) = ad(y, Z). This is a
linear functional, and

|L(z + ay)|
Iz + ay

d(Z,y)

I\MW———-
z + ayl|
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inf{flw —y|[: we Z}

= lal
Iz + ayll
_ |a|inf{||w —y|l: weZ}
lal -l = 2 = vll
< 1
because —z/a € Z. Hence, ||L||x- < 1.

To show the opposite inequality, for € > 0 find z in Z such that ||y —z|| <
d(y,Z) + €, so that
[Liz=y)l o _d(y.Z)
lz=yll ~ d(y, 2) + €
o> 1 0

Since € > 0 is arbitrary, |||

EXERCISE 3.6. Give "Hilbertian” elementary proofs of the three corollaries above in
the case when X is a Hilbert space.

The bidual of a Banach space X, X**, is the dual of X™*.

THEOREM 3.7. Let X be a Banach space and consider the map i : X —
X* given by [i(x)](£) := (x) whenever x € X and { € X*. Then, i is an
isometric imbedding of X into X**.

PROOF. We have:

[i(2)](0)] = [€(x)] < [|€]

xoe <]l

X* x”X?

hence, ||[i(x)]]

In the other direction, by Corollary 3.2 we can find / in X* with [|l||x~ = 1,
and such that [(z) = ||z]. i.e.,
: @)D _ [1=)]
1(x)|| x> = = ||z|.
Ielbe = P = - = 11
O

When the map i : X — X** is surjective (hence, a surjective isometry), we
say that X is reflexive. Not all Banach spaces are reflexive, as the following
exercise shows.

EXERCISE 3.7. Here (P = (P(N).

(i) Show that for each ¢ € €> the map Ly, : ¢ — Y " o(n)i(n), L, : £+ — C, is
a continuous linear functional in (€')* and || Ly ||y = |l@]|5°.

(ii) Given L € (€)*, show that there exists ¢ € £* s.t. L = L,. Moreover, ||p| =~ =
|L||(¢ry~. Hint. Make use of L(0,) as "building blocks” to construct @. This

way, we have isometrically identified (£1)* = £°°.
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(iii) Consider the subspace C of £>°,
C={pet>: 3 le o(n)}.

Show that is is a closed subspace £>°, and that L : ¢ — lim,_,o @(n) is a closed
linear functional on C.

(iv) Show that there is no ¢ € ' such that C(p) = Yo" ¥ (n)p(n). Deduce from
this that ¢' is not reflexive.

EXERCISE 3.8. Let £, be the space of the sequences h : N — C which vanish outside a
finite set, and ¢ be the space of all sequences h : N — C.

(i) For m : N — C, define the multiplication operator with symbol m, Tp, : be — £,
by T (h)(n) = m(n)h(m). Show that || Ty, ||g(e,e2) = |||~

(ii) Find a similar statement with L*[0,1] instead of £, and prove it.

EXERCISE 3.9. Consider £* = (*(N), its 1-dimensional, closed subspace span(dy), and
l(adp) = a. Find all extensions L of | to a linear functional on ' satisfying ||L||(£1)* =
[ = 1.

How is this different from the Hilbert case?

Another reason why ¢! (N) is not reflexive is that, while ¢! (N) is separable,
(>(N) is not.

THEOREM 3.8. [The predual of a separable space is separable] If X is a
Banach space and X* is separable, then X is separable.

ProoF. We consider the case of a real Banach space, the complex case
being identical. If X* is separable, it has a dense, countable subset {l,}52 ;.
For each n, let z,, be such that ||x,|| = 1 and [, (x,) > ||l,||x+/2. Suppose
Yy = spang{z,};2,, the linear combinations of the x,,’s with rational coef-
ficients, is not dense in X. So, Yy # X, and we can find z in X \ Y. By
Corollary 3.3, there exists | € X* such that l|y = 0, and ||/||x- = 1. We have
that

1= lnllx= = [(0 = ln) (2n)| = [ln(@n)] = [1ln ][ x-/2-

If {l,,} were dense in X*, we could find a subsequence {l,, } such that

0= lim [l = Iy, || x+ > limsup ||l || x+/2,
k—o0 k—o0

then,
1= |llllx+ = lim [[l, [|x- =0,
k—o0
which is a contradiction. O
EXERCISE 3.10. (i) Show that £>°(N) is not separable, while ¢?(N) is separable

for1 <p<oo.
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(ii) Show that L0, 1] is not separable, while LP[0,1] is separable for 1 < p < oo
(with respect to the Lebesgue measure).

(iii) Show that C[0,1] is separable (with respect to the uniform norm).
(iv) Show that a Hilbert space H is separable if and only if it has a countable basis.

(v) Find Banach spaces X, Y with X CY, such that the imbedding map x — x is
bounded from X toY,Y is separable, and X is not separable.

In the second part of the next exercise, we need a definition. If A: X — Y
is a linear, bounded operator between Banach spaces, its adjoint T" : Y* —
X* is defined on a linear functional | € Y* by [T"l](z) = (Tx).

EXERCISE 3.11. Let 1 < p < oo and let g : R — C be measurable. On LP(R), consider
the multiplication operator My : f — gf.

(i) Show that

| My fllLe
IMglleey :=  sup == = [|g|l L.
o£ferrion] I fllze

(i) Let 1 < p < o0 and g € L(R). After identifying [LP(R)]* = L? (R) (1/p +
1/p’ = 1), what is the expression for [Mg)', the adjoint of My ?

3.4. Weak and weak* topologies, and the Banach-Alaoglu theorem

Our first experience is that we fix a topology on a set Y (a notion of
points ”being close”), and this way we can tell which functions f : Y — R are
continuous (their values do not change ”abruptly” from point to point). We
might instead want to put in the forefront the functions (the "measurables”),
rather than the points. We fix a family F of functions f : Y — R, and require
that those functions are continuous (that they do not change abruptly: that
we consider two points to be close, that is, if they result to be close in all our
observations). The topology 7(F) generated by F is the smallest one making
all functions in F continuous.

It is easy to show that a basis of neighborhoods for F is given by finite
intersections of basic sets having the form

N(f,a,r)=f Ha—ra+r)={yeY :|f(x) —al <r}.

One advantage of such weak topologies is that they are most economical in
terms of open sets, hence they have the largest family of compact sets, which
are good when convergence of (sub)sequences is concerned. We will consider
below some important instances of this construction.

3.4.1. The weak and the weak” topologies.
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3.4.1.1. The weak topology. Let X be a Banach space, and let X* be its
dual. The weak topology w on X is the coarsest (weaker) which makes all
functionals [ € X* continuous. By general topology, a basis of neighborhoods
for the weak topology is given by the family of the subsets N(a;ly, ..., 1,;€)
(withae X, n>1,10,...,0l, € X* e>0), where:

N(a;ly, ... lpe) = {xeX:|li(zx)—lLa)] <e... |h(x)—1(a)] <€}
= N(a;li;e)N--- N N(a;ly;€)

[N(0;13;€) +alN---N[N(0;1,;€) + al

[eN(0;11;1) +alN---N[eN(0;1,;1) + al

eNO;ly,..., ;1) +a

(3.4.1) = N(0;ly,...,ln;€) +a

are various ways to write and think of these basic neighborhoods. For in-
stance, it is clear that the topology is invariant under translations and dila-
tions, x — Azx + a is a homeomorphism whenever A # 0.

If (X,w) is metrizable, and 2 is a metric space, then continuity of f :
X — Q with respect to the weak topology is equivalent to continuity by
sequences: x, — z in (X,w) implies f(z,) — f(x) in Q. Unfortunately
(X.w) might not be metrizable, and we have to use nets instead. But some
nice features remain.

PROPOSITION 3.3. (X, w) is a Hausdorff space.

PRrROOF. By translation invariance, we just have to separate a # 0 and 0.
By corollary 3.2 to the Hahn-Banach theorem, there is [ € X* with ||{||x- =1
and such that [(a) = ||a||. If N(0;;||a]|/2) > 0 and N(a;l;|lal|/2) > a had a

point x in common,

al| = |i(a) = LO)] < [i{a) = U(z)| + |I(z) = 1(0)] < [|all,
a contradiction. O

We say that the sequence {x,} in X converges weakly to a € X if [(x,) —
[(a) for all [ in X*. Although this notion is generally weaker than ”weak net
convergence” , it is nonetheless useful in many applications, for instance in
calculus of variations. We write x,, — a, or w—lim,,_,, x, = a. By definition,

weak convergence of z, to a means that, for each [ in X* and each ¢ > 0,
there exists n(l, €) such that, if n > n(l, €), then z, € N(I;a;¢€).

PROPOSITION 3.4. (1) If |lxn — al]| — 0, then x, — a.

(2) If x,, — a, then ||a]] < liminf, . [|z,]|.
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PRrOOF. (1) For any [ in X*, |l(z,,) — l(a)| < ||l||x+ ||z — a]| — 0.
(2) Again by corollary 3.2, there is [ with ||{||x~ = 1 and ||a|| = {(a), hence:

lall = t(a) = Jim Ji(z,)] < |1

x+ liminf ||z, | x = liminf ||z,| x.
n—oo n—oo
U

We can not improve the statement in (2). Let H be an infinite dimensional
Hilbert space and let {e,}>2; be a orthonormal system in it. Then,

(3.4.2) en — 0,

but |le,|| = 1 for all n.

3.4.1.2. The weak™ topology. Let again X be a Banach space, and let X*
be its dual. The weak™ topology w* on X* is the coarsest which makes the
functionals [ — {(x) continuous for all x in X. Unless the natural identifica-
tion X — X** is surjective, i.e. unless X is reflexive, the weak™ topology on
X* is weaker than the weak topology.

A basis of neighborhoods for the origin in w* is given by finite intersections
of sets of the form

(3.4.3) N(O;z5e) ={l € X™ - |l(x)] < €}

The topology is invariant under translations and a basis at any point is easy
to write, as in the case of the weak topology. Its basic properties coincide
with those of the weak topology.

PROPOSITION 3.5. (1) (X*,w*) is Hausdorff.

(2) If |zn — al| — 0, then x, — a.

(3) If Ly —> 1, then [[I][x- < liminf, o, [|ln] x--

PROOF. Property (2) is weaker than the analogous statement for the
weak topology. Property (1) is proved like the corresponding statement for
the weak topology, using the fact that if [ # 0 is an element of X*, there
exists z in X with ||z||x = 1 and |I(z)| > ||l||x+/2. If A € N(0;x; ||I||x+/4) N
N(l; x; ||| x+/4), then

12lx-/2 < [1(@)] < [ = A) (@) + [A(x)] < ]

a contradiction.

The proof of (3) follows the same lines as that of the weak topology
analog. For € > 0 there is « in X with ||z|| = 1 such that |I(z)] > |||
Then,

1]

Let then € — 0. |

x/4+ ||

X*/47

X+ — €.

x —e < |l(x)] = 7}1—{20 ()] < hggg.}f 12| -
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3.4.2. Two versions of the Banach-Alaoglu theorem. The raison
d’étre of the weak™ topology is related to compactness properties. To keep the
exposition self.contained, below you find a proof of the Tychonoff theorem.

3.4.2.1. Tychonoff’s theorem. If {X; : i € I} is a family of sets, X; =
[T, X;, their Cartesian product, is best interpreted as the set of the functions

p: 1 — Uier X, with p(i) € X; for each i € I.

We call I the domain of p.

If each X; is a topological space, the product topology on 11;c;X; is the
weakest (coarsest, minimal) making all projections m; : X; — X;, m(p) =
p(i), continuous. A basis of open sets for it is provided by the sets m; YU,)N
<N W;I(Uin), where n > 1, iy,...,i, € I, and Uj, is open in Xj,.

THEOREM 3.9. If each X; is compact, i € I, then 1l;c; X; is compact.

We give the first of the three proofs surveyed in Three Proofs of Ty-
chonoft’s Theorem by E. Matheron (2020), which the author labels the Wis-
consin proof.

Some of the usual notions associated to functions carry over and are
useful. If J C H, Iy jp = p|; is the restriction of p € Xy to X, 7y :
XH —)XJ, THJOT K = THK- We set Ty =T1,J- pr € XH andq < XJ with
H and J disjoint, then pV ¢ € Xy is the function such that (pV ¢)|y = p,
(pV q)|s = q. The set Xy reduces to the unique empty function from () to
itself, which we denote by () (in agreement with the interpretation of functions
as particular relations).

We fix a set I, and let P = U;c; X, which is partially ordered by the
relation p < q if ¢|; = p, where J is the domain of p.

PRrROOF. The proof is by contradiction. We suppose that there is a family
U of open sets in X; such that no finite subfamily covers X;, and we shall
show that U itself does not cover X by exhibiting an element p € X\ Uy, U.

We consider the set B of the bad elements in P: those p € X; such that
for all open V' 3 p open in X, ;' (V) can not be covered by finitely many
sets in Y. The empty function lies in B, which is then nonempty. The only
open set in Xy containing (), in fact, is Xy = {0} itself, and Wq)_l(X@) = Xy,
which can not be covered by a finite subfamily of &/ by assumption. We will
prove three facts about B.

(i) B is downward close: if p < q € B, then p € B. In fact, if H is
the domain of p and J that of ¢, and V > p is open in Xy, then 75 (V) =

W}l(ﬂ'];lj(v» which can not be covered by a a finite subfamily of ¢/ because

W;I}J(V) 5 ¢ is open and ¢ is bad. We can assume V, = O, x W,


https://hal.science/hal-03660150/document
https://hal.science/hal-03660150/document
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(ii) If p € B has domain J C I and ig € I\ J, then there is a € X;,
such that pV a € B. Suppose by contradiction that for all @ in X;, we have
pVa ¢ B;ie. there exists V, > pV a open in X ;) such that W;S{Z.O}(Va)
can be covered by a finite subfamily of /. We can assume that V, = O, x W,
with O, open in X; and W, 3 a open in X;,. Since X, is compact, it can be
covered by finitely many W,,,..., W, . Let O = O,, N---NO,, > p, so that
O x Wy, > pVa; and ﬂ;& {io}(O x W,,) can be covered by a finite subfamily
of U. Now,

77;1(0) = U ”;J{io} (O X W%‘) ;
j=1

and each set in the union can be covered by a finite subfamily of ¢/. Hence,
p¢B.

(iii) (B, <) has a maximal element. If any chain C' in B has an upper
bound in B, by Zorn’s lemma B has a maximal element. Let C' be a chain
in B, let H be the union of the domains of all ¢’s in C', and define p € Xy to
be such that p|; = ¢ if ¢ € C' has domain J. The function p is well defined
because C is totally ordered. Thus p is an upper bound of C' in P. It suffices
to show that p € B. Let V > p be an open subset of Xy. By definition
of the product topology, we can choose V O WI;}F(W) S p where F' C H is
finite and W C X is open with W 3 p|r. Now, C is a chain and each ; € F
belongs to some domain .J; in the chain, so F* C J;1U...J,, = Jy C H, where
Jo is a domain in the chain. Let gy € X;, N C. Since qq is bad, p|p = qo|F is
bad as well by (i), thus 7' (W)) can not be covered by a finite subfamily of
U. A fortiori, 75 (V) D 7z (W) can not be covered by a finite subfamily of
U, hence p is bad.

Summarizing, B has a maximal element p by (iii), having domain I by
(ii). In particular X; 5 p can not be covered by a finite subfamily of ¢, but
this is possible only if p does not belong to any subset of U, which henceforth
does not cover the whole of X7. O

3.4.2.2. Banach-Alaoglu theorem: the topological form.

THEOREM 3.10 (Banach-Alaoglu). Let By be the closed unit ball of X*.
Then, By is compact in the weak™ topology.

PROOF. For each = € X, consider D(0, ||z||), the closed unit disc in the
complex plane, and let

endowed with the product topology. Such is the topology having as basis at
{f(z) : 2 € X} with |f(z)| < ||z, finite intersections of sets of the form

M(fiai) = {g: X = C stlg(@)] < [lz]| and |g(a) — f(a)] < e}.
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Since each factor D(0, ||z]) is compact, by Tychonoff theorem K is compact,
too. - -
We imbed B into K, ¢ : B; — K,

(1) = {{i(x)}aex}-

Unraveling definitions, we have that

O(N(l;a5€e)) = M(l;a;¢) N P(By),

i.e. ® is a homeomorphism of B; onto its image into K. Since the latter is
compact, if we show that ®(B,) is closed in K, then it is compact, hence B;
is compact as well.

Suppose f lies in the closure of ®(B;), and consider z,y € X. For any
€ > 0 there is [ € By such that |I(z) — f(z)] < ¢/3, |[I(y) — f(y)| < €¢/3, and
ll(z +y) — f(x+y)| <e/3, so that

|f(x) + fly) — flz+y)| <e

Hence, f(x)+ f(y) = f(z+vy). The same way, one shows that f(Ax) = \f(x)
if A is a complex number. This shows that f : X — C is a linear functional,
which also lies in By, since |f(z)| < ||||. We have proved that ®(B;) is
closed, hence K is compact. O

3.4.2.3. Banach-Alaoglu theorem: the sequential form. A practical prob-
lem with this version of the Banach-Alaoglu theorem is that in general com-
pactness is not in general equivalent to sequential compactness, which is
very useful in many applications (measure theory and probability, claculus
of variations, PDEs...). The version involving sequential compactness below
could be deduced by the previous one, but we provide a direct proof which is
similar to the original one for the Ascoli-Arzela theorem, which is essentially
constructive and does not require the Tychonoff theorem.

THEOREM 3.11 (Banach-Alaoglu, separablege—dual). Let X be a separa-
ble Banach space, and let {l,,} be a sequence in By, the_um't ball in X*. then,
there exists a subsequence {l,,} and an element | in By such that [, — l.

PROOF. Let {2;}%2, be a dense sequence in X, let X, be the dense space it
generates in X, and let {x,,}>°_; be a maximal family of linearly independent
vectors in {2;}22,, so that Xo = span({zm, };—;). We will first proceed to
define [ on X.

Consider a subsequence n(*) = {n,(:)}zozl such that

Jim b (o) =
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exists in C. Such sequence exists because |, (z1)| < [|1,]

xe [ on]lx < [l flx
is bounded in C. Suppose that subsequences {n}>, D {n,gl)}iil - D
{nk }zo ; have been chosen in such a way (i) limg o0 [ @ (z;) = a; € C when

1<j<m, and (i) nl"” < nl? < ... < plm™.

a subsequence {12 of {n{™12  such that limy_e ! (m+1)(93m+1) —

ams1 € C, and n{™™ > ™ The sequence {z{™}

As above, we can choose

[e.9]

>
all subsequences {n{™1}2° hence,

_, is a subsequence of

Tim 1o (25) = a;

for all z;’s. Define [(z;) = q;.
The linear extension of [ to Xj is forced by its values on the basis elements,

l (Z cjxj> = chl(a:j) = ch ]}Lrgo ln,(x5) = kh_)rrolo L, (Z cjxj> .
j=1 j=1 j=1 j=1

As a consequence,

(3.4.5) l <Z cja;j> = klgg@ Lo, (Z cjxj) ‘
i=1 =
(3.4.6) < hlgn inf ||/ Z cja:j
(3.4.7) < Z ¢;T;
=1 x

The unique continuous extension of [ to X = X, (see Exercise 3.5) satisfies
1Tllx < 1.

We have to verify that limy_, [, () = [(z) for all  in X. This is a
simple 3¢ argument. For x € X and zy € X,

() = by ()] < |U(x) = Uzo)| + [{(x0) — Lny (0)| + [lny, () — U(2)]
< 2f|x — zollx + |l(zo) — ln, (0)]-

For given € > 0, choose z¢ with ||z — x¢||x < €, then k(e) > 0 such that for
k > k(e) one has |l(xg) — In, (z0)| < €. O
3.5. Baire’s Theorem and the uniform boundedness principle

Let (X,d) be a metric space. A subset A of X is nowhere dense in X if
A has empty interior (it does not contain nonempty open subsets).
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THEOREM 3.12. [Baire’s Theorem] If (X, d) is a complete metric space,

and A, : n>11is a countable union of nowhere dense sets, then U2, A, #
X.

PROOF. Since A; does not contain a nonempty open set, we can find
B(zy,7m) C X\ A, withr, < 1/2. Since Ay does not contain a nonempty open
set, B(xy,7) \ Ay is a nonempty open set, hence, it contains B(x,75) with
ry < 1/22. By iteration, we find B(z,,r,) 2 B(n_1,7,_1) With 7, < 1/2",
and B(z,,r,) N (A1 U... 4,) =0.

Since X is complete, the intersection of the balls B(z,,r,) contains (a
unique) point z € X \ (U2, A4,). O

The next, important theorem is due to Banach and Steinhaus.

THEOREM 3.13. [Uniform Boundedness Principle] Let F = {T} be a
family of bounded, linear operators T : X — Y from a Banach space X
to a normed, linear space Y. Suppose that, for each x in X, |[Tz| < C(x)
independent of T € F, although possibly dependent on x. Then, F is bounded,

T <c
for some C' > 0 independent of T € F.

PROOF. For m > 1, let A,, = {x € X : sup{||Tz|| : T € F} < m}.
By hypothesis, U2®_; A,, = X, hence, some A,, contains a closed open ball
B(z,r). Since z € A,

B(0,7) C Ay — 2 C A+ A C Ao
This is what we need, since, for ||z]| <1 and T € F,

1 2m
[Tzl = =[|Trz] < —.
T r

Here is an application of Banach-Steinhaus.

COROLLARY 3.4. Let T, € L(X,Y) be a sequence of bounded, linear maps
from X toY, Banach spaces. If for all x in X there exists

Tz := lim T,z,
n—oo

then T € L(X,Y) is bounded.
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PRrooOF. By hypothesis, {||T,,z||, n > 1} is bounded for each z, hence
{IIT.|l, m > 1} is bounded by some finite C' > 0. We have, then, if ||z|] <1,

|Tx|| = lim ||T,z| <limsup||T,| < C.
n—oo

n—o0

Thus, || T < C. O

Banach-Steinhaus allows us to transform (without control of the con-
stants) weak quantitative information, into strong quantitative information.
The following exercise provides an example.

EXERCISE 3.12. Let f : [a,b] — X a function with values in a Banach
space X, and suppose f is weakly Lipschitz,

[L(f(E+ ) = 1) < CD)IA]

for all t,;t + h € [a,b] and | € X*. Show that f is Lipschitz: there is a
constant C' > 0 such that

1f(E+h) = fF(ON < Clhl,

We will see another important example in the next subsection, where we
treat Banach space valued holomorphic functions.

Qualitative information, however, behaves differently. For instance, it is
possible to exhibit functions f : [0, 1] — ¢* which are weakly continuous (for
all hin €%, x — (h, f(z))e is continuous), but which are not continuous.
The following example is modeled on the weak, but not strongly convergent
sequence in (3.4.2). Let

— 1 _ifo<z<1
(n) = { Hin—1/z? -
(3.5.1) [f(@))(n) {o R

Since for x # 0 we have ||f(z)]|Z > > o2, m, f is not continuous at
x = 0. On the other hand,

(3.5.2) lim (h, f(2))e = 0.

z—0
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After changing variables to y = 1/ — oo, and considering WLOG h > 0,
we can estimate (using an elementary estimate and Cauchy-Schwarz)

P S

— )2 _
ooy L= y)? S 1 ()
C h(n)
< =
- y0<nz<:y/2 (1+(n—y)?)'2
1/2 1 12
2
+ 2| Y h(n) <Z—(1+n2)2)
n>y/2 n>0
C o\
< —||hl|e —_—
= yH Hf <RZZO (1+n2>2>
1/2 , 1/2
2
+ 2| Y h(n) (Z —(1+n2)2> .
n>y/2 n>0

The last expression tends to 0 as y — oo by monotone convergence. It is easy
to see that f is continuous on (0, 1] (for instance, by dominated convergence).

3.5.1. Banach space-valued holomorphic functions. Complex val-
ued power series of a complex variable define holomorphic functions, which
are at the heart of an elegant and powerful theory. At the root of it, is the
fact that holomorphic functions can be defined in several, equivalent ways:
through power series, through complex integrals, via the Cauchy-Riemann
equations, and others. These different viewpoints can be translated to the
world of functions with values in Banach spaces X; or even better in Banach
spaces of the form L£(X), where a product is part of the structure; or in
Banach algebras, which is the most general Banach structure with products.
This way, a number of results, tools, and techniques from holomorphic func-
tion theory become available to Functional Analysis, a fact of the greatest
importance.

A function f: C D 2 — X defined from a region of the complex plane
with values in a Banach space is holomorphic if

P (RO ()

e X
h—0 in C h

exists for all z in 2. The function f is weakly holomorphic if for all [ in X*
the function

2= 1l(f(z)) eC

is holomorphic in the usual sense.
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EXERCISE 3.13. Show that a holomorphic function f : Q — X is weakly holomorphic.

THEOREM 3.14. Let f : Q2 — X be a map defined from an open subset of
C with values in a Banach space X. The following are equivalent.

(i) The function f is holomorphic in €.
(ii) The function f is weakly holomorphic in Q.

(iii) For each zy in 2, there is r > 0 such that, for |z — z| <,

f(2) =) anlz = 2)",

n=0

where a,, € X and the series converges absolutely uniformly for |z —
2ol < p <.

The value of r can be taken to be that of the larger disc centered at zy and
contained in Q.

In fact, the series converges to an X-valued holomorphic function in
B(zy, R) where

1

 limsup, o [[an 7"

(3.5.3)

is the radius of the largest disc centered at zy and contained in €.
The computational part of the proof is contained in the following.

LEMMA 3.1. Consider the power series

(3.5.4) g(z) = Z an(z — 20)"

with coefficients a,, € X, a Banach space, and with radius of convergence as
in (3.5.3).
Then, g : B(0, R) — X is strongly holomorphic, and

(3.5.5) g (z) = Znan(z — 2)" L,

which has the same radius of convergence as g.
In particular, g is infinitely differentiable, and

(3.5.6) 9" (2) = nla,.
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PROOF OF THE LEMMA. The usual proof from holomorphic theory makes
use of tools we do not have, and we do not want to develop. We provide in-
stead an XVIII century style proof which does not require them. We can
suppose 2o = 0. We start with the estimate

(z+h)" = 2"
h

(n—1)

. n e
(3.5.7) =" < [hl= (|2 R

which holds for n > 1 and z,h € C. The proof is just a calculation,

50

=2

n—2
n o
< WX (0 )
=0

_ — n(n—1) =2\ o
- WX grgaen (e )

nin —1) < n—2 o
< W%Z( l )|Z|n2l|h|l

1=0
n(n —1)
2

(z+h)"— 2"
h

_ TLZn_1

= |h| (] + [A])".

Let now
o0
P(z) = Znanz”’l,
n=1

which has the same radius of convergence. For |z| < R and |h| < R —|z|, we

have:
g(z+h) — g(z) G (z+h)" — 2" et
5 o] =[S (B )
< 113 M e+ iy
— 0 "

as h — 0 in C, since the series in the line before the last converges. Hence,
1 = ¢'. Since ¢’ has the same radius of convergence as g, we can iterate the
calculation,

(3.5.8) g™ (z) = Z L)!an(z —20)"™™, ¢ (2) = mlap,.
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PROOF OF THE THEOREM. (i) implies (ii) by exercise 3.13, and (iii) im-
plies (i) is the lemma above.

We show that (ii) implies (iii). We fix some notation. If z € X, 7 € X**
is the functional on X* for which Z({) = I(z). We set X C X** the set of
such functionals.

We start by showing that if f : 2 — X a weakly holomorphic function,
and v is a closed curve in €, then z — f(z) is bounded on 7. In fact, and
for z on ~:

£ (2)()] 1(f(2))]
sup [I(f(2))]

zE€y

c(l),

IA I

which is finite because z — [(f(z)) is continuous on 7. By Banach-Steinhaus
theorem,

sup [[£(2)|[x = sup || f(2)[|x+ < o0.
zEey zEey

Let B(zo,7) be a disc contained in €2, and let v be a circle of radius p < r
centered at zy and contained in €. Let again [ be in X*. Then, z — I(f(2))
can be expanded as a power series,

o
E a,(1)(z — 2)",

n=0
where | l
2mi J., (2 — 2o)"
The functional [ — a,(l) is linear and
i

Y22

lan (D] < sup 1F ()]l

That is, a, € X** with

sup.e, 1)l

(35.9) e <
pn

Thus,

(3.5.10) Z an(z — 20)"

n=0
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converges for |z — zg| < p to a function g with values in X**. You just have
to check that the usual proof in holomorphic function theory works when
you have power series with coefficients in a Banach space (geometric series
only are involved). The Hadamard formula for the radius of convergence of
the series is proved like in holomorphic theory. By the lem/m\a, g is an X**

valued holomorphic function. We next prove that g(z) = f(z) is the image

in X** of f(z), i.e. that [g(2)](]) =I(f(z)) for all | € X*.
In fact, all [ in X* we have

9N =D an(D)(z = 20)" = U(f()).

n=0

By the lemma, g is infinitely differentiable and

(n) () (o
0 =9 (20) _ (20) € X,
n! n!

because X is closed in X**, and the derivatives, which are limits of X valued
functions, belong to X. Thus, a, = &, with a,, € X, and

J(z) = anlz = =),

as wished. O

EXERCISE 3.14. Let Q) C C be open, and let X : Q2 — C be holomorphic, and f : Q2 — X
be a Banach space-valued holomorphic function. Show that their product A- f : Q — X is
holomorphic.

3.6. The Open Mapping Theorem and the Closed Graph Theorem

A map F : M — N between metric spaces is open if the image of an open
set in M is open in N.

EXERCISE 3.15. If T : X — Y s a linear map between normed, linear spaces, then

the following are equivalent:

(i) T is open;

(i) there is a ball Bx(0,r) in X such that T(Bx(0,r)) contains a ball inY;

(iii) there is a ball Bx(0,r) in X such that T(Bx(0,7)) contains a ball centered at 0

mY.

Moreover, if T is open, then it is onto.
Hint. (i) = (i) is clear. For (ii) = (ii1), you can show that if T(B(0,7)) D B(y, R),
then T(B(0,2r)) D B(0, R). The proof that (iii) = (i) is easy. Also, (iii) implies that
T is onto by the homogeneity of T.
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THEOREM 3.15. [Open Mapping Theorem] Let X,Y be Banach spaces,

and let T : X — Y be a linear, bounded map from X onto Y. Then, T is
open.

PRrROOF. Let B, := B(0,n) C X. Since U,T(B,) =Y, there is n such
that T'(B,) D B(yo,€). f y € Y, then y = (y+ vo) —yo € T(B,) — T(B,) C
T'(Bsyy,) provided ||y|le. i.e. B(0,¢/(2n)) = B(0,n) C T'(By).

It suffices then to show that T'(B;) C T'(Bs).

Let y € T(B;), and pick z; € By such that ||y — Tx;|| < n/2, so that
Txy —y € B(0,n/2) C T(Bi2). We can then find pick zo € By, such that
ly — Txy — Tas|| < n/2%

Iterating, we have x, € Bjjon-1 such that ||y — T(z1 + -+ x,)[| < n/2"
We have that z1+1dots+x,, — x € By asn — oo, and T'(x) = lim,, o T'(21+

-+ x,) =y, as wished. O

EXERCISE 3.16. Let X = R? with the Euclidean metric. Show that for all € > 0 there
is a linear bijection T : X — X such that |T|| =1, yet T(B(0,1)) does not contain B(0,€).
That is, the Open Mapping Theorem is not quantitative.

THEOREM 3.16. [Inverse Mapping Theorem/] Let T : X — Y be a bounded
bijection of Banach spaces. Then, T~ :Y — X is bounded.

PROOF. The fact that T is open means that for some € > 0, if ||y|| < €
in Y, then there is x € X with ||z|| <1 and Tz =y, i.e. z =T 'y. Said it
differently, T~! maps B(o,€) into B(0,1), so that |77 < 1/e. O

EXERCISE 3.17. Show that if || - ||1 and || - |2 are two norms on X, if ||x||2 < ||z|1 on
X and X is Banach with respect to || - ||1, then there is C > 0 such that ||z||1 < C|lz||2 on
X.

EXERCISE 3.18. Show that (even!) in R? one can find norms || - |1 and || - |2 with
llzll2 < ||z]l1, yet ||z|x < C||z||2 only holds if C is (arbitrarily) large. That is, the result
in the previous exercise is not quantitative.

The graph of a function f: M — N is the set I'(f) = {(z,y € M x N :
y = f(x)}. T : X — Y is a linear operator between linear spaces,
then I'(T") is a linear subspace of X x Y. If X and Y are normed, then
|z, v)|| := ||z|| + ||y|| defines a norm on X X Y, hence on I'(T).

EXERCISE 3.19. If X and Y are normed linear space and T € L(X,Y), then T'(T) is

closed.

THEOREM 3.17. [Closed Graph Theorem] Let T : X — Y be a linear
operator defined from a Banach space X to a Banach space Y. If T'(T) is
closed, then T is bounded.
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PROOF. By assumption, I'(T) is closed in a Banach space, hence Banach
itself: if (z,, Tx,) — (z,y) is Cauchy, then y = Tz, so (z,y) € I'(T).

Consider the projections wx : (z,Tx) — x and 7y : (z,Txz) — Tz. Both
projections are bounded, mx is invertible (hence, its inverse is continuous),
and T' = my o my'. Hence, T is bounded. U

3.7. Integrals of continuous, Banach space valued functions

The integral of functions with values on a Banach space can be defined in
several ways, choosing which depends on the application we have in mind?.
Think of Banach space valued holomorphic functions: extending to them
the notion of Cauchy integrals requires integrating vector valued functions.
Having in mind holomorphic theory, we sketch here a construction of the
integral for a continuous function f : [a,b] — X, where X is Banach. The
definition of integral we discuss here does not require any foundational result
concerning Banach spaces. We only make use of linearity and completeness.

Let f : [a,b] — X be a continuous function with values in the Banach
space X. Since [a, b] is compact, f is uniformly continuous. For fixed n > 1,
let

(3.7.1) Su(f) = if (2‘77) b;ﬂ“ €X.

The sequence {5, (f)}2, is Cauchy in X. The calculation is similar to the
one we met when defining the Lebesgue measure. For any fixed ¢ > 0, there
exists § > 0 such that ||f(s) — f(¢)]] <eif |s —¢t] <. If 1/2™ <6, then

on

b—a 1 < j i—1 1
>ty () s (5|

[Sntm(f) = Su(NI =

7j=1
on 2m . ,
b—a 1 J 7 —1 [
< — A
= 2wk lr(e) ()
< (b—a)e.
By definition,
b
(3.7.2) / f)dt = lim S, (f).

2There are different definitions for the integral of a Banach space valued function. A
reasonably general, Lebesgue style one, is provided by Bochner integrals. See e.g. The
Bochner integral by Wenjing Wu. The weak version of the Bochner integral is the Pettis
integral. Here, however, we are integrating continuous functions, and more elementary
definitions of integral can be used.


http://home.ustc.edu.cn/~anprin/Bochnerintegral.pdf
http://home.ustc.edu.cn/~anprin/Bochnerintegral.pdf
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You might complain that this definition depends on the choice of very spe-
cial partitions of [a,b] (this makes additivity of the integral problematic,
for instance). Fortunately, the dependence is apparent. Given a partition
a=ty<t; < -+ <ty <ty =">0of[a,b] and sampling points ¢;_; < t: <t
let

m

SEE ML A ) = D FE)(E — ti).

J=1

.....

PROPOSITION 3.6. Let X be Banach and f : [a,b] — X continuous.
Then, for all € > 0 there is 6 > 0 such that if § ({t;}7y) < 6, then

|12 70— sty 5330 <

PROOF. Let n > 1 be such that Hfabf(t)dt — S"(f)H < e and that || f(s)—
f@)]] < eif |s —t] < 1/2". Consider a partition {t;}72, with resolution less
than § = 1/2", and a sampling set {t;}7., as above. Below, we denote by |/|
the Lebesgue measure of an interval I.

[8a(f) = St} {5520

27’L

= 1> > (F(1/2%) = FEDIL - ] O [ =1)/27,1/27]]
1Tl 0T 20 20

> > [F(@/2") = FED|| - 1t ] N [ = 1) /2", 1/2"]]

11 ity )0 1) /2, 1/20)0

< (b—a)e.

IA

O

EXERCISE 3.20. Let « : [a,b] — R be increasing (or, more generally, let
a : [a,b] — C be of bounded variation). For f : [a,b] — X continuous (where
X is Banach) provide a definition of the vector valued Stjelties integral

b
/ f(t)dat),

and show that it is well defined.

COROLLARY 3.5. Let f : [a,b] — X be a continuous function with values
i a Banach space X, and let T : X — Y be a bounded operator between X
and another Banach space Y. Then,

T (/abf(t)dt> _ /abT(f(t))dt.
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Proor. It suffices to pass in the limit for n — oo the two sides of the
equality

m

T (Z FE)(t; — tj1)> =3 T [f(t)] (t; — tj).

j=1
U

We give a sample application to Banach space valued holomorphic func-
tions. The reader might find it interesting and rewarding to translate in the
Banach valued world the chapter of a book of complex analysis concerning
complex integrals.

COROLLARY 3.6. [Morera’s theorem for Banach space valued functions/
Let f : Q — X be a continuous, Banach space valued function. Then f is
holomorphic if and only if faT f(2)dz =0 for all triangles T' contained in Q.

ProOOF. The function f is holomorphic if and only if it is weakly holo-
morphic, and by Morera’s theorem this holds if and only if

0= /BTl(f(z))dz _ z< i f(z)dz)

for all triangles and [ € X™, the second equality following from corollary 3.5.
Thus, [, f(z)dz = 0. O

3.8. Sesquilinear forms on Hilbert spaces

In this section we consider a few applications of the Banach theory con-
sidered above to Hilbert space theory.

Let H be a Hilbert space. A map [-,-] : H x H = C, [z,y] = (z,y), is a
sesquilinear form if it is conjugate linear in the first component and linear in
the second.

[, Ay + pz] = Az, y] + pla, 2], [Ny + pe,a] = Ny, 2] + 7z, 2].

For instance, the inner product (-, -) is sesquilinear.
Sesquilinear forms are determined by their action on the diagonal.

PROPOSITION 3.7. [Polarization identity] Let H be a complex Hilbert
space. If [-,] is a sesquilinear form, then the expression |x,y] can be ex-
pressed as a linear combination of expressions of the form |z, z|:

(3.8.1) [z,y] = i([a:%—y,x+y]—[x—y,x—y]—i[x—l—iy,x+iy]+i[m—iy,m—iy]).
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The proof consists in working out the right hand side of (3.8.1). The po-
larization identity holds in Hilbert spaces over R under the extra hypothesis
that [z,y] = [y, x] is commutative. The form

) ()] = (3 1) (1) = e

provides an example of a bi-linear form on R? for which the polarization
identity does not hold.
['7

A sesquilinear form H x H —]> C is bounded if there is a positive constant
C' such that

|, 9]l < Clle]l -yl

for all z,y in H. Using homogeneity in each component, this is equivalent to
requiring that there is a (possibly different) constant C' > 0 such that

sup [z, y]] < C.

]l llyll<1

All bounded sesquilinear forms are obtained by ”sandwiching” a bounded
linear operator between two vectors.

PROPOSITION 3.8. (i) If Ae L(H), then
(3.8.2) [z, y] == (z, Ay)
is a bounded, sesquilinear form: |[x,y]| < ||A|l|l=]||ly]l-

(ii) Viceversa, for any bounded sesquilinear form [-,-] there exists A €

L(H).

PROOF. (i) is clear. (ii) The functional y — [x,y] is bounded, then, by
Riesz theorem for Hilbert spaces, there is Az € H such that [z, y] = (Az,y).
It is easy to show that x — Ax is a linear map from H to H. Clearly A is
bounded,

| Al = sup sup |[z,y]|.

lyll<1lzlI<1
O
Boundedness can be checked separately for each variable.
PROPOSITION 3.9. Let [, -] be a sesquilinear form on H. If x +— [x,y] is

a bounded conjugate-linear functional for each y, and y — [x,y] is a bounded
linear functional for each x, then [-,-] is bounded.
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PROOF. Since z — [z,y] = A\y(x) is a bounded linear functional, there is
Ay € H such that [z,y] = (z, Ay). The map A is clearly linear, A: H — H,
and ||\ ||g= = ||Ay||. For each x we have that

sup |[z,y]| < C(x),
llyll<1

a constant depending on x. By Banach-Steinhaus,

00 > sup [[Ay[[a- = sup [|Ay[| = [[Al,
lyll<1 lyll<1

as wished. O

The sesquilinear form [-, -] is symmetric if [y, ] = [z, y]. If there is a linear
operator A : H — H such that [z,y] = [z, Ay], symmetry translates into:

(z, Ay) = [z,y] = [y, 7] = (y, Ar) = (Ax,y).

That is, A = A* is self-adjoint.
It is remarkable that all such symmetric sesquilinear forms on a Hilbert
space are bounded.

THEOREM 3.18. [Hellinger-Toeplitz] Let A : H — H be an everywhere
defined self-adjoint operator on a Hilbert space H :

(Az,y) = (2, Ay) if z,y € H.
Then, A is bounded.

PRrooF. Let (x,, Az,) be a sequence in I'(A) with z,, — x and Az,, — v.
For all z € H:

(z,y) = lim (z, Az,) = lim (Az, x,)
n—oo n—oo
= (Az,x) = lim (z, Ax),

n—oo
hence, Az =y, so I'(A) is closed, and we can use the closed graph theorem.
O

A sesquilinear [, -] form is coercive if
(3.8.3) [z, 7] > c|z||?

for some ¢ > 0.
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THEOREM 3.19 (Lax-Milgram). Let [-,-] be a bounded sesquilinear form
with bound C', which is coercive with constant ¢ > 0. Then, for all w in H
there 1s a unique x such that:

(3.8.4) [z,y] = (w,y).

PROOF. We saw earlier that [z,y] = (Ax,y), with A € L(H). We have
to prove that A is a bijection.

(i) A is injective. In fact,
cllzl* < [z, 2] = (Az, z) < ||| - || Az]],
which imples that z = 0 when Az = 0.

(ii)) Ran(A) is closed in H. Let Az, — w in H. In particular, {Az,}
is Cauchy and, using coercivity as in (i),

[0 = @nyll < 1/cl|Azn — Az,

so that {x,} is Cauchy, too, hence z,, — x. Since A is bounded,
w = lim,, Ax,, = Ax.

(iii) Ran(A) = H. By (ii) and the general theory, we can write H =
Ran(A) @ (H © Ran(A)). Let k € H © Ran(A):

cllw]* < [w,w] = (Aw|w) = 0,

thus w = 0. Hence, Ran(A) = H.

3.9. The Hilbert space adjoint of an operator

In this section we define the Hilbert space adjoint of a bounded operator,
and prove some of its properties. This material is not prerequisite for the
chapter on spectral theory.

3.9.1. Basic properties of the adjoint. Let T € L(H). Its adjoint
T* € L(H) is defined on y € H by:

(3.9.1) (z,Ty) = (T'z,y).
Equation (3.9.1) defines a linear operator. For z,y,2 € H and a,b € C,

(, T"(ay + bz)) = (Tz,ay+ bz)
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= a(Tx,y) +b(Tx,z)
= a(z, T"y) + blx,T"z)
= (x,aT"y+bT"z).

The map 7' +— T™ is conjugate linear,

(x,(aS + bT)"y)

((aS 4+ 0T)x,y)
a(Sz,y) +b(Tz,y)
(z,(@S* + bT™*)y).

The operator T is self-adjoint if T* =T, and, more generally, it is normal if
Tr* =TT.

THEOREM 3.20. Let S, T be bounded operators on H.
(i) (T7)" =
() (7] = {I7°]].
(iii) (T'5)" = S*T™.
(iv) T s invertible if and only if T* is invertible, and (T—')* = (T*)~!
)

(v) T+ T* is continuous with respect to the uniform and the weak op-
erator topology (but not with respect to the strong operator topology).

(vi) 17T = (|1,
PROOF. (i) We have

(x,(T")"y) = (T"x,y) = (y, T*zx) = (Ty,x) = (x,Ty).

(ii)) We have

|T*|| = sup [|Ty| = sup sup |(z,T"y)]
lyll=1 lzl|=1 [lyl|=1
= sup sup |[(Tz,y)|
ll|=1 ||yl =1
< |7,

showing that |77 < [T, and so, by (i), [T = [[(T*)*[| < [|T™]-
(iii) Simple algebra.
(iv) By definition,

(z, (T7')'T*y) = (TT 'a,y) = (x,y) = (T 'Tx,y) = (2, T(T"")y).
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(v) For the uniform topology, see (ii). For the weak operator topology,
it T, —— T.
woT
(vi) The inequality ||T*T|| < ||T||* follows from (ii). In the other direc-
tion,
|1T||* = (T2, Tx) = (x, T"Tx) < |T°T - [J]*.
O

About the negative statement on SOT in (iii), see the examples after the
definition of the operator topologies.

COROLLARY 3.7. (i) If S and T are self-adjoint and commute, ST =
TS, then ST is self-adjoint.

(ii) If T is self-adjoint, then | T?|| = |T||*, and r(T), the spectral radius
of T, is

(3.9.2) r(T) = ||T.
PROOF. (i) is a simple algebraic calculation,

(x, TSy) = (x,8Ty) = (T"S*z,y)
= (I'Sz,y),

shows that (7°'S)* = T'S.
The first assertion in (ii) follows from (vi) in the previous theorem, so
that
r(T) = lim |T7°]Y" = lim |72V = ||T],
n—oo m—o0

since | 72" = |72 ||>. O
3.9.2. Spectrum and adjoint.
LEMMA 3.2. The spectrum of T* is o(T*) = o(T).

PRrOOF. For complex A, A\I — T is invertible if and only if (A\] — T)* =
M — T* is invertible. 0]

When we look more closely inside the spectrum, the picture is more com-
plex. For instance, the shift 7; on £2(N) does not have eigenvalues, while any
A € D is an eigenvalue for the the back-shift 7. We split the spectrum of 7'
into three components.
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(1) the point spectrum o,(T) is the set of the eigenvalues A of T'.
(3.9.3) Tv = \v

for some v # 0 in H. Any such v is called an eigenvector relative to
A. The closed, linear subspace V) of the eigenvectors relative to A
is the eigenspace relative to A. In particular, if ker(7") # 0, 0 is an
eigenvalue with eigenspace ker(7T').

(ii) The continuous spectrum o.(T) is the set of those A € o(T') such
that A\I — T has dense range in H.

(iii) The residual spectrum o,.s(T) of T is the set of those A which are
not eigenvalues, and such that A\l —T" does not have dense range in
H.

Items (ii) and (iii) only happen in infinite dimension. When H = C¥, the
spectrum is the set of the eigenvalues, and if A\ is an eigenvalue of A, then
dim(Ran(AI — A)) = N —dim(ker(A] — A)) < N, hence the range of A\ — A

is not dense.

PROPOSITION 3.10. (1) If X € 0,e5(T), then X € o4(T).
(i) If X € 0,(T), then X\ € 04(T) U 0,es(T).

PROOF. (i) Suppose A € 0,.5(T) and consider 0 # k € HS Cl(Ran(\ —T)).
For all z in H,

(x, (A —T*k) = (M — Tz, k) =0,

hence, T*k = \k.
(i) Let k£ # 0 be such that Tk = Ak. Then, for all x in H.

(N =T, k) = (x, (A —T)k) =0,

showing that & is orthogonal to Ran(Al — T*), which is then not dense in
H. 0

Consider for instance the spectra of the shift M, on H?*(D), and of its
adjoint M7,
f(z) = f(0)

M f(z) = HE

If A\ € D, then it is an eigenvalue of M}. Since 0,(M,) = 0, by (ii) A €
UT@S(MZ)-
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If |\| = 1 and A € 0,.5(M.), by (i) we would have A € o,(M*), which is
not true because the non-vanishing solutions of

are multiples of f(z) = = 3% \"z", which does not belong to H?.
Hence, A € o.(M.,).

Again by (i), if [\ = 1, A € 0,.(M}), because X is not an eigenvalue of
M,. Summarizing:

(i) op(M:) =D, 0.(M?) =T, 0,es(M7) = 0.
(ii) 0p(M.) =0, 0o(M.) =T, 0yes(M.) = D.

3.9.3. The spectrum of a bounded, self-adjoint operator. We
have next a foundational result on self-adjoint operators.

THEOREM 3.21. If T'="T*, then o(T) C R.

PrROOF. We show that if a,b € R and b # 0, then a+1ib € p(T). Consider
the sesquilinear form

B(z,y) = (T'=(a+ib))z, (T' = (a+ib))y) = (T —(a—ib))(T = (a+ib))z,y),
which is coercive since, using again T' = T,

B(z,x) = (T — (a+1ib))x, (T — (a+1ib))x)
= (T = a)z|* + b*||=|]* + ib(—(Tz, z) + (x, Tx))
W — a)z|?* + 0% =]

By Lax-Milgram lemma, (7" — (a — ib))(T — (a + b)) is invertible, hence
T —(a+ib)is 1 —1and T — (a — ib) is onto. Applying the same reasoning
(a —ib) instead of T"— (a + ib), we have that T'— (a + ib) is 1 — 1 and
a — ib) is onto. Hence, T'— (a + ib) is invertible (incidentally, as well as

T —
T—(
T — (a+ —ib)). O

We record here a useful corollary of Lax-Milgram lemma.

COROLLARY 3.8. Let pp € C. Then, u € o(A) if and only if there exist
vectors {h;}32, in H with ||h;|| =1, such that

(3.9.4) I(A — pul)hy|| — 0.
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PROOF. Suppose such vectors do not exist. Then, there is € > 0 such
that ||(A — ul)h|| > €||h||, hence the sesquilinear form

B(h, k) = (A= ul)h, (A — pl)k) = ((A = uI)(A — pl)h, k)

is coercive, and by Lax-Milgram (A — ul)? is invertible, hence A — ul is
invertible, u € p(A).
In the other direction, suppose A — pf is invertible. For [|A|| = 1,
1(A = )" (A = uDh|| _ 1

oo>H(A—MI)_ ||2 H(A—M[>hH N H(A—Ml)h“’

showing that (3.9.4) does not hold. O

The spectrum of a self-adjoint operator has no residual part.

COROLLARY 3.9. If T =T*, then 0,¢s(T) = 0.

PROOF. If \ € 0,6,(T), then A = X € 0,(T*) = 0,,(T), which is a contra-
diction. g

In infinite dimensions, it can happen that A : H — H has an eigenvalue
A, yet Ran(AI — A) is the whole of H: think of the back-shift 7}, for which
ker(77) # 0 (A = 0 is an eigenvalue), but Ran(r}) = (*(N). If A = A* is
self-adjoint, however, things are similar to the finite dimensional case.

COROLLARY 3.10. If T'=T* and X € 0,(T), then Ran(A\ —T) is not
dense in H.

PROOF. Since A is real, A\I — T is self-adjoint, and it suffices to show the
statement for A = 0. We show, more precisely, that if 0 # x € ker(T'), then
x L Ran(T), so that the latter is not dense in H. In fact,

(Ty,xz) = (y,Tx) = 0.
U

Actually, we can be more precise in locating the spectrum of T" = T™.

THEOREM 3.22. If T 1is selfadjoint, and

(3.9.5) a(T) := inf (z,Tx) and b(T') := sup (z,Tx),

[|lzll=1 |lz||=1

then a(T),b(T) € o(T) and [a(T),b(T)] 2 o(T).
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PROOF. Observe first that a(T + ¢I) = a(T) + ¢, b(T + ¢I) = b(T) + ¢,
and

o(T+cl)={X: M — (T + ¢l) is not invertible} = o(T) + ¢,
and we can suppose a(7") = 0. If A > b(T), then
(@, (M = T)z) = (A = b(T))||[|*

shows that B(z,y) := (x, (A — T)y) is bounded and coercive, and we have
seen before that this implies that A\l — T is invertible, hence that A € p(T).
The same reasoning applies, changing sign, with A < a(7"). This shows
o(T) C [a(T), b(T)].

On the other hand, b(T") < ||T'|| = r(T), the spectral radius of T". Hence,
b(T) € o(T). The same reasoning, but choosing the normalization b(T") = 0,
shows that a(T) € o(T). O

3.9.4. The Hausdorff distance between spectra. Given two closed
sets A, B in R (or in any metric space), their Hausdorff distance dy (A, B) is
defined as

(3.9.6) dy(A, B) = max <sup inf |z — yl,sup inf |z — y|) .
rcAYEDB yEB z€A

To have a better picture of this quantity, let d(z, B) = inf,cp | —y|. Asking
supge4 infyep |z — y| < € means that all points of A are within distance e
from B, and asking dy(A, B) < € means that this requirement also holds
with the roles of A and B interchanged. When ¢ = 0, we are requiring that
ACBand BC A,ie. A=B.

EXERCISE 3.21. Let A, B be subsets, not necessarily closed, of a metric
space. Show that dy(A, B) =0 if and only if CI(A) = CI(B).

Also, show that dy defines a distance, when restricted to nonempty closed
sets.

THEOREM 3.23. If S, T are self-adjoint, then
(3.9.7) dy(o(9),a(T)) < ||S=T|

PROOF. The case S = T is trivial. By compactness of spectra, we can re-
place sup / inf by max / min. Suppose by contradiction that maxe,(s) mingeq(r) [s—
t| > ||S =T, i.e. that for some s € o(S),

min |s —t| > ||S =1
teo(T)
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Thus s € p(T'). i.e. T'—sl is invertible, and by the spectral mapping theorem
for Banach algebras,

o((T —s)7") = (o(T) = s)7".

The spectral radius 7((o(T) — sI)~!) satisfies, since (o(T) — sI)~! is self-
adjoint:

(T = s~ = r((o(T) = sI)™)
(3.9.8) = max it —s|t<||IS—T| "

We next decompose S — sl in a way which allows us to use the information
we have gathered so far:

S—sI=T—sI+S-T=(T—-sI)(I+(T—s)"(S-T)).
The first factor is invertible, and the second is, too, because by (3.9.8)
(T —sD)7H (S D) < (T —sD)7H - IS =T < 1.
This shows that s ¢ o(S), a contradiction. O

We finish this section with some observations on the adjoint.

EXERCISE 3.22. Prove the following properties.

(i) Let T € L(H). Then, T = = and T = IS5 are self-adjoint,
and

T =Tg+17.

This decomposition is somehow analogous to the algebraic expression
of a complex number.

(ii) The decomposition in (i) is unique. If T = A+ iB with A, B self-
adjoint, then A =Tgr and B = T7.

(iii) If A is self-adjoint, then (x, Ax) is real,

(x, Az) = (Ax,z) = (x, Az).

(iv) A is selfadjoint if and only if B = iA is skew-adjoint, B* = —B.
In this case, (x, Bx) is purely imaginary.

(v) TrTgr =TTy if and only if T*T = TT*, i.e. if T is normal.
(vi) If T is normal, then ||T|| = || T*T||V? = /|| T? + T3]|.






CHAPTER 4

Compact operators and their spectra

If you are just interested in compact, self-adjoint operators on a Hilbert
space, you find a different narrative of the same theory in chapter 7.

4.1. Preliminaries on compactness

4.1.1. Compact subsets of Banach spaces. The following lemma
shows that closed subspaces of Banach spaces exhibit some orthogonality
properties.

LEMMA 4.1 (Riesz lemma in Banach spaces). Let X be a Banach space
and Y C X a proper, closed subspace. Let 0 < o < 1. Then, there exists z
in X with ||z|| = 1 such that « < d(z,Y) < 1.

PROOF. Let v € X\ Y, a:=d(v,Y) > 0, and choose yy € Y such that
a < |lv—yol <& (draw a picture to have an intuition of what’s going on).

Set z = IIZ:ZEH’ so that ||z|]| = 1. For all y in Y we have

lv =0 = llv = wollyll

[l

[[v = yol
_ o=l oy e v
lv — ol
a
— >
lv = oll
by our choice of . O

COROLLARY 4.1. Let X be a Banach space. The unit ball in X is compact
in the norm topology if and only if X is finite dimensional.

PRroOOF. The if direction easily follows from Weierstrass theorem on ex-
tremals of continuous functions.

In the other direction, suppose X is infinite dimensional, and construct
a sequence of vectors and subspaces as follows.

(i) Pick any vector z; with ||z;|| = 1, and let ¥; = span{z,} C X.

93



94 4. COMPACT OPERATORS AND THEIR SPECTRA

(ii) By Riesz lemma, you can pick a second vector xs with ||z3]| = 1 and
d(xe,Y1) > 1—1/2, and let Y3 = span{x, 22} C X.

(iii) Iterate, so that d(x,,Y, 1) > 1—1/n,andlet Y, = span{xy,...,x,} C
X.

This way, ||, — x,|| > 1/3 for all m # n. Cover the unit ball by open
balls of radius 1/6, so that no one can contain more than one point from the
sequence {x,}; hence, the unit ball is not compact. 0]

4.1.2. Compact operators: generalities. Linear functionals on a Ba-
nach space X are maps [ : X — C, with values in the 1-dimensional Banach
space C. Next level of complexity are bounded, linear maps T : X — Y,
where Y is a finite dimensional Banach space. If {l,,}2V_, is a basis for Y*, then
C:ym (L), ..., In(y) = SN 1;(y)e; is an isomorphism between Y and
CN ({e;} is here the standard basis of CV), and C o T'(z) = Ziv:l [j(Tx)e,
identifies 7" with a map from X to CV. All this makes sense with little
changes if 7'(X) is finite dimensional in Y, a Banach space. In this case we
say that T is finite rank.

Now the closed unit ball B; in X is not compact if X is infinite dimen-
sional and Banach; but if T is finite rank, 7'(B;) is both bounded and closed
in Y, hence it is compact.

We say that an operator T': X — Y between Banach spaces is compact
if T(By) is compact in Y.

EXERCISE 4.1. Let m : N — C be bounded, and consider the bounded operator Myp =
me, My, : (2 — (2. Show that M,, is finite rank if and only if m(j) = 0 for all, but a
finite set of j’s in N; and that is is compact if and only if lim;_, .o m(j) = 0.

Recall that a sequence {z,} in a Banach space X converges to x weakly,
T, — x, if
w

lim I(z,) = (z)

n—oo

for all [ € X*.
The theorem below is crucial in many applications, e.g. to Calculus of
Variations.

THEOREM 4.1. If T is compact, it maps weakly convergent sequences to
norm convergent sequences.

PRrOOF. By Banach-Steinhaus, x, — = implies that ||z,|| < C' is norm
w

bounded, hence

(Tz,) —U(Tx) = (T"l)(x, —2) =0
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as n — oo for all [ € Y*. This means that T'(x,,) — T'(x) weakly in Y, hence

that || Tz,| < K is bounded, too.

On the other hand, if by contradiction |7z, — T'z| - 0, then | Tz, —
Tz|| > € for a subsequence, and by compactness of T' there exists a sub-
subsequence {T' xnjk} strongly convergent to some y # Tz in Y. But then
Txnjk j y # Tx, contradicting the assumption. Il

The oppposite implication holds, for instance, if X is a reflexive space.

THEOREM 4.2. Let X = X™** be a reflexive Banach space, andT : X —Y
be an operator with values in a Banach space Y. If T maps weakly convergent
sequences to norm convergent sequences, then T is compact.

PROOF. Let B be the unit ball in X and suppose that O

The spectrum of a compact operator on a infinite dimensional Banach
space always contains 0.

PROPOSITION 4.1. Let T : X — X be a compact operator on an infinite

dimensional Banach space X. Then, T is not surjective. In particular, 0 €
o(T).

PROOF. Let B be the unit ball in X. Suppose T' is surjective. By the
open mapping theorem, T'(B) contains a closed ball eB, which is compact,
since T'(B) is compact. By corollary 4.1, X is finite dimensional. O

4.2. Compact operators on Hilbert spaces

4.2.1. Compactness vs. finite rank. The picture in the Hilbert space
case is much cleaner.

THEOREM 4.3. Let T € L(H) be a compact operator on a separable Hilbert
space. Then, there are finite rank operators T,, on H such that |T,,—T|| — 0.

PROOF. Let {e,} be a o.n.b. for H and set

Ap 1= sup |Tx|| > Aga-

|lz||=1,x€span{e,...,en }+

Let A = lim,, \, We start by proving that A = 0. Pick first z,, € span{ey,...,e,}*
such that | Tx,| > A\,/2 > A/2. Observe that z,, — 0:

[(znw)| =

(0 - 65)es)
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= D (@ ey e)
j=n+1
00 1/2 00 1/2
< (z |<xn,ej>|2> (z |<y,ej>|2)
j=n+1 Jj=n+1
00 1/2
< H%H(Z !<y,ej>|2>
j=n+1
— 0

as n — o0o. By the previous theorem, |7z, | — 0 because T" is compact,
hence, A = 0.
Let now 7, be the projection onto span(ey,...,e,), and

T.h = (Tm,)h

=T (Z(ej,h)ej>

J=1
n

= Z<ej7 h>Tejv

j=1

which has finite rank, and satisfies, with 7> being the projection onto span(ey, . . .

IT =T, = IIT(IL—wn)II
[T ||
A — 0

as n — 00. ]

4.2.2. Fredholm Theorem and its consequences.

THEOREM 4.4. Let T' be a compact operator on a separable Hilbert space
H. Then, (I — zt)™" ewists for z € C\ D, where D is a discrete set in C.
Moreover, z € D if and only if the equation x = 2T'x has a solution x # 0.

The idea of the proof consists in first localizing the problem, then reducing
it, in substance, to a similar problem concerning finite rank operators. The
latter can be rephrased in terms of zeros of a holomorphic determinant, and
this is where the discrete set makes its appearence.

Proor. We start with a formal calculation also involving a finite rank
operator F',

I—2T = (I—2T+F)—F

L en)
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(4.2.1) = (I-F{I—2T+F) "I -2T+F),

provided (I —zT+F')~ 1 exists. The advantage of the first factor in the last ex-
pression over [ —z7T is that the former has the form /—|finite rank operator],
on which we can use tools from ordinary linear algebra.

We start by proving the theorem on discs. Let zp a complex number, and
consider z’s such that

[2T — 2T = [z — 20| - |T|| < 1/2,
and a finite rank F' such that
20T — F|| < 1/2,

so that (I — 2T + F)~!' =35> (2T — F)™ exists by the convergence of the
Neumann series. Define then g(z) = F(I — 2T + F)~!, a finite rank operator
which holomorphically depends on z, and note that above we have computed:

I—2T=(I—-g(2)I—-=2T+F),
the second factor on the right being invertible. Then,

e = = g(z)z has a solution x # 0 if and only if y = 2Ty has a solution
y #0;

e [ — g(z) is invertible if and only I — 2T is invertible.

Let ey, ..., e, be a bases for Ran(F'), and observe that a solution to z = g(z)x
must have the form x = > aje;, since it belongs to Ran(g(z)) C Ran(F').
On the other hand, the operator F' must have the form:

n

Fx = Z(fj,x>ej

J=1

for some fi,..., f, € H. Plug this into the equation,

Zajej = r=g(2)z
=0
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= > (Z ai{[(I — 2T + F)_ll*fjaez>> €.

j=1 \1=0

i.e. we look for a nonzero solution to

n n

(422) a; =Y af((I-2T+F)fi,e) => alfi(2).e), j=1,...,n.

=0 =0

Such solution exists if and only if d(z) # 0, where

d(z) =det [6;; — (f;(2), el>]j,l:1 ..... n°

The matrix has holomorphic entries, hence, one of the two can happen:
d(z) = 0 in B(zo, ﬁ), or, there is a discrete subset D, of B(z, ﬁ)
such that d(z) =0 for z € D,,.

We claim that if d(z) # 0, then I — g(z) is invertible, and so is [ — 27T
Fix v € H and look for solution x = u + Z?:o aje; to the equation

T — g(Z)l' = u,

1.e.

g9(z)u = Zajej —9(2) (Z alel)
- Zajej - (Z a([(I — 2T + F)7'"f;, el>> €

j=1 \ =0

which is a nonhomogeneous version of (4.2.2), having solution if d(z) # 0.

At his point, we have also shown that (I — 27)~! does not exist if and
only if x = 2Tz has a nonzero solution.

We have now to pass from local to global. The subset D’ of the limit
(accumulation) points of D is closed by general topology, and it is open by
what we have just seen, hence it is either empty or the whole complex plane.
Since {1/z: z € D} C o(T) is nonempty and compact, D' = ). Hence, D is
discrete. 0J

COROLLARY 4.2. [Fredholm alternative] Let T be a compact operator on a
separable Hilbert space. If I —'T is not invertible, then x = Tx has a nonzero
solution.

PRrROOF. Apply the theorem to z = 1. O
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THEOREM 4.5. [Riesz-Schauder Theorem] Let T be a compact operator
on a separable Hilbert space H. Then, o(T') can only have 0 as accumulation
point (equivalently: o(T) \ {0} is discrete in C\ {0}).

Moreover, the eigenspace Ey relative to a nonzero X\ € o(T) is finite
dimensional.

PROOF. For \ # 0, we have A\l — T = X (I — T, which is invertible for
1/X in a discrete set in C, i.e. for A in a bounded, discrete set in C \ {0},
having 0 as accumulation point if the set of the 1/\’s was infinite.

Suppose that E) is infinite dimensional for an eigenvalue A # 0, observe
that E) is closed, and let £ = {e,}>°; be an o.n.b. for it. Then, £ is bounded,
but TE = A€ is not precompact (as we have seen in an exercise). U

4.2.3. Self-adjoint compact operators. If we put together what we
have seen so far on the topic, we have the fundamental:

THEOREM 4.6. [Hilbert-Schmidt Theorem] Let A be a compact self-adjoint
operator on a (infinite dimensional) separable Hilbert space H. Then o(A) C
R. Moreover, there is a o.n.b. {e,}°, and a real sequence {\,}°>, of H
(possibly with repetitions) such that

Ae,, = \,e,
and
(4.2.3) lim A, = 0.
n—oo

If A\, # 0, the eigenspaces E\, = {x € H : Ax = \,x} are finite dimensional.

PROOF. Since A = A*, 0(A) C R. For an eigenvalue pu # 0 of A, the
image of the closed unit ball B in H contains |x| times the unit ball in E,,,
thus the latter has to be compact, which only is if dim(£,) < oo.

By Fredholm theorem, o(A) \ {0} = {im}, where 1/u,, has no point of
accumulation. If the number of such u,,’s is finite, then A is finite rank. If
it is infinite, then w,, — 0.

Arrange the elements in decreasing order |py| > |pe| > -+ > 0, where it
might happen that p; = —p;—1 > 0 for some ¢’s. Let M; = 4(£,,). Consider
then a orthonormal basis e, ... ,eﬁwi for each F,,, and a possibly countable
orthonormal basis f1, fa,... of ker(A). For both the cases where the number
of the nonzero eigenvalues if finite, or infinite, we can arrange all these vectors
in a sequence {e,} with Ae,, = A\, (and A, is one of the y;’s, or \,, = 0), and
A, — 0 as n — oo.
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Finally, if \,, # \,, and Az = \,,x, Ay = \,y, then
Am(2,y) = (Az,y) = (z, Ay) = (2, y),

hence, (x,y) = 0. In particular, {e,} is a orthonormal system. If it were not
complete, then

K :=span{e,} C H, with A(K) = K.

We have then A : H S K — H o K. In fact, (e,,x) = 0 implies that
(en, Ax) = (Aen,z) = M(en,z) = 0. Clearly Alpex : HOK - HO K
is self-adjoint and compact. Since ker(A) C K. ker(A|gox) = 0. Then,
Ak has an eigenvalue € R\ {0}. The eigenvalue j is not even one of
the previous nonzero eigenvalues, otherwise its eigenspace in H & K would
lie in E,, C K for some i. It is an eigenvalue for A, hence {y;} U{0} did not
exhaust o(A), and we have reached a contradiction. O

COROLLARY 4.3. Let A be a compact self-adjoint operator on a (infinite
dimensional) separable Hilbert space H. Then,

(4.2.4) H = Ran(A) & ker(A).

Proor. Let {\,} be the sequence of the nonzero eigenvalues of A. By
Hilbert-Schmidt theorem, each x in H can be written as

T = Z HEM:E + err(A)l’,

and (i) Az =), A\lg, x; (i) >, g, 2 L Ile(ayz. Hence,

Ran(A) = @ E,, 1 ker(A).

4.3. The matrix representation of bounded operators

Any separable, infinite dimensional Hilbert space is unitarily isomorphic
to £2 = (*(N,) (where N, = {1,2,...} might be replaced by any infinite,
countable set). To any linear operator A : H — A we can then associate the
infinite matrix [Ay, ,]5,,—;, where A, , = (en,, Ae,) = A% . We can perform
on infinite matrices representing bounded operators many of the calculations
we are used to do in the finite dimensional case, which is often useful. In
order to make calculations into proofs, it has to be clear in which sense the
involved infinite sums converge, and which manipulations are licit. In this
section we will see some results, examples, and counterexamples.

This material is not needed in the sequel, but it can be useful in working
with concrete operators.
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4.3.1. Bounded operators on separable Hilbert spaces as infinite
matrices. If A € L(H) is bounded, and x = ) x,e,, then, by the continuity
of A and of the inner product,

(4.3.1) (em, Az) = <em,Aanen> = <em,2anen>
(4.3.2) = Z (em, Aep) x, = Z AT

n

Since x — (e, Ax) is a bounded linear functional on H, the row sequence
{A,.. 122, belongs to £2. This also implies that the numerical series above
converge absolutely. We will write A in terms of its rows and columns,

Ay
A=Ay | =47

Basically, we have proved the following.

PROPOSITION 4.2. The infinite matriv A = [A,, ] represents a bounded
operator on 02 if and only if:

(i) each row of A belongs to (*, and

(ii) for all x € 2, (Apnzn)oo, = (AL, 2))°_, (where ! denotes the
transpose) belongs to (%, and the operator (x,)2; — (Amn®n)2_;.

Moreover, (i) and (ii) might be equivalently required to hold for the columns
instead of the rows.

An immediate consequence of proposition 4.2 is the following version of
Fubini theorem for infinite sums, and the usual row-times-product rule for
the product of matrices.

COROLLARY 4.4 (Change of order of summation in infinite sums). Let A
be a bounded operator on (% and x,y € (*. Then,

(4.3.3) Z ( y_mAmm) Ty = Zy_m (Z Ammxn) .

n

If A and B are bounded operators on ¢, then

(434) (BA)m,n = Z Bm,jAj,n‘
J
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PrOOF. The identity (4.3.3) follows from

Z%(ZAmn:vn> = (y, Az)
TR o (z A;,mym) .

n

n

The row-times-product rule for the product of operators follows from Plancherel
formula (used in the equality from first to second line):

(BA)mn = (em,BAe,) = (B"en, Aey)
= Y (Brem)i(Aen); =Y (e, Brem){e;, Aey)

J J

= Z(em, Be;)(e;, Aey)
J
J
O

The relation (4.3.3) can be used to change order of summation when
several operators are composed. For instance, if A and B are bounded and
x € (%, then

(435) Z (Z Bm,jAj,n> Tp = Z Bm,j (Z Aj,nxn> )

since (Bp,;);2, lies in (2.
We might prove (4.3.5) by a different argument:

Z(ZBWAM) tn = D (BA)pin = (BAT),

n n

= [B(A2)] = Y Bu;(Ax);

J
= ZBm’j <Z Ajmflfn) .
J n
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EXERCISE 4.2. Let U be a bounded operator on (?, U = (UNU?|...) =
Ui
Uy |. Show that U is unitary if and only if UL, UL, ... are an orthonormal

basis for (%, if and only if UL, U?,... are an orthonormal basis for (2.

One might think that (4.3.3) follows from Fubini theorem for series. The
following exercise shows that this is not the case. In fact, Fubini theorem
requires that

(4.3.6) D yml[Amnll2n] < o0,

which is a condition involving the absolute values of the matrix entries. The
requirement (4.3.6) is that A = [| A, |]m.n defines a bounded operator on ¢2.

PROPOSITION 4.3. (1) Let {z,}5°, be a sequence of positive num-
bers, x(n) > 0. Then, x € (% if and only if

(4.3.7) > z(n)y(n) < oo

n

for all positive y € (2.

(ii) Let A = [A(m,n)]ys =1 be an infinite matriz with positive entries,
A(m,n) > 0. Then, A defines a bounded operator on ¢ if and only
if

(4.3.8) Zm(m)A(m, n)y(n) < oo

for all positive x,y € (2.

PROOF. (i) The only if direction follows from Cauchy-Schwarz. Suppose
(4.3.7) holds. Then, it is easy to show that x(n) — 0 as n — oo. Suppose
by contradiction that Y z(n)? = co: we will find a sequence e(n) \, 0 such
that (a) >, x(n)%e(n) = oo, but (b) Y= z(n)?*e(n)* < co. If we do this, the
sequence y(n) = z(n)e(n) belongs to £2, but fails to satisfy (4.3.7). Let’s do
the construction, assuming with no loss of generality that z(n) <1 for all n.
Find an increasing sequence n; (n; = 0) such that

and let €(n) = Jl for n;_; +1 <n <mn;. Then, both (a) and (b) hold.
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(ii) Again, the only if direction is elementary. Suppose now (4.3.8) holds.
By (i), m+— Y., A(m,n)y(n) and n+— > A(m,n)z(m) are £ sequences,

Z (Z A(m,n)y(n)) < 00, Z (Z A(m,n)a:(m)) < 00.

Thus, both A and A* are everywhere defined, and so is A*A, which is self-
adjoint. By the Hellinger-Toeplitz theorem, A*A is bounded, hence

|Az]|% = (x, A" Az) < ||A*All gyl
which shows that A is bounded. O

EXERCISE 4.3. Construct a bounded operator on (*(N) such that (4.3.6)
does not hold. Here is possible pathway.

(i) Consider the discrete Fourier transform Fy : (2({0,1,..., N —

1}),
| Nl
4.3.9 FNT)p = —— e2mimn/N g

e2mimn/N

That is, the matriz elements of Fy are (FN)mn = 75
Show that Fy is a unitary operator.

(ii) Consider the operator Ax having as entries the moduli of the entries of

(iii) Construct a unitary operator A on (*(N) in block diagonal form, where
the blocks are Fy with increasing N. Show that A does not satisfy (4.3.6).

(iv) Modify the construction to construct an operator A whjich is bounded and
self-adjoint, yet (4.3.6) fails.

4.3.2. Hilbert-Schmidt operators on Hilbert spaces. Let A be a
bounded operator on a separable Hilbert space H, {e,} be a orthonormal
basis for H, and {A,,,}mn be the matrix coefficients of A with respect to
the basis. The Hilbert-Schmidt norm of A is

(4.3.10) 1Al s =) [Amal*

PROPOSITION 4.4. The Hilbert-Schmidt norm of A is independent of the
basis.
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PROOF. The statement is equivalent to show that, if U : 2 — 2 is

unitary, then
|U*AU s = [|Allms,

which is what we do below. The matrix coefficients of U* AU are
(U*AU ) Z UnifiiUin =Y UimAijUjn.
4,J
We can freely change the order of summation by corollary 4.4:

|U*AU |35 = Z UiimAi jU;nUm A Ug

m7n7i7j7k7l

= Z (Z Ui,mm) A_Z,] (Z mUka"> Alvk

/L'7j’k:’l

= Y 0iaAi 8k A

,9,k,l
= ) AirAix
ik
= [lAl%s.
U

A bounded operator A is in the Hilbert-Schmidt class, A € HS(H), if
|Allms < oo. The map A +— [A,,,] is unitary identification of HS with
*(N, x N,). In particular, HS(H) has a Hilbert space structure. We also
have

(4.3.11) A< Al s

Also observe that membership in HS(H) only depends on the moduli | A, ,,|
of the matrix coefficients (compare with exercise 4.3). We have the following
important result.

THEOREM 4.7. Hilbert-Schmaudt operators are compact.
PrRoOOF. For M > 1 fixed, let AM) he the infinite matrix with

40D _ Apnif1<m <M
™ 0 if mo> M.

Then AM) represents a finite rank operator, and
14— AMDE < A= AM5g = 3" Y Al =0
m>M n>1

as M — oo by dominated convergence. Il
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EXERCISE 4.4. (i) Characterize self-adjoint Hilbert-Schmidt opera-
tors in terms of their spectrum.

(ii) Find a compact operator which is not Hilbert-Schmidt.

The Hilbert-Schmidt class can be introduced in a coordinate-free way,
but we will not do it here.

4.3.3. The trace of a compact operator. Let A > 0 be a positive,
compact operator on a separable Hilbert space H, and let {e,,} be a orthonor-
mal basis of H. The trace of A is

(4.3.12) Trace(A) = i<€"’ Ae,) > 0.

n=1

It is readily verifies that the trace is a unitary invariant. We use matrix
notation (e,, Ae,) = A,,. If U = [U,;] is unitary, and B = U*AU, then

> B o= Y UniApU =Y Ap Y UpUsn
n Ik n

njk

= > Audp
ik
= > Am.

4.4. Compact integral operators

The study of compact operators had its inception in the study of integral
operators, especially those arising from the analysis of differential equations.
In this section, we consider some important examples. We are interested in
operators having the form

(44.1) Tif(x) = /Y k(. 9)f (9)dv(y),

where the input is f : Y — C is defined on a measure space (Y,v); k :
X XY — C has some regularity properties; and the output is 7. f : X — C.
The function k is the kernel of the integral operator K.

4.4.1. Integral operators with continuous kernel. We consider here
the case where the kernel k is continuous. Statement and proof are on closed
intervals, and the extension to a more general framework is left as an exercise
in critical analysis of proofs.
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THEOREM 4.8. Let k : [a,b] X [¢,d] — C be continuous, and define

d
ﬂﬂ@z/kmwmwy

Then,
(i) Ty : Cla,b] — Cla,b] is compact.
(i) For1<p<oo, T} : L*[a,b] — Cla,b] is compact.
(iii) For 1 <p < oo, Ty : LP[a,b] — LP[a,b] is compact.

PrROOF. The main tool here is Ascoli-Arzela theorem and we use that
kernel k is uniformly continuous on [a,b] X [c,d] by compactness. We start
with (i), proving at the same time that K maps C|a, b] into itself, and that
it is a compact operator. For real § and f continuous with ||f||z~ < 1, in
fact,

d
Tof(a+6) — Tuf(2)] < /\ux+&w—kuwnwﬂmuy

< e(d=o|[flle~ < eld—d],
for any € > 0, provided || < n(e) is such that |k(z+6,y) — k(z,y)| < € for all

(x,y) € [a,b] X [¢,d]. Hence, the family {7, f : || f||z=~ < 1} is equicontinuous,
and also uniformly bounded because

Tif ()] < (d—¢)  max — |k(z,y)| [ flle-

(z,y)€la,b] x[c,d]

By the Ascoli-Arzela theorem, the family has compact closure in C'a, b] (with
respect to the norm topology).

The proof of (ii) is similar. Using Hélder inequality with 1/p+ 1/p’ =1,
if [| fllze < 1,

d
Tef (e +6) — Tof (1)) < /Iﬂw+&y%—M%yN¢ﬂwwy
1/p
(/‘mx+ay Ko dy) Sl

< (d—)Pel|fllzr,

IN

by choosing § as in (i). We have equicontinuity, and uniform boundedness is
proved similarly.

(iii) follows from (ii) and the fact that the identity I : C[a,b] — Lla,b]
is bounded, and the composition of a compact map and a bounded map is
compact. Ul
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4.4.2. Hilbert-Schmidt integral operators. Let k : [¢,d] X [a,b] —
C, k € L*([c,d] x [a,D]). To each function f € L?[a,b] we associate, as before,

b
(4.4.2) Tof(z) = / k(2. 9)f(9)dy, Thf : [e.d] — C.

THEOREM 4.9. The operator Ty, : L*[a,b] — L*[c,d] is a Hilbert-Schmidt
operator.

PrRoOOF. Boundedness follows, as earlier, from Cauchy-Schwarz and Fu-
bini:

2

d b

k(x,y) f(y)dy

/(/ ‘“y\dyflf |dz>dg;
- //[c,d]x[a,b} [k(z,y) da;dy./a |f(2)[*dz.

Let now {e, } be a orthonormal basis for L?[a,b] and {¢,,} be one for L?[c,d],
so that {e,(y)€n(x)}mn is a orthonormal basis for L?([a,b] x [c,d]), and we

can expand
T,y) = Z knmen(y)em (),

Hk||L2([ab]>< c,d]) Z|knm’2 < 0.

dx

T flZ. =

IN

Then, if f(y) =", fa-en(y),

K f(z) Z anmfn

With respect to the basis {e, } and {¢,,}, the operator T} is represented by the
Hilbert-Schmidt matrix [k, m]or,—1, hence it is a Hilbert-Schmidt operator.
U

Statement and proof hold for more general measure spaces.

4.4.3. The Volterra operator. The Volterra operator V is defined as

(4.4.3) Vi) = /0 " rydt

where f € L'[0,1]. It has a holomorphic avatar, with f : D — C, which we
will consider below. We will see some basic properties of V' as operator on
L2[0,1].
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THEOREM 4.10. (i) The operator V is compact on L*0,1] (in fact,
it a Hilbert-Schmidt integral operator). Its range is

{F € AC[0,1] : F(0) =0 and F' € L?0,1]},
where AC|0, 1] is the class of the absolutely continuous functions.
(il) V' does not have eigenvalues, and o(V') = {0}.
(iii) The adjoint V* of V is

(4.4.4) Veg(x) = / 9(y)dy,

and
(4.4.5) VY f(a) = / (1 — max(z, 9)) £ (s)dy.

PROOF. We show (i), (iii) first. Since we can write V' f(z) = fol k(z,y)f(y)dy
with k(z,y) = x(0 <y <z < 1), and k € L?[0,1]?, V is a Hilbert-Schmidt
operator. Equations (4.4.4) and (4.4.5) follow by, respectively, observing that
V* has kernel k*(z,y) = k(y,z) = x(0 < z <y < 1), and computing the
kernel

1
) = [ (e )k, y)du
0
About (ii), A is an eigenvalues of V' if and only if the equation
F = \F'

has a nonzero solution F' with F'(0) = 0. You might worry about the fact
that a priori derivatives exist just almost everywhere; but V f = Af implies
that f is continuous, hence it is C*'. For A = 0, F' = 0, hence ker(F) = {0}.
For the other \'s, F(x) = Ce®*, which satisfies F(0) = 0 only if F =0. O

The holomorphic Volterra operator is defined on holomorphic functions
f:D—C,

(4.4.6) V() = /0 " F(w)dw.

We use the same symbol V', although the operator is not the one we had
considered earlier. We might consider it as an operator defined on the Taylor
coefficients of f,

o0

fE) =Y ane = V)=
n=0 n=0
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which we might write as

(147) V(anto = {2}

n

or V=108, where S({a,}) = {a./(n+ 1)} is compact.

THEOREM 4.11. (i) The operator V is a Hilbert-Schmidt (hence,
compact) on H?*(D).

(ii) V' does not have eigenvalues, and o(V') = {0}.

(iii) The adjoint V* of V' is

(4.4.8) VE({bp}22,) = { 1 }Oo

n+1J, _o

EXERCISE 4.5. Prove theorem 4.11. Write explicit expressions for ‘7*‘7,
and for VV*.

4.5. Intermezzo: Sturm-Liouville theory

! In this section we see an application of the spectral theory for self-

adjoint compact operators to ODE’s. The differential operator appearing in
the ODE turns out to be the inverse of a (compact) integral operator. The
eigenvalues of the latter will have a role in the analysis of the former.

4.5.1. The Sturm-Liouville problem, spaces and operators. In
its general form, Sturm-Liouville theory deals with the differential equations

(4.5.1) —(py') + qu = Apy,

with y € C?[a,b]; A € C; p € C'[a,b] real valued with p(z) # 0 in [a, b];
q, p € Cla,b] real valued with p(z) # 0 in [a, b]; and non-degenerate boundary
conditions

(4.5.2) agy(a) + a1y’ (a) = 0 = Boy(b) + 1y (b),

where (ap, 1) # (0,0) # (Bo, 51) have real entries. Such conditions might
be read as orthogonality relations in R? C C2. The problem is finding infor-
mation about eigenvalues: the \’s such that (4.5.1), (4.5.2) has a nontrivial
solution y.

IFor this section I basically follow the exposition in AN INTRODUCTION TO
STURM-LIOUVILLE THEORY by ERIK BEDOS


https://www.uio.no/studier/emner/matnat/math/MAT4400/v21/sturml.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4400/v21/sturml.pdf
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We consider here the case p = 1 = p, which contains the main features of
the theory:

Ny = —y" +qy,
(4.5.3) 0= apy(a) + a1y’(a) = Boy(b) + L1y (b).

Let F' C C?[a,b] be the space of the functions satisfying the boundary con-
ditions (4.5.2), and D : F — Cla, b] be the operator in (4.5.3),

(4.5.4) Dy = —y" + qu.

The Sturm-Liouville problem, then, consists in finding for which A € C the
equation

(4.5.5) Dy = \y, where y € F

has a solution y # 0.
From elementary results on linear ODEs we have the following.

LEMMA 4.2. For A € C, let Sy = {y € C?[a,b] : D(y) = A\y}. Then,
dlm(c(s/\) = 2.

In fact, for ¢ € [a,b] and X € C fized, the map Ly.: Sy — C?, Ly.y =
(y(c),y'(c)), is an isomorphism.

Given yy,y2 € C?[a,b], the Wronsky determinant W (y1,y2) € C'|a, b] is

Yyr Yo

Wiy, =
(3/1 3/2) yi y;

The following Lagrange identity is elementary.

LEMMA 4.3. For f,g € C?a,b],

(4.5.6) W(f,9) = D(f)g — fD(g).
If y1,y2 are solution of D(y) = 0, then, W (y1,y2) = W is constant.

Having two linearly independent solutions of D(y) = 0, which is (4.5.3)
with A\ = 0, using variation of parameters it is easy to write the general
solution of

(4.5.7) " +qy=f,

where f € C[a,b]. The solution can be written in a way which is symmetric
with respect to the interval’s endpoints.
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LEMMA 4.4. Let u, v be two linearly independent solutions of —y"+qy = 0,
and let f be continuous. Let W be the Wronski determinant of u,v. Then,
a solutions of (4.5.7) can be written in the form

(4.5.8)
’ 1
y(x) = /a G(xz,t)dt, where G(x,t) = W {

u(@)v(t) ifa <t <z <b,
u(t)v(z) ifa <z <t<b

is symmetric, G(x,t) = G(t, ), and continuous on [a,b] X [a,b].

PRrROOF. We look for a solution of (4.5.7) of the form y = cu + dv for
some functions ¢, d to be chosen. We have:

y = cu + dv, so that
y =cu +dv if du+dv=0, and

(4.5.9) y' =cu" +dv" — fifu'd +0'd = —f.

It is immediately verified that, with these requirements, y in fact solves
(4.5.7). What we need is

du+dv =0 ) u v 2\ (0
U,C/+?]/d/ :_f, L.e. Ul ?}I d/ — —f .

Solving, we obtain

Usually, the next step would be writing the general solution in the form

7= [ (wa)o®) = o(@yu()f (@)t + puts) + av(z),

with real p, o, but this expression is unnatural for our boundary conditions,
since we have just one endpoint xy to play with. We consider instead the
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two "halves” of § separately, and we see what can be done with them.

Alz) = 42) / " o) f(t)dt and B(z) % /b ") F(t)dt,

W
A(z) = L) / " o) f (1)t + (“”gv)(x) and
(w f)(x)
t)dt + ———= W
" [wvf + (uvf))(x)

A"( t)dt + W and
(4.5.10) B"(z Bt + *é;/wf J(z)
The function y in (4 5.8) is y x) A(x) — B(z), and it satisfies
_y/l T qy = —u’ +qu i U o ( v _I;/qv)(x) /b u(t)f(t)dt

(U u — uv’ x)f x)

= f :

since v'u —uwv’ = W. 0

4.5.2. The solution to the Sturm-Liouville problem.

4.5.2.1. The solution of the Sturm-Liouville problem when D is 1 — 1.
Here we suppose that D : F' — Cfa,b] is 1 — 1. In general this is not the
case, as the example D(y) = —y” +y with conditions y(0) = y(7) = 0 clearly
illustrates: D(sinz) = 0 and sin verifies the boundary conditions. Observe
that the same operator is 1 — 1 on F if the conditions are y(0) = y(7/2) = 0.
Injectivity of D on F' means that the boundary problem

D(y) =0, agy(a) + ary'(a) = 0 = Boy(b) + Sry/'(b)

only has the trivial solution y = 0.
We introduce spaces where either of the boundary conditions hold for the
equation D(y) = Ay (but here we are interested in A = 0),

Ly ={y € C*[a,b] : D(y) = \y and agy(a) + a1/ (a) = 0},
Ry = {y € C*[a,1] - Dly) = Ay and foy(b) + fuy/(b) = 0},

so that E\ = Ly N R, is the space of the solutions of (4.5.3). By lemma
4.2, dim(Ly) = dim(R,) = 1, hence dim(E,) < 1. We are here assuming
that dim(Ep) = 0, hence, there exist v € Ly and u € Ry which are linearly
independent.
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PROPOSITION 4.5. Suppose D is 1 —1 and let v € Ly, u € Ry. Then, the
solution of D(y) = f in lemma 4.4 is the only one satisfying the boundary
conditions.

PROOF. Uniqueness is clear, since D is 1 — 1 on F. We have to verify
that the boundary conditions are satisfied.

W
A(b) = % bv(t) F(t)dt and B(b) =0,
Aty — D) V)

hence

aoy(a) + Ozly'(a) = T /ba u(t)f(t)dt - T /baU(t)f(t)dt
0

because v € Ly, and similarly

505[/@[1 U(t)f(t)dt—l—m‘lj[//(b)/a o(t) f(t)dt
0

because v € Ry. O

Boy(b) + 1y (D)

The result can be rephrased in a more functional form.

COROLLARY 4.5. If D : F — Cla,b] is 1 — 1, then it is a bijection, and
its inverse T : Cla,b] — F has the expression

(4.5.11) Te(f) = / Gl t) f()dt,

where G : [a,b] X [a,b] — R is that given in (4.5.8), and u € Ry, v € Ly.

PRrROOF. We have verified above that DoTg(f) = f. Since D is injective,
Tg is surjective, and we also have Tz o D(y) =y for y € F. O

Since the operator Ty extends to a compact, self-adjoint operator on
L?[a,b], we are now in a position where the Hilbert-Schmidt theorem can be
applied.
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THEOREM 4.12. Suppose the operator D is 1 — 1 on F', and consider the
Sturm-Liouville problem in (4.5.5),

(4.5.12) D(y) =\y, y € F.
Then, the following hold.

(i) The set {\,} of the X’s for which there is a solution y # 0 is count-
able, each eigenvalue is real and nonzero, and |\,| — oo.

(ii) For eachn, the eigenspace Ey, = {y : (4.5.12) holds} is 1-dimensional.

(iii) Let e, be a unit vector in Ey,. Then, {e,} is a orthonormal basis
for L?[a,b].

PROOF. The space F' is dense in L*[a,b] (see exercise below) and F =
T¢(Cla, b]), hence,

L*la,b] = F C T : G(L?[a,b]) C L*[a,b].

Thus, T.G(L?[a,b]), and corollary 4.3 implies that ker(Tg) = L*a,b] ©
Te(L?[a,b]) = 0.

We apply the spectral theorem to Tg, and find eigenvalues {u,} with
tn # 0, and p, — 0 as n — oco. Let f, € L*[a,b] be an eigenfunction for p,,,

fn = 1/:unTG(fn)a hence7 fn S O[aa b]? and fn = 1/)‘31TG(Tan) Sy
Applying D to both sides of the first equality,

D(fn) = 1/ann-

Set A = A, = 1/p,. Then (4.5.12) holds for y = f,,. The eigenspace E, is
one dimensional, as observed earlier.

We have to make sure that {\,} exhausts the eigenvalues of D. If there
were another A # 0 for which D(y) = Ay has a nonzero solution in F', then
y = MNg(y), and 1/X would be an other eigenvalue for T, which is not
possible.

Finally, by normalizing the f,’s, e, = f./||fnllz2, We find a orthonormal
basis of (real valued) eigenfunctions of D. O

4.5.2.2. The solution of the Sturm-Liouville problem in general. Suppose
D(y) = —y"” + qy does not define a 1 — 1 operator on F. The results of
the previous section, though, still hols if there is y € R such that D,(y) =
—y" + (¢ — p)y is injective (we just have to shift the old X’s by ). Hence,
we are done if we prove the following.
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LEMMA 4.5. There exists p € R which is not an eigenvalue of D on F.

PRrOOF. If there are uncountably many eigenvalues, then there exists an
uncountable orthonormal system in L?[a, b], which is separable. Contradic-
tion. 0J

We have then the complete theorem.

THEOREM 4.13. Consider the Sturm-Liouville problem in (4.5.5),
(4.5.13) D(y) =Ny, y € F.

Then, the following hold.

(i) The set {\.} of the X’s for which there is a solution y # 0 is count-
able, each eigenvalue is real and nonzero, and |\,| — oc.

(ii) For eachn, the eigenspace Ey, = {y : (4.5.13) holds} is 1-dimensional.

(iii) Let e, be a unit vector in Ey,. Then, {e,} is a orthonormal basis
for L?[a,b).



CHAPTER 5

Intermezzo: reproducing kernel Hilbert spaces

The structure of a complex Hilbert space (H, (-, -)) includes a vector space
H and an inner product (-,-) on H, plus the requirement that H is complete
with respect to the norm associated to the inner product (this is not especially
demanding, since, if H is not complete, its completion is a Hilbert space). All
orthonormal basis of H have the same cardinality, the (Hilbert) dimension
of H; and if Hy, H, are Hilbert, there exists a bounded, linear bijection
T : Hy — H, if and only if H; and Hs have the same dimension. Moreover,
T can be taken to be unitary,

(5.0.1) (Tz,Ty)m, = (z,Y) nm,-

The dimension, that is, is a unitary invariant of the Hilbert space, and it
completely classifies the elements of the Hilbert class modulo unitary equiv-
alence.

In mathematics and its applications, however, the elements of the Hilbert
spaces we work with are typically functions f, which are defined on some
space X, taking values at its points. The expression function Hilbert space
is often used. The points of X (and, more generally, subsets of X) provide
extra structure. The structure, that is, has the form (H, (-,-), X).

The points of X can enter the picture in many different ways. Consider
the (unitarily equivalent) Hilbert spaces ¢*(N) and L?[0, 1]. The elements of
the first space are functions n — f(n) defined on N, while the elements of
the second, we learn in Lebesgue theory, are equivalence classes of functions
x +— f(z). In the second case, the difficulty is that || f||,2 = 0 does not imply
that f = 0, but just that f(x) =0 a.e.x.

This fact is not just an artifact depending on our construction of L?[0, 1]:
it is a phenomenon which is intrinsic to L?[0,1] as a function Hilbert space:
the value of a function f € L?[0,1] at a point z € [0, 1] can not be detected
using the Hilbert structure. Suppose f : [0, 1] — C is continuous, so that f(1)
can be defined unambiguously. In fact, n; : f — f(1) is a linear functional
defined on C0, 1]. Consider now the functions f,(x) = ™. We have that:

m(fn) =1, yet nh_g)lo | fo = 0|lz2 =0, and 7,(0) = 0.

117
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The evaluation functional 1,, that is, is not bounded in the L2norm on
(0,1}, and in no way can be extended to a bounded, linear functional on
L?[0,1], no matter how L?[0,1] is thought of. (We might use Zorn’s lemma
to extend 7; to an unbounded linear functional on L?[0, 1], with no reasonable
relation to evaluation at x = 1 of functions which are not continuous).

EXERCISE 5.1. Let E C [0, 1] be measurable with positive measure, and
define ng : L*[0,1] — C be the mean value of f on E,

_ J fdm

ne(f) m(E) )

which might be thought of as an "average evaluation” on the set E. Show
that ||ng||g- = m(E)™Y? = oo as m(E) — 0.

In /%(N) we have a completely different story, since, for any positive inte-
ger m, [0y (f)] = |f(m)| < || f|le: evaluating f at the point m is a functional
having finite energy, so to speak.

These examples are rather trivial, and do not provide sufficient motiva-
tion to develop a theory. In the 1930 Hilbert spaces where still a novelty,
they provided a unified approach to a variety of problems, and unified in a
simple way a great deal of apparently distant mathematical objects, phenom-
ena, and techniques. Stefan Bergman, while developing ways to efficiently
approximate conformal mappings, introduced a Hilbert space of holomorphic
functions, which nowadays goes under his name: the Bergman space. Soon
after, Nachman Aronszajn framed Bergman’s ideas in a general theory, pre-
sented in Theory of reproducing kernels (1950), which is still the one of best
sources to start studying the subject.

From its inception, RKHS theory followed several paths: holomorphic
function theory in one, then several variables; and statistics. At the end of
the past century there was an explosion of new interest in both directions: in
statistics in view of applications to machine learning, and in mathematical
analysis after several breakthroughs concerning specific problems, and the
realization that underlying there were structural properties of general families
of RHHS’s (Pick spaces, De Branges spaces...).

The renewed interest, and the speed with which results are nowadays
communicated, opened new areas, perspectives, and cross-contamination be-
tween different fields.

5.1. Equivalent definitions of RKHS

In this subsection we see different, equivalent definitions of a reproducing
kernel Hilbert space.


https://www.ams.org/journals/tran/1950-068-03/S0002-9947-1950-0051437-7/S0002-9947-1950-0051437-7.pdf
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Let X be a set and H a Hilbert space of functions f : X — C. We say
that H has bounded point evaluation if for each x in X there the evaluation
functional n, : f — f(z) is bounded on H.

By Riesz Representation Theorem, this holds if and only if for each x
there is a (unique) vector k, in H such that

f(@) = (ka, [).

Moreover, choosing f = k, we see that ||7,]|

e = |[ke|lm-

An example where point evaluation is not bounded We use Zorn’s
lemma. Consider in ¢*(N) the orthonormal basis {4, : n € N} given by the
Dirac’s deltas, and use Zorn’s lemma to extend it to a Hamel (algebraic)
basis {v4 }acr. Define then the non-bounded, linear functional A : ¢ — C by
its action on the Hamel basis,

Awy) n if v, = e, for some n,
Vo) = .
0 otherwise.

Let then X = NU {\} and to each h € ¢*(N) associate f; : X — C,

) O, )2 if 2 =,
fal@) = {/\(h) it x = A\

The space H of such functions is unitarily equivalent to ¢*(N) with respect to
the inner product (fy, fr)u = (h, k)e), and evaluation at A, f,(A) = A(h)
is not bounded.

The functions {k, }.cx are the kernel functions for H, which is then called
a Reproducing kernel Hilbert space, with kernel k : X x X — C defined by

k(x,y) = (ks, ky) = ky(x).
PROPOSITION 5.1. The following properties hold.
(i) k(z,z) = ||k.||* > 0, with equality if and only if f(x) =0 for all f
in H (and such points can be removed).
(i) ka(y) = k(y, x) = k(z,y) = ky(z).

(ii) Ifxy,...,zp € X and cq,...,c, € C, then

2
> 0.

n

> ciggk(a, ki) =

i,j=1

n

Z & kxl

i=1
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Property (iii), by definition, say that k : X x X — C is a positive semi-
definite function.

EXERCISE 5.2. Prove the proposition.

Property (iii) obviously implies that k(z,x) > 0, hence that k(xy,z,) =
k(xa,x1). In fact, setting ¢; = 1 and ¢y = i:

0 < k(xy, 1) +ik(z1, x0) — ik(x9, 1) + k(x2, 22)
which implies that Re(k(z1, z2)) = Re(k(xq,x1)), and setting ¢; = ¢o = 1,
0< k(l‘l,]fl) +k(3§'1,x2) ($2,$1)+k(.1’2,$2)
(k

which implies that Im(k(z1, 22)) + Im(k(z2,21)) = 0. If in the definition we
had just considered real scalars cy,...,c,, as it is sometimes done in the real
theory, dealing with real kernels k, then the condition k(x,y) = k(y, z) does
not follow from the real version of (iii), as illustrated by the matrix

)

which can be seen as a non-symmetric kernel on a space X with two points,
having an associated quadratic form which is positive definite.

It is noteworthy that to each positive semi-definite function k : X x X —
C we can associate a RKHS of which £ is the reproducing kernel.

THEOREM 5.1 (Moore-Aronszajn theorem). Let k : X x X — C be a
positive semi-definite function on some set X, and define on span(k, : = €

X) by

(5.1.1) <2m: Qikz,

Then, the completion H of span(k, : = € X) with respect to the inner product
1s a reproducing kernel Hilbert space having kernel k.

Z bjkyj > = Z Z dlbjk(ﬂi'z, y]>
j=1

i=1 j=1

PROOF. Step I. Since k is positive semi-definite, (-, -) defines a inner product
on the function space span(k, : z € X) provided we show that, for f €
span(k, : x € X), (f,f) = 0 implies that f(z) = 0 for all z in X. Let
[ =>",a;k,, and suppose that (f, f) = 0. If z = z,,4; is any other point
in X, we let a,,1 =0.

The matrix K = [k(z;, z;)]7}2, is Hermitian and positive, then it can
be written as K = U*AU, where A is the diagonal matrix having diagonal
entries

M2>2X> 22X, >0= A1 == Ayp1.
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With @ € C**! and a* = a', We are assuming that

0=a"Ka=(Ua)*A(Ua) = b"Ab =Y Nb[*,

=1
which implies that by = --- =1b,, = 0, hence Ab =0, so

0=U"Ab= Ka.
We have, then, for j =1,... z,.1:

n n

f(‘rj) = Zazkxl(‘x])zz x])'rl Zaz ]a
= (Z;(la)J = 0. -

Hence, f = 0 as a function.

Step II. The completion H of span(k, : = € X) under the norm induced
by the inner product is a Hilbert space, having as generators the functions
k.. Each element f of it can be interpreted as a function on X,

f(@) = (e, [).

The function k, € H is then reproducing for the value of f at x, and, as
we saw above, the corresponding reproducing kernel is (k,, k,) = k(x,y), as
stated. O

The theorem above is somehow deceptive. Its proof, in fact, gives little
hint on how to find a "natural” expression for the inner product associated
with a positive semi-definite function. We will see below that k(z, w) = 1—1152
defines a positive semi-definite function, hence a kernel, on the unit disc ID
of the complex plane, but at this moment is not clear how the inner product
really looks like. We have, however, a characterization of reproducing Hilbert

spaces based on orthonormal basis, which is sometimes useful in this respect.

THEOREM 5.2. Let H be a reproducing kernel Hilbert space on some set
X, and let {eq}acs be a orthonormal basis of it. Then, fory € X, the series

(5.1.2) ky =Y ea(y)ea

converges in H, and it converges to the reproducing function at y.

Viceversa, suppose H is a Hilbert function space on X and that the se-
ries (5.1.2) converges in H. Then k(z,y) = k,(z) reproduces the values of
functions in span(eﬁ pel):

(5.1.3) Zea eal), (ki,e0) = eo(z) for a € 1.

acl
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Moreover, the series in (5.1.3) converges pointwise Jor all x,y € X. After
associating to each function f in H its modification f(x) := (ky, f), the space
H of such f s is a reproducing Hilbert space with kernel k = k(x,y).

The reproducing kernel is uniquely determined by the structure of RKHS,
hence it does not depend on the orthonormal basis under consideration. Also,
we have further evidence that L?[0,1] is not a RKHS. The series

+oo
Y § 6727rmy€27rmz

n=—oo
is not, in fact, convergent in L?[0, 1].

PROOF. Observe that, by basic properties of the orthonormal basis, the
series on the right of (5.1.3) converges if and only if

Z, ea(y),? converges in R,

acl

or, equivalently, if for all z,y € X

Z eq()eq(y) converges absolutely in C.
2y

Suppose H is a RKHS with kernel k. Then,
k, = Z(ea, ky)eo = Z (kyea)eaq Zea
ael ael ael

converges in H.
Suppose, viceversa, that the series in (5.1.2) converges in H. Then,

(5.1.4) (ky,eg) = <Zea ea!e,3> Zea (eales) = es(y).

a€cl ael

Thus, k, is the reproducing function for the basis elements, hence for all
elements in span(eg : § € I). Also, the function k(z,y) = (k,, k,) is positive
semi-definite:

<i Cikx
=1

kxj> = ch_icjea(%)ea(%)

i,j=1 acl

= Z Zciea(xi)
ZO ael

2

=1

By Moore-Aronszajn theorem, k is the reproducing kernel of H and €, = e,
by (5.1.4). O
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Finally, we can see reproducing kernel Hilbert spaces ”from the inside” of
a given, possibly abstract Hilbert space. This viewpoint is especially useful
in applications to machine learning. Observe that to a RKHS H on X with
reproducing functions {k, : + € X} we can associate the map = +— k, (the
feature map of machine learning) which associates to each point in X a vector
in H. Below, we see that the viceversa holds as well.

THEOREM 5.3. Let H be a Hilbert space, and let {v, : © € X} be a family
of vectors in H, indezed by some set X, such that span(v, : x € X) is dense
in H. To each h in H associate f, : © — (v,,h)g, let Hx be the vector
space of such functions, and set {fn, fx)uy := (h,k)u. Then, Hx is a RKHS
having { f,, : * € X} as kernel functions.

PROOF. By definition, f,, (y) = (vy, v2)m, and (z,y) — k(x,y) == (vz, vy) u
is positive definite on X, as is easily verified. Still by definition we have that

fu(x) = (e, Mg = (fo,s fu)my
hence, f,, is the reproducing function for z in Hx, as wished. (I
At the end of the day, we have several, equivalent viewpoints on RKHS’s.
(i) Hilbert function spaces with bounded point evaluation.

)
(ii) Hilbert function spaces with a reproducing kernel.
(iii) Positive semi-definite functions on sets.

)

(iv) Hilbert function spaces where the values at each point of an or-
thonormal basis’ elements are square integrable.

(v) Families of vectors in a Hilbert space.

5.2. Some RKHS’s

5.2.1. The Hardy space H? and its real counterpart. We denote by
D= {z€ C: |z| <1} the unit disc in the complex plane. Let H> = H?(D)
be the space of the power series f(z) = >~ a,z", z € C, for which the

norm
[o@)
E an2"
n=0

is finite. In analogy with Fourier theory, in fact consistently with it, we write
a, = f(n).
LEMMA 5.1. If f € H?, then the series defining f converges on D.

2

o
2
= [{an}nlolle = Z |an|?
n=0

H2
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Proor. If m,5 > 1,

2

m+j m+j m+j
S a3l S
n=m+1 n=m+1 n=m-+1
m+j
< 3 o
R
n=m+1
if |z| < 1, hence Cauchy criterion is verified. O

By the theory of series in a complex variable, f(z) defines a holomorphic
function in D.

PROPOSITION 5.2. The reproducing kernel of the Hardy space is

In particular, the best estimate for the value of a Hardy function at z € I is:

1) < il
PrOOF.
niof(n)z” = f(?)
e <§; Fn)u”] ikzz(n)wn>m
_ 2 f(n)k.(n),

1—Zw
n=0 n=0
O
An interesting variation on H? is h?, the real (or harmonic) Hardy space:
the space populated by the series u(re) = S q,re™ 0 < r < 1,
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such that [lul|2, = > la,|? < co. Another way to write a function in h?
1s

(5.2.1) u(z) = i anz" + f: a_,z".
n=0 n=1

We argue as above in order to find the reproducing kernel:

u(w) = i A, w" + f: a_p W™ = (ky, u)pe,
n=0 n=1

where
kw(z) = Z 2" 4 Z a_pzZ"w"
n=0 n=1
1 1
- + 1

1l—wz 1—wz
1 — [z |w]?

1 —wz|?
The reason why h? is also called harmonic Hardy space is that its elements
are functions which are harmonic on ID. Recall that a function u : 2 — R
defined on an open set Q C C is harmonic it is C*(Q) (it has continuous,
partial second order derivatives), and it satisfies the Laplace equation,

(5.2.2) 0 = Au := Opu + Oyyu.

A complex valued function is harmonic if its real and imaginary parts are.
By Cauchy-Riemann equations, for instance, a holomorphic function is har-
monic. In particular, z — 2" = u + v is harmonic on C, and for the same
reason z — Z" = u — v is harmonic, too. Any function u of the form (5.2.1),
if the series converges in D (hence, by the theory of power series, it converges
absolutely and uniformly on any compact in D), is harmonic, because we can
indefinitely differentiate the series under the sum.

Let’s verify this for the derivative w.r.t. z. We have that 0,(:") =
Op(z+iy)" = nz""' and 9,(2") = nz"~'. The power series of the derivatives,

[e.e] [e.e]
o n—1 -n—1
w(z) = E na,z" " + E na_,z"" ",
n=1 n=1

has the same radius of convergence as that representing u, hence, by a well
know results of advanced calculus, w(z) = 0,u(z). The reasoning is the same
with y instead of x, and

oo o
Oyu(z) =1 g na,z" "t —i g na_,z" "
n=1 n=1
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Now, 0,u and Jyu satisfy the same hypothesis of u, and we can take further
partial derivatives.
With this at hands,

Au(z) = Z anA(2") + Z a_,A(z") = 0.

We introduced the Hardy space from the viewpoint of the ”Fourier side”
(which engineers consider the time domain: N for the holomorphic, and Z
for the harmonic case), imposing a size condition on the coefficients of the
power series. The raison d’étre of representing the sequence {a,} by means
of the holomorphic (or harmonic) function f(z) of which it provides the
Taylor coefficients at the origin (its generating function, as it is named in
combinatorics, or its z-transform, as it is called in engineering, where the set
of the admissible z’s is called the frequency domain), is that many algebraic
and, more important, quantitative properties of the sequence, and of the
operators acting on it, emerge in the complex domain, as we will see later
on. To start, we give a characterization of the H? norm in " frequency space”.

We denote by T : D = {e" : ¢ € [0,27)} the torus, i,e, the unit circle in
the complex plane. Sometimes we identify ¢ <+ €, and [0,27) <> T.

THEOREM 5.4. Let f :ID — C be a holomorphic function. Then,
2m

1 ) 1 21 .
(5.2.3) 1 fl|32 = sup — | f(re™)?dt = lim —/ |f(ret)Pdt.
0

0<r<1 27T Jo r—1 27

Moreover, if f.(e") = Y>>0, ane™, where a, is the n'" coefficients in the
power expansion of f at the origin, and f.(e") = f(re"), then

(5.2.4) lim [| fi- = full 22 (0.2) = O-

In particular,

(525 =y A

In (5.2.4) we have that the boundary values f, of f(r-) as r — 1 exist
in the L? sense. A cornerstone of H2-theory is that lim,_,; f(r®) exists for
a.e. t € [0,2m). We are not concerned, here, with these "hard analysis”
developments of the theory, which are, however, important also for the more
functional analytic side.
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PRrROOF. For each 0 < r < 1, f, is continuous on T, and by Plancherel
isometry we have that

1 2 ) 0
5 | e =3 fa
n=0

so that (5.2.3) follows by dominated convergence, and f € H*(D) if and only
if f. € L*(T). Still by Plancherel,

1 = FlBa0om = S lan(1 =172 5 0, as v — 1
n=0

by dominated convergence, which shows (5.2.4). O

For the harmonic Hardy space we have a similar statement, which imme-
diately follows from the holomorphic one provided you know the following.

THEOREM 5.5. Let 2 be a simply connected set in C, and u : @ — R
be harmonic. Then, there exists v harmonic in ) such that f = u + v is
holomorphic in Q. Moreover, there is a unique such v with v(zg) = 0, where
2o s any distinguished point in €.

In particular, u = % can be written as the sum of a holomorphic and
an anti-holomorphic function.

Applying the theorem to real and negative parts of u, and using known
properties of holomorphic functions, we have the following.

COROLLARY 5.1. Let €2 be a simply connected set in C. The functions
u : Q — C which are harmonic in ) are exactly those having the form
u(z) = f(2) + g(2), with f,g holomorphic in Q. Moreover, f and g are
uniquely determined once we require g(zo) = 0 at a distinguished point zy in

Q.
If QY =1D, then

400
(5.2.6) u(re) = Z anr™e™,

n=—oo

where both the series with negative n’s and positive n’s converge in . The
coefficients themselves are given by

ool g
ay, = / u(re’)e "™ dt,
0

27

and are independent of 0 < r < 1.
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PROOF OF THE THEOREM. We want u + v to satisfy Cauchy-Riemann
equations, i.e. 0,v = —0,u and Oyv = Jyu, or

(5.2.7) dv = —0yudz + 0, udy.

Now, the 1-form on the right hand side of (5.2.7) is closed because 0, (—0,u) =
0, (0,u) by harmonicity of u. Poincaré theorem ensures that the form is exact,
hence

v(z) = / (—0yudz + Oyudy)
'Y(ZO,Z)

is well defined, independently of the chosen integration path v(zo, z), as long
as it starts in zp and ends in z.

Moreover, u + v satisfies the Cauchy-Riemann equation, since Vv =
(—0yu, Oyu), hence u + iv is holomorphic.

Uniqueness holds because, in a connected domain, a function is deter-
mined by its gradient, modulo an additive constant. U

We have then the counterpart of theorem 5.4.

THEOREM 5.6. Let u : D — C be a harmonic function, with series ez-
pansion like in (5.2.6). Then,

1 2 ) 1 2 .
(5.2.8) |ull32 = sup — lu(re)|?dt = lim—/ lu(re)|?dt.
0

0<r<1 2 0 r—1 271

Moreover, if

o0
u*(eit): Z aneint

and u,(e") = u(re), then
(5.2.9) lim [[u, — .| 2(0,20) = 0.
In particular,
1 2
2 ity|2
(5:2.10) bl = 5= [ (e

The proof of the theorem easily follows from theorem 5.5, corollary 5.1,
and theorem 5.2.3.
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5.2.2. The Dirichlet space D(ID). Consider the subspace D = D(D)
of the Hardy space H?*(D) having as elements functions f(z) = Y - such
that

[e.e]

(5.2.11) 1F15 =D (n+ Dlaal® = [|£llz2 + [f] < oo.

n=0

The expression [f]'/2, which is the ”largest part” of the norm, is just a
g J

seminorm, since it vanishes on constant functions. We will see below that is
is a conformal invariant.

EXERCISE 5.3. Show that D has reproducing kernel k(z,w) = i log —

1—wz’
where log is the determination of the complex logarithm which takes real
values on the positive axis.

The study of the Dirichlet space started in 1940 with Arne Beurling’s’
Ensembles exceptionnels.

LEMMA 5.2. Let f be a function which is holomorphic in the unit disc.
Then,

(5.2.12) ] = %/D|f’(z)\2dxdy, c—z+iy.

PROOF. For f(z) =300 a,2" = > o7 a,r"e™, using the orthogonality
of the trigonometric system,

27 1| oo
[1r@pay = [ [ nageree
v 0 0 |n=1
1 2r OO 00 .
] S i)
0 0

m=1 n=1

00 1
— 27an2|an|2/ r2n=2rdr
n=1 0
[o¢]
= WZn\an\Q
n=0

= 7lf].

2

rdr

g

1Arne Beurling ( 1905-1986) was one of the great analysts of the middle part of the
XX century, and he gave fundamental contributions to a number of areas. This article
summarizes his role in the Swedish cryptanalysis program during WWII.


https://projecteuclid.org/journals/acta-mathematica/volume-72/issue-none/Ensembles-exceptionnels/10.1007/BF02546325.full
https://people.kth.se/~haakanh/publications/hed-crypto-beurling.pdf
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The first geometric interpretation of [f] is in terms of areas.
PROPOSITION 5.3. We have that

(5.2.13) 1] = L Area(F(D))

7

is 1/m times the area of f(D), computed with multiplicities (that is, if f is
an—to—1 map from open A C D to f(A), then the area of f(A) appears
multiplied times n in the right hand side of (5.2.13)).

PRrROOF. The function f = w + iv is holomorphic, hence ' = 0,f =
O,u+10,v and, when f is thought of as a map from R? to itself, its Jacobian
is, by Cauchy-Riemann equations,

(0w Ou\  [Oyu —Oyv
Jf = <8xv 8yv> N <8xv O )’

det(Jf) = (0:u)” + (9.0)* = | f'I".

By the change of variables formula for double integrals,

hence,

/111) |f'(2)Pdxdy = /Ddet(Jf)(z)dxdy = / dudv = Area(f(D)),

f(D)

as wished. m

In order to draw some further geometric information on the seminorm
[f]'/2, we review some facts concerning the unit disc. Any biholomorphic
map ¢ : D — D (in literature such maps are often called automorphisms of
D, or Moebius maps) can be uniquely expressed in the form

a—z

(5.2.14) p(2) =vi—rns

where v, a are complex numbers, |a| < 1 and |v| = 1. Since f o ¢ is a map
having the same image as f (counting multiplicities), we have that

(5.2.15) [f ol =1f],

i.e. the quantity [f] is a conformal invariant.

EXERCISE 5.4. Let p,(2) = 2", and f € D. Show that [f o p,] = n[f].
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Another interpretation of the Dirichlet seminorm comes from hyperbolic
geometry, and it is based of a couple of "magic relations” concerning auto-
morphisms of the disc. If ¢ is the map in (5.2.14)

(1 —la?)(1 —[2*)

1— 2=
(=)l 1= a7
L—laf* _1-lp(x)P
5.2.16 "(2)? = =
( ) ¥ ()] TP~ 1-]2

EXERCISE 5.5. Verify the equations (5.2.16).
Consider on D the Riemannian metric

d82 — 4‘d’2‘2 ’
(1—1[2]?)?

which is called the hyperbolic metric, or Poincaré metric on ). The area
form associated to ds? is

4dxdy
(1= [=2)*

Let d be the Riemannian distance associated to the metric,

dAhyp(Z) =

zZ—Ww

d(z,w) = log l — }

1—wz

,_.
l\z

(Look for a proof on the web, or produce your own).

The relations (5.2.16) imply that the automorphisms of D are isometries
of ds?:

dldp(2)? _  4|dzP?
A —=le(2)?)*  (1—[z))*

Now, for a holomorphic map f : D — C, the hyperbolic distorsion is (written
in a somehow old fashioned way) the ratio between the infinitesimal incre-
ment of f in the Euclidean plane and that of the independent variable in the
disc endowed with the hyperbolic distance:

dun(f) = LELDZIEN TGP IE gy

1—z[?

Since they express quantities of hyperbolic geometry, the hyperbolic area
element and the hyperbolic distorsion of a holomorphic function f: D — C
are invariant under any automorphism ¢,

dApyp(p(2)) = dApyy(2), and &, (f 0 ©)(2) = d4,,(f)(2)-
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Hence, the same holds for

) = [ 17 Pdedy = [ 8,(7)dAwy.

That is,
wlfow] =n[f].
This new, and different, argument proving the invariance of the Dirichlet

seminorm, has the advantage that it allows us to write down a number of
different, conformally invariant quantities. For instance,

(5.2.17) Hﬂmw:%ﬁﬂ—Wﬁﬂf@ﬂ=2ﬁg%wﬁﬂd7

the Bloch seminorm of the holomorphic function f, is conformally invariant,

(5.2.18) 1 o ¢llzs = IIflls-

The Bloch space B = B(D) is the space of functions for which || f||z. < o0,
and it is a Banach space under the norm ||f||z = || f|/z + |f(0)| (which is
not conformally invariant), where the term |f(0)| was added to avoid that
the norm of a constant vanishes.

5.3. Multipliers of a RKHS

The translation of convolution on the ”time side” into products on the
"frequency side” suggests that multiplication operators should play a promi-
nent role in reproducing Hilbert space theory. This happens, in fact, even
outside Fourier theory proper. In this section we see the definition and the
first properties of such multiplication operators in general, then we charac-
terize the multiplicators of the (holomorphic) Hardy space.

5.3.1. Multipliers in RKHS. Let H be a reproducing kernel Hilbert
space on a set X, with reproducing kernel k(z,y) = ky(z). A function
b: X — Cis a multiplier of H if the linear operator My, : f — bf maps H
into H.

LEMMA 5.3. If b is a multiplier, then M, is bounded on H.

Proor. We show that the graph of M, is closed in H x H. Suppose
fn— fand bf, — g in H. By Cauchy-Schwarz and the reproducing property;,

(@) = f(2)| = [(Ba, fu) = (Kay )] < ol [[fn = fI = 0 as n — oo,
Then,

g(x) = Mk, = lim (k;,bf)
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= lim b(z)fn(x)

n—oo

= b(x)f(x).
Hence, bf € H, proving the closedness of M,. O

We denote by M(H) the multiplier space of H, and by [[b] vy =
| My || B¢rry the multiplier norm of b.

THEOREM 5.7. Let b € M(h) and let M} be the Hilbert space adjoint of
the corresponding multiplication operator. Then, for all x in X,

(5.3.1) M ky = b(z)k,.

Viceversa, if T : H — H s a bounded operator having each kernel function
k. as eigenfunctions, with eigenvalue b( ), then T* = M, is a multiplication
operator.

PROOF. About the direct statement,

M; ke (y)

[l
I~ N T~

o
8

£
ol
<

~——

(T7f)(x) = (k| TS)
= (Tka|f)
= (b(@)ka|f)
= b(x)f(x),
it is then multiplication times b. (I

COROLLARY 5.2. We have the estimate ||b|| p(rry > supgex |b(2)].

ProoF. In fact,

. Mk, -
1 Mollscn = M4 s, > sup 125 ”:sup(rb< jik “) sup [b(2).
X zeX 152 || X

g
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The fact that the reproducing functions are eigenvalues of M, and that
(kz|ky) = k(z,y) does not vanish identically, but for trivial examples, says
that multiplication operators in RKHS are very far from being self-adjoint.

EXERCISE 5.6. The multiplier space M(H) of a RKHS H is complete
with respect to the multiplier norm.

It is reasonable asking if, in general, ||b|| vy = sup,cx |b(2)], or at least
if we can provide some estimate ||b|| vy = sup,ex [b(2)|. The answer is neg-
ative, and much research goes into finding sharp estimates of the multiplier
norm for specific RKHS’s in terms of concrete ”size” information concerning
the multiplier. In the Hardy space H?(ID), however multiplier norm and sup
norm coincide, as we show in the next subsection.

5.3.2. The multiplier space of H?*(D). We denote by H>°(D) the
space of the bounded, holomorphic functions on the unit disc. We endow
it with the sup norm,

[1b]] zr () = sup [b(2)].
|z]<1

THEOREM 5.8. A function b: D — C is a multiplier of H*(D) if and only
if it is holomorphic and bounded. Moreover,

(5.3.2) 16l a2y = 110l oo )

PROOF. Since 1 € H?*(D), if b is a multiplier, then b = b-1 € H?,
hence it is holomorphic. We already know from the general theory that
16| mcer2y) = ||0]] ooy~ In the other direction,

1 2 ] ]
oFl = swpo— [ Iblre) f(re) P
r—1 &7 Jo )
1 T ,
< 6] o0y SUP =— re')|2dt
< bl sy [ 1)

= (bl ) 11132

Passing to sup over f’s with || f|| g2, we see that ||b||p(m2m)) < 0]l o). O



CHAPTER 6

Banach algebras

6.1. Banach algebras

Notation In this chapter we denote by CI(E) the closure of a subset E in
C. We write E = {Z : z € C} to denote the set of the complex conjugates of
elements in F.

6.1.1. Definition and basic properties. An associative algebra is a
vector space A endowed with a product - : A x A — A such that, for
A B,C e Aand ) € C,

(a) (AB)C = A(BC),
(b) MAB) = (AM)B = A(\B),
(¢) (A+ B)C = AB + BC and A(B + C) = AB + AC.

An element 1 € Aisa unitif 1A= Al = Afor A € A
The algebra A is normed when endowed with a norm A — ||A|| such that

(6.1.1) |AB| < |A| - |B].

It is a Banach algebra if it is complete with respect to the given norm. If the
Banach algebra has a unit I, we require that

7] =1.

As we have seen before, examples of Banach algebras are given by L£(X),
where X is a Banach space. Even the finite dimensional Banach algebra of
the 2 x 2 complex matrices is instructive in guessing which phenomena might
occur.

If a Banach algebra A does not have a unit, we can add it in a canonical
way. Let A = A x C containing elements (A, z) = A + 1z with the product

(A+12)(B+ 1lw) :== AB+ 2B+ wA+ [ zw.

Then, A is an associative algebra with unit 7, A has codimension one in A,
and it becomes a normed algebra under the norm

|A+1z]| == |A] + |z

135
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EXERCISE 6.1. Show that (A, | -||) is a Banach algebra if (A,]-|) is.

From now on, all our algebras will have a unit, unless otherwise stated.
Here are some notable examples of Banach algebras.

(1)

(2)
(3)

(6)

(7)

Let X be a Banach space. Then, £(X), the algebra of the bounded
operators on X, is a Banach algebra.

In particular, £(H) is a Banach algebra when H is a Hilbert space.

By Young’s inequality, L'(R) with the convolution product is a
(commutative) Banach algebra. The same holds for ¢!(Z) and, more
generally, for L'(G) (with respect to Haar measure), when G is a
locally compact group (but commutativity ceases to hold in general,
unless G is a commutative group).

The n x n matrices with complex entries form a Banach algebra with
respect to the operator norm.

Let €2 be a locally compact topological space. Then, Cy(£2) (continu-
ous functions vanishing at infinity) and Cj(€2) (bounded, continuous
functions) are (commutative) Banach algebras. Cy(€2) has unit if
and only if 2 is compact.

The multiplier space M(H) of a reproducing kernel Hilbert space
H is a (commutative) Banach algebra.

In particular, H*(D) is a (commutative) Banach algebra.

An element A in A is invertible if there is E/ in A such that AE = FA = 1.
We denote it by A1, It might happen that A has just a left inverse E,
EA =1, or a right inverse F';, AF = I. If they both exists, £ = F is an
inverse for A, since

E =EIl = E(AF) = (EA)F = I[F = F.

0ifn=20

The shift 7, on 2(N), 7, f(n) = has 77 f(n) = f(n—1),

fn—1)ifn>1

the back-shift, as left inverse, but it does not have a right inverse:

Tim =1, but 7 =1 — .

On the algebraic side, we have some useful properties.

THEOREM 6.1. (1) If A, B € A are invertible, then AB is invertible.

If AB = BA, then B~'A~! = A1~
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(2) If AB = BA and AB is invertible, then A and B are invertible.

The example above shows that AB = BA is necessary in (2), since 777 =
I, but neither factor is invertible.

PRrROOF. (1) We have
(AB)B'A™' =1 =B A Y(AB).

The second assertion is an easy exercise. (2) The elements (AB)™'A and
A(AB)~! are left and right inverse of B,

[(AB)™'A]B = (AB)™(AB) = I = (AB)(AB)™" = (BA)(AB)™" = B[A(AB)™",
hence, they coincide and are a bilateral inverse for B. U

6.1.2. Invertibility, resolvent, and spectrum. The next result has
both an algebraic and a topological nature.

THEOREM 6.2. The set of the invertible elements in A is open. More
precisely, if Ao is invertible and |A — Ag| < |Ag'|Y, then A is invertible.

Proor. We start by elements which are close to the identity, A =1 — H
with |[H| < 1. The idea is mimicking the usual geometric series argument in

the complex plane,
S
n=0

The series Y>>, H" converges for |H| < 1, and using the telescopic property
of the sum,

(6.1.2)
] H ZHn Z Hn+1) Hm+1+ Z Hn+1 I,
n=0 n=m-+1

and similarly Y >° H"(I — H) =1.
Suppose Ay is invertible. Then, A = Ag— H = Ao(I — Ay' H) is invertible
if |A— Aol = |H| < |Ay'™", with inverse

AT = (I = A H) A =D (AT H)" Ay

n=0

by what we have seen above. O
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The series in (6.1.2) is called the Neumann series of H.
The resolvent of an element A of A is

(6.1.3) p(A) :={\ e C: A — Aisinvertible} C C,
and the spectrum of A is
(6.1.4) o(A) :={A e C: A — Ais not invertible} = C \ p(A).
THEOREM 6.3. (1) For any A, p(A) is open and o(A) is compact.
(2) The resolvent function of A, R\(A) : p(A) — C,
(6.1.5) Ry(A) := (M — A)!

is holomorphic on p(A).
PRrROOF. (1) A € p(A) if and only if A\I — A is invertible. If h € C,

(A=~ — A= (N — A)— hl,

which is invertible by theorem 6.2, provided |h| < |(A—A)~!|~!. We so have
that p(A) is open, hence that o(A) is closed. On the other hand, \I — A is

invertible if |A\| > |A], hence p(A) D C\ B(0,]A|), and o(A) C B(0, |A]) is
compact.
(2) With A and A € p(A) as in (1), and complex h,

Ran(4) = [A—W)I—A]"
= (A= A) = RI]™" = (AT — AT — h(AT — A7

= (AL =AY (M - A",

n=0

which defines a holomorphic function of the variable h for |h| < [(A] —
A7 O

COROLLARY 6.1. For the distance of A € p(A) to o(A) we have the

estimate
min{|\ — 2| : 2 € 7(A)} > |(A] — A7

THEOREM 6.4. For any A in A, o(A) # 0.

PrRooOF. We have

(6.1.6) Ry(A) =M -A) =X T T -A/N" = i AT T
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which converges for |A| > |A| and it is a Laurent series. Its coefficients
can be computed via complex integrals on countours v in |A| > |A| and, in
particular,

1
6.1.7 I=— [ (A —A)"d\
(6.1.7) i | 1=
If the spectrum were empty, A — Ry(A) would be holomorphic on the whole
plane and bounded by (6.1.6), hence constant, and again by (6.1.6) we have

oo An)\—n
R,\(A)—Z"_Of%Oas/\%oo.
Hence (A — A)~! = 0 for all A, which contradicts (6.1.7). O

6.1.3. Example: the spectrum of a multiplication operator on
L?*(v). Many spectral theorems for operators L defined on a Hilbert space
have the form: L is unitarily equivalent to a multiplication operator on some
L? space. Here we consider the bounded operators having this form.

Let (X, v) be a measure space in which for each measurable F,

v(E)= sup v(F).
FCEV(F)<oo

Let ¢ : X — C be a measurable function. Denote by M, : f — ¢f
the corresponding multiplication operator. The (natural) domain of M, is

D(M,) ={g € L*(v) : Myg € L*(v)}.

LEMMA 6.1. (i) D(M,) ={g: [x(1+|¢*)|g|*dv} < co. Endowed
with the norm

1930, = /X (1+ |l gdv,

D(M,) is a Hilbert space, which is dense in L*(v) with respect to
the L*(v)-norm.

(ii) M, € L(L*(v)) if and only if ¢ € L>®(v). In fact,
1Mol 22wy = lllzoew)-
(iii) ¢ — M, is an isometric algebra homomorphism from L*(v) into

L(L*(v)); in particular, MyMy = My Moreover, it is a x-homomorphism:
M7, = Mg. Also, the operator M, is normal, M, M7 = MZM,.
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PROOF. (i) [ (1 + |¢]*)|g]*dp < oo if and only if [, |g[*du < oo and
[ egl?dp < oo, if and only if ¢ € L*(v) and M,g € L*(v). Hence, the
identification of D(M,). The norm ||g||p(as,) is the L? norm with respect to
the measure (1 + |p|?)dv, which defines a Hilbert space.

(ii) Since [|egllz2w) < lllewllgll2w), we have [|My|[z20)) < @l w)-
In the other direction, we can suppose ||¢||gew) > 0. Let 0 < A < ||¢|| oo (w),
and let £ C {x € X : |¢(x)| > A} such that 0 < v(F) < co. Then v(FE) >
and

Xzl

> )2,
HXEH%%,)

hence, | Mol z2w)) 2 [l@llzoew).
(iii) The proof is an easy exercise in bringing abstract definitions down
to earthly objects. ([l

Let ¢ : X — C be measurable. Its essential range is
essRan(p) = {w € C: v(o *(D(w,¢))) > 0 for all € > 0}.

An arbitrarily small perturbation of a point in the essential range of ¢, that
is, belongs to the range of ¢ with ”positive probability”.

THEOREM 6.5. If p € L™ (v), then
(6.1.8) o(M,) = essRan(yp).

PRrOOF. If w ¢ essRan(y), then there is € > 0 such that |p(x) —w| > € for
a.e. z. Then, (p—w)~! € L®(v), [[(¢—w) | @) < 1/€, hence, M,_yy-1 =
(M, —wI)~! is the inverse of M, — wI. This shows that w € p(M,).

In the opposite direction, let w € essRan(p) and fix any € > 0. Then,
there £, C X such that 0 < v(E,) < oo and |p(x) —w| < € for all z € E..
Then, |[(¢ —w) || ze@) > 1/e. This shows that M, — wl does not have a
bounded inverse, hence that w € o(M,,). O

Some purely operator theoretic properties of multiplication operators are
easily spotted and proved.

A complex number A is an eigenvalue of a bounded operator L : H — H
(H Hilbert) is there exists 0 # h € H such that

Lh = \h.

We say that h is an eigenvector relative to A, and the linear space E) of such
eigenvectors is the eigenspace relative to the eigenvector A. Clearly, A € o(L).
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EXERCISE 6.2. Let ¢ € L>®(v). Then, X is an eigenvector for X if and
only if there is a measurable set A with 0 < v(A) such that p(x) = X\ for all
r €A

An operator U : H — H is unitary if UU* = U*U = I. A bounded
operator A : H — H is self-adjoint if and only if A = A*.

EXERCISE 6.3. Let ¢ € L*(v). Show that M, is unitary if and only if
lo(z)| =1 a.e. in X. Show that M, is self-adjoint if and only if p(z) € R
a.e. in X. Deduce that if M, is self-adjoint, then M, is self-adjoint.

6.1.4. Example: the spectrum of a multiplier on H?(D). If instead
of L*(v) we consider one of its subspaces, the spectrum of a multiplication
operator might be very different from what we have seen in §6.1.3.

Let’s compute spectrum and resolvent of the back-shift operator 77 on
¢*(N). We start from the most obvious enemies of invertibility, which are
eigenvalues, i.e. X’s for which 7/¢ = Ap has a nonvanishing solution ¢ € 2.
Such ¢ are the solution to

p(n+1) =T170(n) = Ap(n),

that is p(n) = cA™ for some ¢ € C, which lies in ¢? if and only if |A| < 1.
The same argument shows that A is not an eigenvalue if |A\| > 1. The point
spectrum o,(7}) of the back-shift, the set of its eigenvalues, is the open disc
D. But the spectrum is closed, hence o(7}) contains the closed unit disc D.

Consider now |[A| > 1. Since ||77| < 1 < |A|, the inverse of I — &

+ exists,
hence A € p(7]). We have proved:

PROPOSITION 6.1. The spectrum of the back-shift is o(77) = D. Its point
spectrum is o,(77) = D.

We will say more on the role of T in the spectrum when we do the spectral
theory of operators on a Hilbert space.

In frequency space, the eigenvectors corresponding to A\ are constant mul-
tiples of

oo

fa(z) = Y aar = - _1Az — (%),

n=0

is the reproducing kernel at A! In fact, we showed that M ky = Aksx. Our
result was for general multipliers, and we obtain a general result as a conse-
quence of it.

THEOREM 6.6. (1) Let H be a RKHS on a set X, and let b be a
multiplier. Then,

a(My) 2 CUb(X)).



142 6. BANACH ALGEBRAS

(2) If be H*(D), then

o(M;) = Cl(b(D)).

PRrROOF. (1) holds because each b(x) is an eigenvalue of M}, corresponding
to the eigenvector k,. (2) In H?(D) it is easy to see that there are no other

elements in the spectrum. We use the fact that o(M}]) = o(M,). Suppose

A ¢ b(D). Then, 5 € H*(D). In fact we can say more:

0<c§' < (C < 0.

A —b(2)

This implies that M_y-1 = Mb’_& is an inverse for M)_,, hence, A € p(M,).
O

1
6.1.5. The spectral radius. The spectral radius r(T) of T is

(6.1.11) r(T) = max{|\| : A e o(T)} < |T.

To compute it, we have a beautiful formula.

'We can do the same calculations in frequency domain. The shift operator corresponds
to M., multiplication times the z variable on H?(DD), and the back-shift to

GIM: e = (Mgl = lim - /|Z|_rzg<z)f<z)§j
- liﬂ;ﬂ A - o)
_ <g|f—zf(0 >H27
then
(6.1.9) M2 f(z) = f(z) = £(0)

EXERCISE 6.4. Deduce (6.1.9) from the (*(N) expression of ;.

The eigenvalues A of M are those for which

(6.1.10) M = \f(2)

has a solution f € H?. The equation has solution f(z) = 1f£2\)z, which is holomorphic in

D if and only |A| < 1, and it belongs to H?(D) if and only if |A| < 1.
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THEOREM 6.7 (Gelfand). We have

(6.1.12) r(T) = lim |[T"*/™,

n—00

PRrROOF. The Laurent expansion of R,(7) at infinity is, as we have seen
before,

-1 _ "
(6.1.13) (M —T) _ZW’
n=0
As in the case of holomorphic functions of one variable, one shows that the

radius of convergence of the series with respect to 1/ is

1

lim sup,,_,, |77/

Hence, Ry(T) is holomorphic for [A| > limsup,,_,.. |T"*/™. If it were holo-

morphic for [\| > Q with Q < limsup,,_,., |T"|*/", arguing as is in holomor-
phic function theory we would deduce (using Cauchy formula) that the series
in (6.1.13) would converge for |A| > @, contradicting formula for the radius
of convergence. Hence,

r(T) = limsup ||/

n—o0

We then show that lim,, . |T7|'/" exists. Observe first that |77 <
|T™||T"|, hence that a,, := log |T™| satisfies @y in < @+ ap. For n=mq+r,
r=0,...,m—1, we have

an, qam, a, m, a,

<

= + = + :
n ~—mg+r mq+r m+r/r mg+r

thus,

. Qp, Am
limsup — < —,
n—oo I m

for each fixed m, hence,

limsup — < liminf —.
n—oo N m—oo N

Then, limy, 00 = limy, 00 log(|T™|"/™) exists. O
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6.2. Holomorphic calculus

If A is an element of an algebra A on C, ¢ € Clz] is a polynomial with
complex coefficients, the definition of g(A) € A is given in the obvious way,

(6.2.1) Za]zj = O 4(p Z&]AJ

Interesting facts happen when A # 0, yet p(A) = 0 for some p # 0, as
we see below. In this section, we extend the definition from polynomials to
holomorphic functions. We first review some basic algebra in order to have
a basic theory to make comparisons with.

6.2.1. The soon-to-be-lost paradise of polynomial calculus. Given
an element A in an algebra A and a polynomial p(z) with complex coeffi-
cients, we can compute p(A) in the obvious way. This operation gives a
algebra homomorphism ® 4 : p — p(A) from C[z] to A. Actually, we can be
more precise. Let C[A] be the smallest sub-algebra of A which contains A and
I (which is a commutative algebra). Then, ® 4 is a surjective homomorphism
from C[z] to C[A].

In general, ® 4 is far from being injective. Let A be the algebra of the nxn
matrices with complex coefficients. Since A has dimension n?, while C|z] has
infinite dimension, ®, has an infinite dimensional kernel. By contrast, let
A = H*(D) and let A(z) = z, the shift. Then, p(A)(z) = p(z), which we
might think of as multiplication times p(z), hence ®,4 = Id is the identity.
Similarly, if A = C[0,1] is the algebra of the continuous functions on [0, 1],
and A(z) =z, ®a(p)(x) = p(x).

Let Z = ker ® 4, which is an ideal in C[z]. Recall that all ideals in the
algebra of polynomials are principal ideals, i.e. there is a generating poly-
nomial p, uniquely determined but for a multiplicative constant, such that
Z={p):={p-q:q¢€ C[z]}. To see this, it suffices to show that for a,b € Z,
GCD(a,b) € Z, but this follows from the Euclidean algorithm to compute the
greatest common divisor of two polynomials. If ker ® 4 = (p). then p(A) =0
and ¢(A) # 0 for all polynomials which are not multiple of p (in particular,
for all proper factors of p).

We have then a complete classification of the algebras C[A], since they
are all isomorphic to C[z]/(p) for a uniquely determined, monic p, or (when
ker®, = 0) C[A4] is isomorphic to C[z]. The isomorphism is canonical:
a(A) = 1] mod p

Summarizing, we have the first two items of the following statement.

THEOREM 6.8. (i) Let A € A. Then, there is a unique minimal
monic polynomial p(z) such that p(A) = 0. Let [q] modp = () + ¢
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denote the equivalence class of q in C[z]/(p). Then, the map
(6.2.2) [q] — a(A)

is an isomorphism of C[z|/(p) onto C[A].

(i) In (i), dim(C[A]) = deg(p), if deg(p) # 0, and dim(C[A]) = oo if
deg(p) = 0.

(iii) Viceversa, let p be a monic polynomial with deg(p) > 1, let A =
Clz]/{(p), and set A = [z] modp- Then, ¢(A) = [q] mod p-

PRrROOF. The third one follows from the fact that 7, : ¢ — [q] moa p IS &
homomorphism of algebras, m, : C[z] = C[z]/(p). O

The nonconstant polynomial p(z) can be written as

(6.2.3) p(z) =(z— )™ ... (2 = \)™,
where Ay, ..., \; are the distinct roots of p, and m; > 1 is the multeplicity of
Aj.

Before we proceed, let’s consider two instructive examples. If all multi-
plicities are one, then we can consider the diagonal [ x [ matrix

A0
. 0 A
Diag(Ai, ..., ) = 0 02
for which
p(A) 0
. 0 A
p(Dig(h,...a) = [ 0 PO ol g

and p is clearly the minimal polynomial with this property.

Consider p(z) = (z — 1)?. A ”concrete” model of an algebra A and of an
element A in it, such that A is isomorphic to C[z]/(p) is the algebra of the
2 X 2 matrices generated by the identity and

11
=(01)
which satisfies (A — I)? = 0, but I # A. In general, a representation of this
kind can be obtained in terms of the Jordan decomposition of a matrix.
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An element in C[z]/(p) can be thought of as a polynomial with deg(r) <
deg(p). For any polynomial a € C[z], a = gp + r, and what a and r share (a
set of invariants for [a] moed p) are the my + --- +m; complex numbers:

a()\l) = 7“()\1), a/()q) = 7",<)\1), e ,a(ml_l)()\l) = T(ml_l)()\l),
(6:24)  a(\) = r(\), @) = PN, - a™ V() = rmD ().

This numbers, in turn, are sufficient to determine r. There are interpolating
formulas dating back to Lagrange, reconstructing r by its values on the zeros
of p, if all zeros have multiplicity one, or by values of r and its derivatives in
the case of higher multiplicity (see this lecture).

The set {A1,..., A} is the (algebraic) spectrum of the algebra C[z]/(p) =
C[A]. We have just seen that the spectrum alone is not sufficient to determine
the algebra C[A], but that we also need the multiplicities attached to each
of the points in it. But for the constant p, that is, the algebras C[A] are
parametrized by sets of the form

{A1,ma), ..., (N, my) },

with the \;’s complex, and the m; > 1’s positive integers.

An interesting special case is that of the Hermitian matrices, those matri-
ces A such that (z, Aw)cny = (Az,w)cn. The infinite dimensional version of
them are the self-adjoint operators, to be discussed in the chapter on spectral
theory. A basic fact fact of linear algebra is that, after a suitable unitary
change of coordinates (i.e. passing from A to U*AU, where UU* = U*U = I),
all such matrices can be written as diagonal matrices with real entries, the
elements p; < po < --- < uy on the diagonal being the eigenvalues. If
Ay < -+ < Ap are the distinct eigenvalues, then

(6.2.5) A= A((A,ma), ..., (A, mp)),

where m; is the multiplicity of ;. Let E();) be the eigenspace correspond-
ing to the eigenvalue \;, and I, be the (orthogonal) projection onto it.
Then,(6.2.5) can be written as:

L
(6.2.6) A= Allgp,),
=1

which is the spectral resolution of A. The projection valued measure (p.v.m.)
corresponding to A is the family {II,, : 1 <14 < L}, which might be written
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as a singular measure on R, having values in the space of projection,

L
(6.2.7) =Y Tpa)ox, Le I(B) =D Tpn,,

=1 NEB
where 0,, is the Dirac mass at \;, and B is a Borel set in R.

6.2.2. Holomorphic calculus. For a power series like
(6.2.8) f2) =) an",
n=0

the natural definition of f(A) is:

(6.2.9) FA) = a, A",

Let R be the radius of convergence of f(z). By comparison with power series,
(6.2.9) converges if R > |A|, and, in fact, for R > r(A), the spectral radius
of A. Power series are not the only way to represent holomorphic functions.
For instance, we have Cauchy formula, which is more flexible since it deals
with regions which are more general than discs.

Let A be an element of a Banach algebra A, Q D 0(A) an open set in the
complex plane, and f : {2 — C a function which is holomorphic in ). Let v
be a loop (or a formal sum of loops) in € such that Ind(y,({) = 1 for all ¢
in 0(A), i.e. such that 7 circles around each ¢ in the spectrum of A exactly
once, counterclockwise. We define, then

(6.2.10) FA) = / (2] — AL f(2)dz.
2ma ),

We have already seen that the expression z +— (zI — A)~! defines an A-
valued holomorphic function in C\ o(A), and the integral in (6.2.10) does
not depend on the curve v by Cauchy integral theorem. The element f(A),
that is, is defined if f is holomorphic on (any open set containing) o(A).

If we replace A by w, the formula gives back f(w), and for the moment
this is justification enough for the definition.

We need a relation which has an independent interest.

LEMMA 6.2. [Resolvent identity] If z,w € p(A), then

(6.2.11) (2 — A Hwl — A = (w—2)7 (2 — A7 — (wl — A)7Y.
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ProOOF. Multiply both sides of (6.2.11) by all inverses in sight:
(w—2)] = (wl —A)— (2] — A),
which in fact holds. O

THEOREM 6.9. (1) If q is a polyomial, or more generally a function
of the form (6.2.8), the definition of q(A) coincides with that given
by (6.2.1), or (6.2.9) in the general case.

(ii) The map f+— f(A) is an algebra homomorphism.
(iii) (Spectral mapping theorem) o(f(A)) = f(o(A)).

(iv) (go f)(A) = g(f(A)), where g : E — C is holomorphic on an open
set E D f(Q) D f(o(A)).

PROOF. (i) Let Lf(A) be the algebra element in (6.2.10): we have to show
that L,(A) = ¢q(A). We can assume 7 to be a circle containing o(q) in
its interior. By linearity, it suffices to show it for powers ¢(z) = z™. By
developing a Neuman series, which converges of v, we have

L(A) = QLm (2] — A)Lamds
v

=1

= Z—_/zm_l_”dzA"
— 2mi ),
A™

as wished.

(ii) We have to show that Ly, = L¢L,. Cosider a curve v as in the defini-
tion, and another curve ¢ with the same properties, but outside v, so that
Ind(d,z) = 1 for all z on ~, and Ind(y,w) = 0 for all w on §. Using the
resolvent identity from first to second line,

Ly(A)Ly(A) — 27” //z] AN (wl — A F(2)g(w)dwd>

- T / [0~ A7~ o~ Ayl
= o [ (5 [ et e

271 271

- (2m/7 —2) (2 )dz) (wl — A)"'g(w)dw
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The inner integral in the second summand vanishes, while the inner integral
in the first is g(z), hence,
1 _
Li(A)Ly(A) = o= [ (I = )7 f(2)g(2)d>
i J,

= Lyy(A).

(iii) If u & f(o(A)), then f— pu does not vanish on o(A), hence g = (f — )"
defines a function which is holomorphic in a neighborhood containing o(A).
We can then define g(A), and by (ii)

g(A)(f(A) = ul) = T = (f(A) = pnl)g(A),

ie. ¢ o(f(A)). This shows o(f(A)) C f(o(A)).
In the other direction, suppose that A € 0(A) and observe that

o) = 11O

defines a function which is holomorphic on an open set containing A, with
h(X\) = f(A). Again by (ii) we can define h(A) and

hA)(A = AD) = f(A) = FMT.

The first term is not invertible because A € o(A), thus the second term is not
invertible either, showing that f(\) € o(f(A)), hence f(o(A)) C o(f(A)).
(iv) Our hypothesis guarantee that g is holomorphic on an open set €2 contain-
ing f(o(A)) =o(f(A)). Let v be a simple curve in € such that Ind(,£) =1
forall € in f(o(f(A))), and let E' = Interior(y) D o(f(A)) be the open region
inside . Then, f~(F) is an open set containing A in its interior. Let ¢ be
a curve in f~!(B) such that Ind(d,¢) = 1 for all ¢ in A, and observe that
f(2) #wfor zin f~1(FE) and w on §, hance, z — (w— f(z))~! is holomorphic
on f~YE).

Using the definition of the holomorphic function of an operator in the
first two and in the last equality:

oFA) = oo [ wl = F(A) ()
= % i (% /6(10 — f() NIz — A)_ldz) g(w)dw
1 1 -1 . —1 -
5?6(%1Awﬂa>mwm00z Ayl

= 9(f(2) Iz — A)'dz

21 Fy
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by Cauchy formula
= (90 f)(A).

6.3. Intermezzo: holomorphic calculus and Laurent series

Let A be an element of a Banach algebra 4 having spectrum o(A) C
ClB(0,7r) ={2€C:|z| <R} 1let Q=Q(r,R)={2€C:0<r<|z| <R},
and let f be holomorphic in Q. If 7 is a loop in 2 such that Ind(v,{) = 1
for all ( € C1B(0,r), then the expression

(6:3.) Lalfo) = 5 [T = 4 f(2)a

certainly makes sense and it defines an element L4(f,~) € A. Can we identify
in some way La(f,~) with f(A)? We provide here an example of a function
f # 0 such that La(f,v) =0

Let A = C?*2 be the space of the 2 x 2 matrices with complex entries,

let A= (é 8) be the projection onto the first coordinate, so that o(A) =

{0,1}, and let f(z) = 1, which is holomorphic in Q(1,00). If v(t) = p- €’

(t € 10,27, p > 1 fixed) is as above, then L(f,~) is well defined, although

it can not be A™!, since A is not invertible. We claim that L4(f,~) = 0.
The function g,

/ f(2) 1 dz
T 2mi T 2mi 4 (z—w)z

vanishes in the interior of . In fact, by the residue theorem,
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We can now compute

1 _
50 W(Z]_A) Y(2)dz =

All this seems rather ad hoc, but it can be rephrased in a more conceptual
way. Recall that any function f which is holomorphic in the annulus Q(r, R)
can be expanded in a Laurent series there,

“+o00

(6.3.2) flz)=> a.2",

n=—oo

where f,(2) = Y27 a,2" converges in B(0,R) and f_(z) = 3.1 a,2"

converges in C \ [CI(B(0,r))]. Then, with the hypothesis on the objects
contained in (6.3.1),

(6.3.3) La(f,7) = f+(A)

is the element provided by the ”projection” of f onto the functions holo-
morphic in B(0, R). Here is the proof (I leave it to you to verify all needed
convergences).

1 _
La(f,y) = 5 (21 — A)~' f(z)dz
v
+00 1
= Z Ap=— /(zI—A) L2dz
S 2mi ),
1 +o0
— Z Ay —— /(z[—A) 1z"dz+2anAN
n=— T Jy n=0



152 6. BANACH ALGEBRAS

In the third equality we have used the holomorphic calculus. To finish,
observe that for n < 0

1 1
— [ (I -A)"dr = — [(I—-z1A)12" 2

27 . 27 .
S 1 / k_—k_n—1
= E — | A2z
21
k=0 v
> 1
= E Ak—,/z”_l_kdz
271
k=0 v

= 0,
because n — 1 — k < 0. The second equality seems to require |z| > |A],
but if you look more closely, you realize that |z| > r(A) suffices (r(A) is the
spectral radius of A), and since r(A) < r < p by hypothesis, we are done.

6.4. Gelfand theory of commutative Banach algebras

There are many interesting examples of commutative Banach algebras
with unit. Here are some examples, not always independent of each other.

(i) Cp(X), the algebra of the bounded and continuous functions on a
topological space X with respect to the uniform norm.

(ii) L*(u) on a measure space (X, p) with respect to the L> norm.

(iii) C1[0,1], the space of the continuously differentiable functions on
0, 1], with respect to the norm ||f|lcx = || fllc + || f/]lc-

(iv) M(H), the multiplier space of a reproducing kernel Hilbert space
H, is a commutative Banach algebra.

(v) In particular, H°°(D), the multiplier space of H?(ID), is a commuta-
tive Banach algebra.

In example (iv) you might worry about completeness. If you use both com-
pleteness of L(H) and reproducing functions, worries evaporate.

EXERCISE 6.5. M(H) is complete.

Gelfand theory identifies a commutative Banach algebra A with a subal-
gebra of C'(X), the algebra of the continuous fnctions on a compact set X.
The points of such set are the maximal ideals of A. This section is devoted
to precisely stating, and proving, this fact.
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6.4.1. Multiplicative functionals and ideals. We start with some
definitions. Let A be an algebra. a multiplicative functional p on A is a
homomorphism of algebras p : A — C. We include in the definition that
p # 0 is not the trivial homomorphism. The set of the nonzero algebra
homomorphisms ® : A — L is denoted by Hom(.A4, £), so that Hom(.A, C) is
the set of the multiplicative functionals.

A left ideal T of an algebra A is a vector subspace of A such that AZ C T
for all A in the algebra; it is a right ideal if ZA C T instead; it is a bilateral
ideal if it is both right and left. Since we deal with commutative Banach
algebras, we simply call Z and ideal. A bilateral ideal Z is maximal if it is
not contained in any other proper, maximal ideal.

An element A in a algebra A with unit I is invertible if A=! exists in A:
AATL = A7TA =T,

We list in an exercise some basic, purely algebraic facts about algebras.

EXERCISE 6.6. Let A be an algebra. Prove the following.
(i) Show that a left ideal that contains I, or an invertible element, is A.

(i) Let ® : A — L a homomorphism of algebras. Show that ker ® is a
bilateral ideal.

(iii) If p is a multiplicative functional and A has unity, then p(I) = 1.

(iv) If A is invertible in the algebra with unity A and p € Hom(A,C),
then p(A) # 0.

(v) Conversely to (ii), if  is a bilateral ideal of A, then T is the kernel
of the algebra homomorphism

7 A= AT ={m(A)=A+T: Ac A}

On the quotient we define the product (A+ZI)(B+7Z) = AB +Z,
which is well defined (prove it).

(vi) If ® € Hom(A, L) and T is a bilateral ideal in L, then @ Y(Z) is a
bilateral ideal in A.

(vii) By Zorn’s lemma, in a commutative algebra with identity a proper
wdeal I s always contained in a maximal ideal.

At the end of the section we will see that (iv) has an inverse in com-
mutative Banach algebras: if p(A) # 0 for all p € Hom(A,C), then A is
invertible.

We close this algebraic introduction with a lemma.
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LEMMA 6.3. Let M be a mazimal, bilateral ideal in A, an algebra with
unity. Then, L = A/M is a division algebra: all nonzero elements in it
have an inverse.

PROOF. Let m: A — L be the projection. By contradition, let 0 # = (B),
with 7(B) noninvertible in £, and let £ D Z be the ideal generated by B,
which is proper since [ + M ¢ Z. Now, n'(Z) is a proper ideal of A,
I ¢ 7=1(Z), and it properly contains M: B ¢ M, but B € 7 '(Z). Hence,
M was not maximal. O

We now come to analytic-algebraic results.

LEMMA 6.4. Let A be a commutative Banach algebra, andp € Hom(A, C).
Then, [p(A)] < |A].

PROOF. Suppose that |p(A)| > 1 for some A, and let B = -4 so that

p(4)?
|B| < 1. Then, I — B is invertible (by a Neumann series), hence,
p(A)
=h p(A)
contradiction. O

The lemma self-improves to the following inequality.

COROLLARY 6.2. Let A be a commutative Banach algebra, and p €
Hom(A,C). Then, [p(A)| <r(A).

PRrROOF. We have
Ip(A)| = |p(a™) V™ < |A"Y™ — r(A)
as n — oo. O

LEMMA 6.5. Let Z be a proper ideal in a commutative Banach algebra A
with unity. Then, its closure I is a proper ideal.

PROOF. The continuity of the algebra operations ensure that 7 is an
ideal, hence it suffices to show that I ¢ Z. Since elements A with [ —A| <1
are invertible, {A : |I — A| <} NZ = 0, and this shows that I ¢ Z. O

COROLLARY 6.3. A mazimal ideal in A is closed.
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6.4.2. The algebra of continuous functions. We consider here the
special case where A = C'(X) is the algebra of the continuous functions on a
Hausdorff, compact space X, endowed with the uniform norm. In this case,
the evaluations at point,

(6.4.1) e f e flx)

is a multiplicative functional, and ker(n,) = M, = {f € C(X) : f(z) = 0}
is a maximal ideal in C'(X). Maximality, which we obtained by abstract
reasoning, can be rephrased as follows. If ¢ € X and h € C(X) is such
that h(a) # 0, then there are A € C and f € C(X) with f(a) = 0 such that
1 = Ah+ f. In fact, we obtain this by letting A = 1/h(a) and f = 1—h/h(a).

THEOREM 6.10. All mazimal ideals in C(X) have the form M, for some
acX.

PRrROOF. By contradiction, let M be a maximal ideal which is is not of
the form M, for any a. Then, for each x in X, M contains a function f,
with f,(z) # 0 (otherwise M, C M), and we can assume that f,(x) > 0.
After multiplying f, times a cut-off function h, in C(X), h,f., € M, we
can also assume that h,f, > 0 on X and h,(x)f.(x) > 0. Let U, = {y €
X : hyfe(y) > 0}. By compactness, X = U ,U,,, and so, by Weierstrass
theorem,

c < Zn:hxifxi <C.
=1

That is, (3 ha, for) ™' € C(X), hence,

Mazg—"fxizl.

This shows that M = C(X). O

EXERCISE 6.7. Show that the mazimal ideal space of the algebra C[0,1]
is formed by the elements M, N C*(0,1], as = ranges in [0,1].

6.4.3. Intermezzo: the algebra of multipliers on a reproducing

kernel Hilbert space. Other notable examples of ideals in algebras are
found in multiplier algebras M(H) of RKHSs H on a set X:

(6.4.2) M, = {f € M(H) : f(z) = 0},

where © € X. Observe that M, is proper since 1 # M,.
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More generally, for zy,...,z, € X, we can define

Moy ={feM: f(x1) == f(z,) =0}
If EC FCX,then Mg DO Mg.

We recall a result from basic linear algebra.

LEMMA 6.6. Let V' be a vector space over C and | : V — C be linear,
[ #0. Then, ker(l) is a mazximal proper subspace of V.

PRrROOF. Let u,v € V \ ker(l). Then, l(u)v — l(v)u = w € ker(l), i.e.

v = %u +1 € span(ker (1), ), showing that V' = span(ker(l), u). O

PROPOSITION 6.2. The evaluation map n, : [+ f(x) is a multiplicative
functional, hence it is bounded. The ideal M, is mazximal, hence closed.

PROOF. The functional f — f(z) is well defined by definition of multi-
plier (f is a function) and it is multiplicative. Hence, it is a contraction by
lemma 6.4. Its kernel, M,, is maximal by lemma 6.6. 0

In the chapter on reproducing kernel Hilbert spaces we had a different
proof that 7, is a contraction on M (H), which followed from the fact that the
conjugates of values of f, if f is a multiplier, are eigenvalues of the multiplier
operator’s adjoint.

6.4.4. Gelfand’s representation. We return to the general theory.

THEOREM 6.11. Let Z be a proper, closed ideal in a commutative Banach
algebra A. Then, AJ/Z is a Banach algebra with respect to its quotient norm
as Banach space,

|A+Z| :=inf{|A+ N|: N € Z}.
PROOF.

|AB +Z| inf{|AB+ N|: N €T}

inf{|AB+ AN +BM + MN|: M,N € 1}
inf{|A+ M|-|B+N|: M,N €1}
inf{|[A+M|: M eZ}inf{|B+ N|: N eI}
= |A+I|-|B+1I|.

[ VA VAN

Next, we have a useful characterization of the complex field.

THEOREM 6.12 (Mazur). Let A be a Banach algebra which unit and which
is a division algebra. Then, A is isometrically isomorphic to C.
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PROOF. Let A # 0 be an element in .A. The spectrum o(A) is nonempty,
hence there is « such that ol — A is not invertible. Since A is a division
algebra, A = al, and o(A) = {A}. We then have a map ¢ : A — C,
®(A) = ®(al) = «, which is an isometric algebra isomorphism. O

Finally can state and prove the inverse of property (iv) in exercise 6.6.
THEOREM 6.13. Let A be a commutative Banach algebra with unit.

(i) If A is noninvertible, then there exists p € Hom(A,C) such that
p(A) = 0.

(ii) To each mazimal ideal M in A there corresponds a unique p €

Hom(A,C) such that ker(p) = M.

PRrOOF. (i) By (vii) in exercise 6.6, A is contained in a maximal ideal M.
Then,
pm:A—> A/ M=C

provides an element in Hom (A, C) with py(A) = 0.
(ii) To each maximal M we associate p, and the functional p is uniquely
determined since A = span(M, I) and p(I) = 1. O

Let © = Q(A) be the set of the maximal ideal is A, a commutative
Banach algebra with unity. By theorem 6.13 we have a well defined map

(6.4.3) p:QxA—C, pM,A) =pum(A).
We might look at it as a map G : A+ p(-, A) = p4,
(6.4.4) G:A—=QF GA):Q—=C, [GA]M) = pu(A).

The map G, representing elements of the Banach algebra A as functions on
its maximal ideal space €2, is the Gelfand representation of A. We summarize
the properties we have so far seen concerning it.

THEOREM 6.14. (i) The Gelfand representation G is a homomor-
phism of algebras, G € Hom(A, Q°).

(ii) The representation is contractive in the sense that sup ycq |[G(A)](M)] <
|A].

(iii) o(A) = [G(A(Q) = {p(M, A) : M € Q}.

(iv) G(I) =1 is the constant function.
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(v) The functions G(A) separate the points of Q: if M # N are mazimal
ideals, then [G(A)|(N) = p(M, A) # p(N, 4) = [G(A)](N).

PROOF. O

The heart of Gelfand theory consists in making the representation sharp.
In order to do this, we have to make €2 into a topological space.

Consider on X the Gelfand topology T, the coarsest making all maps
pa : 2 — C continuous. A basis of neighborhoods for Mg € Q in 7 are finite
intersections of the sets

NA;U)={M € Q: p(M,A) e U},

where A € A and U C D(0,|A|) is open in the Euclidean topology of

D(0,|A]) ={z € C:|z| < |A]}.
THEOREM 6.15. The maximal ideal space 2 is compact with respect to
the Gelfand topology.

The proof is similar to the one of the Banach-Alaoglu theorem.

ProOF. Consider the space

Z = HAEAD(O7 |A|)
endowed with the product topology, which is the coarsest making the projec-
tions w4, : Z — D(0,|Ao|), ma,({z4}aea) = 24,- A basis of neighborhoods
for the product topology are finite intersections of sets of the form

N(A;U) = {{za}aea : 24, € U},

with Ag and U as above. By Tikhonov theorem, Z is compact.
Consider then the map ¢ : ) — 7

(M) = {p(M,A): A€ Al

By the way the topologies on {2 and Z are defined, ® is a homomorphism
onto its image. To show that €2 is compact, then, it suffices to show that
®(9) is closed in Z.

Suppose {24} ac4 lies in the closure of ®(X), and consider A, B € A. For
any € > 0 there is M € X such that |p(M, A) —z4| < €/3, |[p(M, B) — 25| <
/3, and [p(M, A+ B) — za, p| < €/3, so that

|24 + 2B — zayB| < €.

Hence, z4 + zp = 24,5. The same way, one shows that z.4 = cz4 if ¢ is
a complex number, and zsp = z4zp. This shows that p : A — 24 is a
multiplicative functional from A to C. We know that p = p(M,-) for some
M in Q, hence that {z4}aea = P(M). O
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6.4.5. The Gelfand representation of C'(X) and other examples.
When A = C(X), the space of the continuous functions on a compact, Haus-
dorff space X with topology o, the Gelfand representation is just the identity.

We saw that there a bijection between X and the maximal ideal space,
a — M,. The multiplicative functional associated to M, is evaluation at a,
na(f) = f(a). the Gelfand transform, then acts as

[G(N)](Ma) = na(f) = f(a)

is nothing but f itself. The topology 7 on X interpreted as a maximal ideal
space is the coarsest making each f € C(X) continuous, hence 7 C ¢ and
Id: (X,0) — (X, 7)is continuous. But both o and 7 make X compact, hence
sets which are closed for o are also compact for o, then they are compact,
hence closed for 7. This shows that ¢ C 7, hence that o = 7.

EXERCISE 6.8. Show that the Gelfand representation applied to C'[0,1]
jJust identifies C[0, 1] with a particular subalgebra of C[0,1].

The space H>[0, 1] is a Banach algebra, hence it has a Gelfand represen-
tation. Its maximal ideal space is huge, but there seems to be no concrete,
known example of maximal ideal.

6.5. Intermezzo: corona theorems

6.5.1. The corona problem in reproducing kernel Hilbert spaces.
Let H be a reproducing Hilbert space of functions on a set X, and let M(H)
be its multiplier algebra. In many important cases, the multiplier algebra is
too small even to separate points on X. In fact, it might very well be that
M(H) reduces to the constant functions. In many cases of interest, however,
including the Hardy space H = H?(D), the multiplier algebra is large. For
instance, f(z) = z already separates points in the disc.

Suppose M(H) separates points of X, and consider its maximal ideal
space © = Q(M(H)). Since point evaluations are multiplicative functionals,
we have a map i : X — ) associating to = the maximal ideal M, = {f €
M(H) : f(z) = 0}. The map is injective because M(H) separates points,
and we can thus view X a subset of {2, which is compact with respect to the
Gelfand topology.

Let X be the closure of X in Q. The corona of Q(M(H))is Q(M(H))\ X.
We say that Q(M(H)) has a corona if QUM(H)) \ X is nonempty.

In 1941 Gelfand published his article on the representation of commu-
tative Banach algebras, and in the same year Kakutani asked if H*(DD),
the multiplier space of H?(ID), has a corona. The question remained open for
twenty years, during which several reformulations of it where found. In 1962,
Carleson showed that, as conjectured by Kakutani, H*°(ID) has no corona.
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Carleson proof was hard, and it involved a number of other foundational
results. In 1979, Tom Wolff came with a much simplified proof, which he
never published, but which has become the standard one in monographs?.
This is not the end of the story, because the maximal ideal space of H*(D)
s not homeomorphic to the closed unit disc, as one might naively guess by
comparison with the algebra of the continuous functions on a compact set.
A concrete understanding of it came later.

After Carleson’s result, the corona theorem was extended to many other
multiplier spaces, and examples of multiplier spaces where it does not hold
where found. The area is an active one, and new results and open problems
abound. In this section, we limit ourselves to show that the corona theorem
is equivalent to an analytic statement, which is the the starting point of most
of the ”corona proofs” in literature. We do it for H*°, but the strategy has
general value.

6.5.2. An equivalent, analytic formulation of the corona prob-
lem. Let G(H*>(D)) be the maximal ideal space of H>*(D). Each M in it
is the kernel of a unique multiplicative functional py, : H*(D) — C. For f
in H>*(D), we write

fM) = pum(f),
thus thinking of f as a function on G(H>(D)).

LEMMA 6.7 (An equivalent statement of the corona theorem). The fol-
lowing are equivalent.

(i) The corona theorem holds in H*®(D).

(ii) Suppose that for all n > 1, if fi,..., fn € H®(D) there is j such
that |fj(z)| > 0 > 0 for some 6 > 0 independent of = € D. Then
there exist g1, ...,9, € H®(D) such that

(6.5.1) figr+ -+ fagn =1,

i.e. the ideal generated by f1, ..., fn is the whole of H*®(D), M(f1,. ..

H>(D).

The implication we need for proving the corona theorem is (i) = (i). It
is useful, however, knowing that the two properties are equivalent. Property
(ii) is obvious if we drop the requirement that g, ..., g, be holomorphic:

fifit o+ fala
fifit o+ faln

2See e.g. Paul Koosis, Introduction to H” Spaces, 2" edition (1999) Cambridge
University Press.

 fn)


https://www.cambridge.org/core/books/introduction-to-hp-spaces/13A053E7F427D0F31E94B3DC26DA520A
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and g; = % is C* and bounded on D by our assumptions on the f;’s.
j=11J3

PROOF. (ii) = (i). Suppose H*(D) is not dense in G(H>°(D)) with respect
to the Gelfand topology. Then, there are a maximal ideal M, § > 0, and
hi,...,h, € H>®(D) such that, for all z € D, M, ¢ N(M;hy,..., h,;0), ie.

|hi(M)—hi(2)| > 0, or |he(M)—hs(2)| >0, or ..., or |h,(M)—=h,(2)] > 4.
So, fj ==h; —h;(M) e H*(D), j =1,...,n, satisfy
fi(M) =0,

but for each z in the disc there is f; such that |f;(z)| > d. By (ii), we find
91, -, gn € H*(D) such that fig; + -+ fugn = 1, hence

L=pum(1) =) pmlfi)pmlg;) =0

j=1

and we have found a contradiction.

(i) = (ii). Suppose the corona theorem holds and let fi,..., f,, and 6 > 0,
be as in (ii). Suppose by contradiction that for no gi,...,g, € H>*(D) we
have that fig1 +--- — fo.g, = 1, i.e. that

M(fh"'?fn) = {flgl+"'+fngn:gla---7gn EHOO<]D)}

is a proper ideal in H*(D). Let M be a maximal ideal in H*°(D) which
contains M(fi,..., f,), and let pp be the corresponding multiplicative func-
tional, so that pp(f;) =0 for j =1,...,n. Since the corona theorem holds,
there exists z € D such that M, € N(M; fi,..., fa;0), i.e. such that for
j=1...,n,

5> pailFy) — pac ()] = 1£5(2)],

which contradicts our assumption on fi,..., f,. U

A critical analysis of the proof shows that we used very little of the
structure of H>®(D).

THEOREM 6.16. Let A be a Banach algebra of functions f : X — C,
defined on some set X, and suppose that the evaluation functionals 7, :

A — C,
n:(f) = f(z)

are bounded on A for all x in X. Then, the following are equivalent.
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(i) The set {ker(n,) : x € X} is dense in G(A).

(ii) Suppose that for allm > 1, if f1,..., fn € A there is j such that
|fj(x)] > 6 > 0 for some § > 0 independent of x € X. Then there
exist g1, ..., g, € A such that

i.e. theideal generated by fi,. .., fn is the whole of A, M(f1,..., fn) =
A.

The theorem can be in particular be applied to the multiplier space of
a reproducing kernel Hilbert space. In fact, most proofs of corona theorems
try to show (ii), which is an analytic statement.

EXERCISE 6.9. Prove theorem 6.16.

The case n = 1 in (6.5.2) is already an interesting one. It says that if f
lies in the multiplier space, and M(H) and |f| is bounded from below, then
1/fe M(H).



CHAPTER 7

Spectral theory of unitary, and of self-adjoint operators

Most of this chapter is based on the expository The spectral theorem and
its converses for unbounded symmetric operators (2011) by Terence Tao. The
advantage of this approach is that we do not need any previous version of
the spectral theorem: not that for bounded self-adjoint operators, or more
generally that for the normal operators, and not even that for the finite
dimensional case. In fact, the self-adjoint bounded case, and the self-adjoint
compact case, can be recovered as special cases, the peculiarities of which
can be easily spotted and proved using rather basic measure theory. The
pedagogical risk, on the other hand, is that the unbounded case presents
many subtle points which have to be untangled before reaching the heart of
the matter.

A good source for a more comprehensive treatment of spectral theory us-
ing Herglotz representation is Mathematical Methods in Quantum Mechanics
With Applications to Schrodinger Operators (2014) by Gerald Teschl (Grad-
uate Studies in Mathematics, Volume 157, Amer. Math. Soc.). A new
approach to the whole matter is in The Functional Calculus Approach to
the Spectral Theorem (2020) by Markus Haase, arXiv:2003.06130. Another
recommended reading is Michael Taylor’s Spectral Theory.

A spectral theorem with a simpler proof is the one for unitary operators.
I have included it because the result is important by itself, and it can serve
as a starter, its proof having several ideas in common with the one for self-
adjoint operators. The variant I present here is from Michael Taylor’s lecture
notes The Spectral Theorem for Self-Adjoint and Unitary Operators.

The spectral theorem which is considered here tells the life and works of
one self-adjoint operator L, and of a commutative Banach algebra it generates
(in an appropriate way). In fact, the generated algebra is a von Neumann
algebra. Here is a short list of topics we do not cover.

(1) If L, M are commuting bounded, self-adjoint operators, LM = ML,
can they be simultaneously represented in the same model (can they
be simultaneously diagonalized)? The answer is yes, but you have
to find it elsewhere.
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https://terrytao.wordpress.com/2011/12/20/the-spectral-theorem-and-its-converses-for-unbounded-symmetric-operators/
https://terrytao.wordpress.com/2011/12/20/the-spectral-theorem-and-its-converses-for-unbounded-symmetric-operators/
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https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/index.html
https://arxiv.org/abs/2003.06130
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https://mtaylor.web.unc.edu/wp-content/uploads/sites/16915/2018/04/chap8.pdf
https://mtaylor.web.unc.edu/wp-content/uploads/sites/16915/2018/04/specthm.pdf
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(2) What about normal operators? See Michael Reed, Barry Simon,
Methods of Modern Mathematical Physics: Functional analysis, Aca-
demic Press, 1972, chapter VII, exercise 5 p. 246.

(3) On the way towards our spectral theorem we will make a number of
arbitrary choices. Is there a canonical way to represent a self-adjoint
operator? Yes, up to a point, but you have to learn it somewhere
else (e.g. Reed and Simon’s Functional Analysis).

(4) An N x N Hermitian matrix is not in general unitarily determined
by its eigenvalues: we also need to know their multiplicity. Is there
a multiplicity theory even in the more general Hilbert universe?
Again, the answer is positive, but for the details you have to find
other sources. e.g. Introduction to Hilbert Space and the Theory of
Spectral Multiplicity, New York, Chelsea Pub. Co. 1957, by Paul
R. Halmos.

7.1. Intermezzo: spectral theory and quantum mechanics

In this "motivational” section I try to sketch the reason why the notions
of spectral theory are foundational in quantum mechanics. I do everything
in a finite dimensional Hilbert space, so what is needed to follow is just some
notion of linear algebra, and you do not need to know the theory which lies
ahead. You also might read the section after you have read the rest of the
chapter. Or you might skip altogether, if you so wish.

Spectral theory had its origins in the study of integral equations, with
foundational contributions of Fredholm, then Hilbert, and it first appeared
in its infinite dimensional form. In the course of the 1920’s, physicists found
that it provided the mathematical framework for quantum mechanics, which
was being developed in those years, and both finite and infinite dimensional
theories play there a role. It is a really amazing coincidence that the word
spectrum introduced by Hilbert in his work turned out to represent, in the
light of the quantum mechanical interpretation, the spectrum of electromag-
netic radiation physicists were accustomed to. It was von Neumann who
wrote the foundations of quantum mechanics in the language of abstract
Hilbert spaces, which has since become standard.

I know very little physics, and the interested student is invited to com-
pare what is to follow with some authoritative source. I suggest the video
lectures The theoretical minimum: quantum mechanics by Leonard Susskind,
or, even better, the book with the same title by Susskind and Art Friedman
(2014). I like the book because: (i) the mathematics involved are kept to
a minimum, so the math student can quickly browse through the prelimi-
naries of each chapter and speedily get to (ii) the conceptual exposition of


https://books.google.it/books/about/Functional_Analysis.html?id=16jFzQEACAAJ&redir_esc=y
https://books.google.it/books/about/Introduction_to_Hilbert_Space_and_the_Th.html?id=FXBADwAAQBAJ&redir_esc=y
https://books.google.it/books/about/Introduction_to_Hilbert_Space_and_the_Th.html?id=FXBADwAAQBAJ&redir_esc=y
https://theoreticalminimum.com/courses/quantum-mechanics/2012/winter
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the physics, which are presented in rigorous terms, (iii) in a way which is
not encumbered by a long discussion of experimental results and history of
concepts. Susskind’s text, that is, is a fast vehicle for those who want to pro-
ceed from operator theory to its motivations and applications in theoretical
physics.

Of course, at some point experiments and history of concepts have to be
considered, as always in natural sciences. For instance, the [Lecture notes
on operator algebras and their application in physics (2022) by Alexander
Kegeles provide a more advanced, but nice and readable, introduction to
the quantum mechanical interpretation of operator theory, and to operator
theory itself, for Master students in mathematics.

I thank Giacomo De Palma for correcting a conceptual mistake in the
definition of ”complete system of commuting observables”.

7.1.1. States and observables. A physical system is described by a
(complex!) Hilbert space H, whose vectors represent the states of the system
(or, better: states are vectors of unitary norm). Here we consider H to
be finite dimensional. Any self-adjoint operator A represents an observable
of such system, and its eigenvalues \;’s are the possible measures of the
observable: ); is the value of the observation represented by A when the
system is in a state e € E()\;), where E();) is, recall, the eigenspace relative
to A;.

Consider two states x,y. They are distinguishable if there is an observable
A which returns (with certainty: see below) different values for the two states.
i.e. there is a self-adjoint operator A such that Az = Az, Ay = uy, \ # u.
This happens if and only if x and y are orthogonal: (z|y) = 0.

More generally, if the system lies in the state h € H, ||h|| = 1, then the
probability that the measure X (a random variable) of the observable A has
the value \; is

(7.1.1) Pr(X = \) = g, k|

The states, that is, encode probabilities of observables. If h = ak with
a € C\ {0}, h and k return the same probabilities, and they can not be
distinguished. The state space really is the projectivization (H \ {0})/C of
H. Many properties of the system, however, depend on the linear structure
of H. Some examples of this will be presented below.

With this probabilistic interpretation, the ezpected value (or mean) of the
measure in the state h is

En(X) = Y APA(X =X) =D il


https://arxiv.org/abs/2208.10151
https://arxiv.org/abs/2208.10151
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L
= <h, > )\iHE(Ai)h>

i=1

(7.1.2) — (h, Ah).

The variance of X is called the uncertainty of A, and it can be expressed in
a number of ways,

Varh(X) = Eh[X — ]EhX]2
D =D APLX = N)PPA(X = )

= E,X? — (E,X)?

= (h, A?h — (h, Ah)?

= (h,[A — (h, AR)I]?h)
(7.1.3) = (h, A%h),

where the last expression holds if we put the mean of A to zero.

For vectors h in E()\;) there is no uncertainty: P, (X = ;) = 1, Po(X =
A;) = 0 for j # i. Such vectors are called pure states for the observable
A. A consequence of the spectral theorem for self-adjoint matrices is that
there is a orthonormal bases of pure states; any state is super-position (linear
combination) of pure states.

7.1.2. Commuting observables. After the measure of A in the state
h is performed, and the eigenvalue \; is its outcome, the system collapses
to the state IIg,)h (which has to be properly normalized by considering
Meonh/|epo ). Suppose we have a second observable B, with associ-
ated random variable Y, eigenvalues p, and eigenspaces F'(yy). If the initial
state is h, and the measurement A is performed with outcome J);, then the
observation of B is performed in the state [, k. By (7.1.1), this means
that:

Ph(y = :uk|X = )‘i) = ]P)HE(AZ-)h(Y - :uk)
L) o0 R
ITLe(a) hl?
(7.14)  Pu(Y =y after X =N,) = |[p)Iepn bl

, and

Here we can see a peculiar feature of quantum theory. If the measurement
of A did not affect the system in those parts measured by B, we would have

lyou might be worried about the denominator: where does h collapse when Iz, h =
0? That case has null probability, P, (X = ;) = HHE()\i)h||2 = 0, and we can simply ignore
it.
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equality from first to second line in:

IMrhll? = Pu(Y = )
= ZIP’;L(Y = uy, after X = \)

(7.1.5) = > e lean Al

simply because the events {X = \;} exhaust all possible outcomes of the
measure of A. This is certainly the case if [A, B] :== AB — BA = 0, since in
that case

(7.1.6) HF(Mk)HE(/\i) = HEO%)HF(/%)’

and the equality between the first and the last terms in (7.1.5) would follow
from the fact that {IIg,)}; is pvm, so that

(7.1.7) Pu(Y = ) = 3 Pu(Y = py after X = ),).

We say that the the observables represented by A and B are compatible if
(7.1.7) holds. We wrote "after”, not "and”, because the system, ”after”
measuring X, is in a different state. The event {Y = py, in the state h},
that is, is not a priori (and typically is not, as we shall see below), the union
Ui{Y = py after X = );, in the state h}.

In the finite dimensional case, compatibility is easily characterized in
terms of spectral theory. The extension of this and other notion to infinite
dimensions requires much more technicalities, although one can guess what
the statements are.

THEOREM 7.1 (Compatibility theorem). The following are equivalent.
(i) The observables represented by A and B are compatible.
(ii) A and B commute.

(iii) There is a common system of eigenvectors for A and B (i.e. A and
B can be simultaneously diagonalized).

PRrROOF. (ii) = (i). By the spectral theorem, [A, B] = 0 if and only if
[f(A),B] =0 for all f:o(A) — C, if and only if [f(A),g(B)] = 0 for all
f:0(A) = Cand g:0(B) — C, which implies that [IIz(,,), [Ign,)] = 0 for
all 7,7 (and by inserting this in the spectral resolutions of A and B, we see
that in fact the last condition is equivalent to (ii)). We have observed above
that (i) follows.
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(iii) = (ii) is clear: with the respect to the common eigenbasis, both A and
B are diagonal matrices.
(i) = (iil). Let = be a vector in F'(u). By (7.1.5),

S M pgTepozl® = [pg )
= al? = IMep) Mgl

= > Mgz

Each summand of the first term is less or equal to each sum of the last term,
then

I M eonhl? = [Tep) |

This can only happen if Iy )z € F(ug). i.e. Ipp,) : F(ur) = F(ux) is the
projection onto F'(ui) N E(\;). Since the latter spaces form an orthogonal
decomposition of F'(ji), there is an orthonormal basis {e?}?lzni(F(“k)) of F'(ug),

with respect to which each Ilgy,)|r(y,) is diagonal. Hence, with respect to
the basis Uk{eﬁ}dlm(F(“’“)) both A and B are diagonal. O

J=1

COROLLARY 7.1. Two observables A and B are compatible if and only if
for all states h:

Pn(Y = pux after X = X)) = Pp(X = \; after Y = ).

EXERCISE 7.1. Prove corollary 7.1.

7.1.3. Complete systems of commuting observables. The space
H expresses all possible states of the system, and two states are physically
distinct if it is possible to devise a measurement which assumes different
values (or, at least, different expectations of such values) if the system is
in one or the other state. In modelling physical systems, it is important
that there are no redundancies: the state space H must be large enough to
accommodate all physical states of the system, and no more.

In the finite dimensional case, a single observable A does the job if and
only if its eigenvalues are simple, m; = --- = my = 1. If m; > 2, in fact,
there are distinct pure states h,k € FE();) which return the same values
for the observable A. The problem arises, then, of understanding when a
set {A,..., Ay} of commuting observables, posssibly having eigenvalues
with higher multiplicities (that is, some eigenvalues aredegenerate) has the
property that, for each eigenvalue A, the intersection Ey(A) N --- N Ej(A) of
the eigenspaces E;())’s corresponding to the A,’s is at most one dimensional.
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Such set {Ay, ..., Ay} is called a complete system of commuting operators. In
the finite dimensional theory these problems are elementary. In the infinite
dimensional case they are less elementary and they are the subject of the
multiplicity theory, which is best seen having at hands the multiplication
form of the spectral theorem, which we will see later on.

We see here how the multiplication form of the spectral theorem looks in
the finite dimensional case. We saw in (6.2.6) and (6.2.7) the pvm associate
to a self-adjoint operator on a finite dimensional H. If dim(E()\;)) = 1 for all
i’s, and e; is a unitary vector in E(\;), map U : e; — (f; : A\;j = 0;;), where
0;; is the Kroenecker symbol,

Uez( ,]7 E azez - '7

defines a unitary map from H to L*(R, u), where p =Y. ;. We have then:
(7.1.8) (UAU™ ) (A;) = Aj0(Ay),

i.e. the operator A is unitarily equivalent to the operator ”"multiplication
times \” on L?*(p). Let’s verify (7.1.8).

o = Zs@ )i
Uty = Zs@ e,
AU Yy = ZW i)ei,
(UAUTR)(N) = Zkiw(&)(ﬁ(%))
= Ajp(d).

In the general case, eigenvalues \; can have multiplicity m; > 2, and we have
to split the above procedure accordingly. Let m = max(my,....mys) be the
maximum of multiplicities. Rearrange so that m = m; > mo > -+ > my,.
For each eigenspace E()y) consider a orthonormal basis {¥}7™ (the choice
of which is not canonical); pick m copies of R, and on the ("
the measure

copy consider

This way, 0, appears in the measures fi1, .. ., fim,, and not in fiy, 11, - - -, fm-
Let k(1) to be the largest k for which my > [.
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Pick then a vector x = Y, > a¥el. Associate to it the family Uz :=

=1 "1 "1

{o} € L () @ - - - @ L* (), where

Y1 = Z aécflka
k:mg >l
and where, as before, fF()\;) = 6, for 1 < j < k(I). This provides a
constructive proof of the following.

THEOREM 7.2 (Spectral theorem finite dimensions: multiplicative form).
Let A be a self-adjoint operator on a finite dimensional space. Then, there
are measures [y, . .., iy on R (sums of Dirac deltas at disjoint real points),
and there is a unitary operator

U:H— L) ® - & L*(um), Uz =@ = (¢1,...,0m),

such that
(AU 0)i(X) = dai(N).

Moreover, dim(H) is the total number of the Dirac’s deltas involved.

We can rephrase the theorem in a language involving just one measure
space. Let X = R x {1,..., M}, endowed with the topology generated by
the open sets of each factors. Identify p; with the corresponding measure on
R x {j}, and let po = pug + - - - + par, which is a measure on X. Consider then
the unitary map

VL) @ - @ L2 () = L2(w), Vet om) (N 5) = @5(N).
Then,
VUAU 'V (N, 5) = g\, 5)v(N, 5), where g(), j) = A.

This is a special case of the multiplicative form of the spectral theorem,
stating that bounded, self-adjoint operators on Hilbert spaces can be always
be represented as multiplication operators on (Borel) L? spaces.

The presence of several summands is indication of how {A} alone fails to
be a complete system of commuting observables. Multiplicity theory provides
a more quantitative measure of the same.

7.1.4. Uncertainty. We saw that commuting self-adjoint operators A
and B are compatible in the sense the measure of A does not affect the mea-
sure of B. Compatibility should not be confused with independence of the
random variables X, Y associated with A, B with respect to the probabil-
ity measure P, associated with a state h € H, as the case A = B clearly
illustrates.

Lack of commutativity, however, has probabilistic consequences.
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THEOREM 7.3 (Heisenberg inequality). Suppose that A and B are self-

adjoint and that they have zero mean with respect to a state h, 0 = (h, Ah) =
(h, Bh). Then,

(7.1.9) 1/4)(h, [A, B]h)|)? < (h, A%h){h, B*h) = Var,(X) Var,(Y).

Actually, we will prove a slightly sharper inequality. The main conse-
quence of (7.1.9) is that [A, B] sets a lower bound to the simultaneous con-
centration of X and Y around their means.

PrRoOOF. We set (A), = (h, Ah) (in physics the subscript h is implicit).
If A and B are self-adjoint, [A, B] is a measure of how much AB fails to
be self-adjoint: AB — (AB)* = AB — BA = [A, B]. We can write AB in
"algebraic form”,

{A,B} [A, B
5 Ty

AB =

=S +4iT, with S=S"and T =T".

where we use the notation {A, B} = AB + BA. An easy calculation gives
(h,1/2{A = (A)n, B = (B)n}h) = (b, [1/2{A, B} = (A)n(B)a]h),

and clearly

for all constants a,b. We have then:

1/ 2i)(h, [A, BI[® < [(h, [1/2{A, B} = (A)n(B)ulk)|* + [1/(2i) (b, [A, BIh)[?
= [(h, (A= (A)n)(B = (B)w)h)|?
= }(( _<A>h)ha’(B_<B>h>)h>|2
< 2

(7.1.10)

0

The stronger inequality, starting from the right hand side of the first
inequality in (7.1.10), is known as the Robertson-Schroedinger uncertainty
relation. One of its advantages is that it does not become trivial in the case
[A,B] = 0; e.g. when A = B. In a a sense it carries both classical and
quantum probabilistic information.
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7.1.5. Evolution and the Schroedinger equation. Quantum phys-
ical systems evolve, and, if they are isolated, they evolve according to the
following rules. First a bit of notation. If x is a state of the system, U(¢)x is
the state of that system at time ¢ > 0. This way, U(0) = I is the identity.

(a) Distinguishable states remain distinguishable:
(,9) =0 = ({U)z,U(t)y) = 0.

(b) If ||z|| = 1, we normalize U(t)x to have ||U(x)| = 1.

(¢) U(t+ s)x = U(t)U(s)x, which is self-explicatory: ”the evolution of
the evolution...”.

(d) U(t) is linear. Together with (b), this implies that ||U(t)z|| = ||z||.
Linearity is a nontrivial requirement, whose roots are in experiments.

(e) Some continuity is required...
In purely mathematical terms, (a-e) mean:
(i) each U(t) is a unitary operator, U(t)*U(t) = U(t)U(t)* = I;
(ii) t — U(t) defines a semigroup of such operators;
(iii) some continuity...
We consider here the special case where
(7.1.11) U(t) = e t >0, with A bounded.
THEOREM 7.4. Let A be a self-adjoint operator on a Hilbert space H.
(i) U(t) is unitary.
(ii) t — U(t) is a semi-group for all bounded operators A.
(iii) The Schroedinger equation

1dU (1)
v dt
holds in the norm topology:

U+ A) = U(t)
A, A = AUL)

(7.1.12) = AU(t)

i the operator norm.
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(iv) The semigroup is strongly continuous,
(7.1.13) lim || U(A)z —z|| =0
A—0

for all x in H.

PROOF. Since the functions z — e'* are entire, we can use the holomor-
phic calculus. We can write

=
=

I

=

[
(]2

’::.

=
. 3

n=0

where the series converges in the operator norm, and all usual manipulations
of series hold, provided we take into account the eventual break of commuta-
tivity (which here does not occur). We have ||U(t)|| < e!l4ll. Ttem (ii) follows
immediately.

It is easily verified that

Ut) = e A,

and this gives (i):

({Ut)x, U(t)y) = EU(t)*U(t)x, y)

Since U(t + A) = U(A)U(t), it suffices to verify (iii) at ¢ = 0, which we can
do using series:

which tends to zero in the operator norm as A — 0. (iv) is an even weaker
statement. U

All this is very nice, but also highly unsatisfactory. The Schroedinger
equation for a free particle, in fact, is (but for the Plank constant) of the
form (7.1.12), but with H = L*(R3) and A = Ags, the Laplace operator,
which is not bounded (and not even everywhere defined, in fact) on H.
This provided the main motivation for von Neumann to develop the spectral
theory for unbounded self-adjoint operators, which also has applications all
over mathematics. One of main items in the unbounded case is the following
theorem of Stone, which extends theorem 7.4.
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THEOREM 7.5 (Stone’s theorem). Let t — U(t) be a strongly continuous
semigroup of unitary operators on H (that is, (iv) in theorem 7.4 holds). Let

D(A) be the set of those x in H such that

lim UA)z —x

A—0 A = Ar

exists 1n norm.

Then, D(A) is dense in H. The operator A : D(A) — H is self-adjoint,
and U(t) = 4.

Viceversa, if A is self-adjoint (and possibly unbounded), then U(t) = €'
defines a strongly continuous unitary semigroup.

tA

Of course, we should define what an unbounded self-adjoint operator is,
and what we mean by ¢4, which requires a more general version of the
spectral theorem. Such tools were developed by von Neumann, in fact, in
the late 20’s of the XX century, and they are the main topic we discuss in
this chapter.

If the system starts in the state z and the dynamics are given by A,
at time ¢ the system is in the state e®4x. Suppose we wish to perform a
measure of the observable B at time t. How does the expectation of the
random variable Y associate to B change over time?

EyweY = (U(t)z, BU(t)x) =)z, U(—t)BU(t)z) = (x, ¢~itA BeitAs),
hence (at least formally),

d . .
%EU(t)xY = (—iu)(x,e " (AB — BA)e"™z) = —i(U(t)z, [A, BlU(t)x).
In particular, the mean remains constant if and only if [A, B] = 0: the
observables must be compatible. The case A = B is interpreted in physics
as conservation of energy.

Schroedinger’s evolution operator can be written in terms of the pvm

associated with A,
+oo
A :/ )\Hd)\.

oo

By the spectral theorem in pvm form,
. +m .
(7.1.14) eit4 :/ Mg,

which makes sense for ¢ € R, and it defines a notion of Fourier transform
for the pvm II, TI(t) = e*!. If you are familiar with Bochner’s theorem, and
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you observe that Il exhibits some positivity (IIg > 0 as operator), then you
expect as well its " Fourier transform” to have a property similar to ”positive
definiteness”:

n
2: — i(tj—ty)A
jk=1
as operator, for any choice of complex a,...,«a, and real t,...,t,. The
guess is correct,

n
<x’ E Cjael(t]_tk)A:C> =

jk=1

2
> 0.

n
§ Cj@thAx
=1

At some point one should talk about entenglement, but you will have to
read it elsewhere.

7.2. The spectral theorem for unitary operators

Here we follow one of the two proofs in Michael Taylor’s lecture notes
The Spectral Theorem for Self-Adjoint and Unitary Operators. The proof
only requires basic Fourier series.

Recall that a linear operator H Y His unitary iff and only if U*U =
UU* = I is he identity. This is equivalent to the property of preserving the
inner product,

(7.2.1) (Uz,Uy) = (z,y),

whenever z,y € H. We have clearly that |U]| = 1, but there are plenty of
operators having norm one which are not unitary.

An abundant source of unitary operators is provided by specific multipli-
cation operators on L? spaces. If (X,v) is a measure space and ¢ : X — R
is measurable, then

(7.2.2) M : f > € f

is unitary on L*(v). Also observe that M?*, = M,-i,. At the end of the day,
we learn that all unitary operators are unitarily equivalent to some M., for
some measure space (X, v).

7.2.1. The spectrum of a unitary operator. Recall that T = {e* :
t € (—m, |} is the unit circle in the complex plane (the torus).

PROPOSITION 7.1. If H % H s unitary, then o(U)CT.

PrOOF. If [A| > 1, then U — A = AU/ — I) is invertible because
|U/Al < 1, hence A € p(U). If |]A\| < 1, then U — X[ = U(I — \U*) is
invertible because U and I — AU* are, so again A € p(U). O


https://mtaylor.web.unc.edu/wp-content/uploads/sites/16915/2018/04/specthm.pdf
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7.2.2. The continuous functional calculus for a unitary operator.
If p(e™) = p(e') = Zi:;_ ~ @€ is a trigonometric polynomial, it natural to

define

N

(7.2.3) pU) = > aU"

n=—N

The obvious polynomial calculus defined by (7.2.3) generates a homomor-
phism of algebras, (pq)(U) = p(U)q(U).

This definition immediately extends to functions f : T — C whose Fourier
series converges absolutely,

1 & -~
(7.2.4) by > 1F ) =l fllae < oo
The space of such functions is called Wicner algebra. However, we just want

to have a dense subspace of L*(T), so we consider f € C*(T) := C3,,. For
such f’s, define

(7.25) 0y =5 3 Fmyu

which converges in operator norm. For such ”C?(T) calculus” the following
properties are easily established.

(i) If f € C*(T), then f(U)* = f(U), where f(e') := f(e*). Using
that

in fact,

27Tn:—oo

1 X = )
= o f(=n)U

7Tn:—oo


https://en.wikipedia.org/wiki/Wiener_algebra
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(i) If f,g € C*(T), then (fg)(U) = f(U)g(U). Absolute convergence
of the corresponding Fourier series ensures that the following equal-

ities hold:
FOW) = o 3 Tln=m)am”
1 1 ~ n—m | ~ m
= %mez (g%f(”—m)[] )g(m)U
= f(U)gU).

(iii) If f > 0 and f € C*(T), then (z, f(U)x) > 0 for all z in H. If
€ > 0, then f+e € C*(T) is strictly positive, hence /f + ¢ € C*(T).
Since v/ f + € is real valued, by (i) (v/f + €)(U) is self-adjoint. Then,

(@, f(U)z) +ell=lI* = (2, [f(U) +el])z) = (2, (V + )(U) V] +)(U)z)
= (Vf+a)z,(Vf+U)x) = (V] +e)(U)z]*

> 0.

Hence, (x, f(U)x) > 0.

(iv) If f € C*(T), then |f(U)z| < | fllzgell[]- The function g(e®) =
If11Ze= — |f|* is positive, hence, by (iil),

0 < (& (/g — FP)W)z) = Iflzge ll* = (x, (F))(U)z)
= |flezllzll* = (&, f(O) f(U)=)
= [Iflezllll® = [1F (U)]*.

Item (iv) means that the regularity assumption f € C? is somewhat redun-
dant, since only the L* norm of f is relevant in order to estimate || f(U)]].
Based on this, we can extend the C*(T) calculus to a continuous calculus.

THEOREM 7.6. Let U be a unitary operator on a Hilbert space H. There
is a unique homomorphism of algebras A : C(T) — B(H), A(f) = f(U),
such that

(i) if e(e) = € is the identity function on T, then A(e) = U (hence,
A(p) = p(U) when p is a trigonometric polynomial);

(ii) A is continuous when B(H) is endowed with the uniform operator
topology (the one induced by the operator norm,), |[A(f)|| < || fllree-
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Moreover, if f € C(T),
(iii) f(U)* = f(U);
(iv) if f is real valued, then f(U) = f(U)*, and, if f > 0, then f(U) > 0;

PROOF. The map A was introduced above on the subspace of the trigono-
metric polynomial in accordance to (i). Given f € C?(T), and

(56N = 5= 3 Flmper™

In|<N

we have that ||Syf — fllree — 0 as N — oo, hence, by item (iv) above,
Aim [[ASNS) = FU)] = Jim [[(Snf)(U) = FU)]] =0,
—00 N—o00

where f(U) was defined earlier; hence, f(U) = A(f).

If g € C(T) and {f,} is a sequence in C?*(T) converging to g uniformly,
then {A(f,)} is a Cauchy sequence B(H) with respect to the norm topology,
hence it converges to some operator A € B(H). By requirement (ii), A =
A(g). Tt is readily verified that any other sequence converging to g provides
the same definition of A(g). The fact that A is a homomorphism of algebras
is routine.

This shows existence and uniqueness of a map A with the properties (i),
(ii). The proof of (iii) and (iv) is left as an exercise. O

The map A needs not being injective. If H is finite dimensional, for
instance, C'(T) is infinite dimensional, whereas £(H) is finite dimensional.

7.2.3. The spectral measures and the measurable calculus. Fix
a unitary operator U on a Hilbert space H. By theorem 7.6, for each x € H,
the map

(7.2.6) Apw: f = (@, f(U)z), Ayg: O(T) — C,

is linear, continuous, and positive. By the Riesz-Markov-Kakutani represen-
tation theorem for measures, there exists a (unique) finite Borel measure pi, ,
on T such that

(7.2.7) (. f(U)z) = / F(e) ().

By polarization, for each x,y € H we can find a complex valued, finite Borel
measure i, , such that

(7.2.8) (, F(U)y) = / F(e)dptay ().
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The measures i, , are the spectral measures associated with U. Observe that
the association is canonical: they are uniquely determined by U. We will
need the following.

LEMMA 7.1. If U is unitary, x,y € H, and f € C(T), then

(7.2.9) fdiiey = dita sy

PRrOOF. For any other continuous g,

/fgdux,y = (z,9(U) f(U)y) Z/gdum,ﬂwy-
T T

g

The map (x,y) — i, is a sesquilinear map with values in the finite,
complex measures on T.
We have, in particular,

[ i) = @ U3),
T
and i, ,(T) = (z,y). The advantage of the spectral measures is that we can

define a measurable calculus.

THEOREM 7.7. [Measurable calculus for a unitary operator]/ There is a
unique linear map A : L(T) — B(H), A(f) = f(U), such that:

(i) A(U) = f(U) agrees with the previously defined one when f € C(T);

(ii) A is continuous in the sense that if L=(T) > f, — f € L>*(T)
pointwise and || fn||ree < C is bounded, then A(f,) — A(f) in the
weak operator topology.

Moreover, A is a x-algebra homomorphism (A(fg) = A(f)A(g), and A(f)* =
A(f)) and

(7.2.10) (z, f(U)y) = /deux,y-

PRrROOF. We begin by showing that a linear map A : Lg°(T) — B(H) with
the properties (i) and (ii) exists. For f € Ly and z,y € H, let

[$7y]f:Afdﬂx,y
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By uniqueness of the spectral measures, [x,y| is sesquilinear, and

[z, sl < Cllfllzge

if ||z[[, lyll < 1. By homogeneity, |[z,y|s| < C|[fllrellzl - Iyl for all x,y,
hence there exists a unique operator A(U) = f(U) € B(H) such that

[z, yly = (@, f(U)y).

The map A : f+— f(U) just defined agrees with the previous definition when
f is continuous, so (i) holds. Moreover, it is clearly linear in the f variable.

Suppose L°°( ) S fn — f € Lg® pointwise, and that they are uniformly
bounded. For each x,y in H, by dominated convergence,

lim (2, fu(U)y) = lim [ fadpie, = / fdpay = (x, f(U)y),
T T

n—o0

ie. f,(U) — f(U) is the weak operator topology, i.e. property (ii) holds.

We show uniqueness. If (i) and (ii) hold for a linear map A, the space A
of functions f : T — C in L(T) such that A(f) = A(f): (1) contains C(T),
and (2) is closed under pointwise limits of uniformly bounded functions. By
the corollary 1.1 to the Lebesgue-Hausdorff theorem, A = LF(T).

We are left with proving that A is an x-algebra homomorphism. We start
by extending lemma 7.1 to f € L3°(T). For n € Z, let e,(t) = ™. We start
by showing that

Mo Uy = HU-1zy-
In fact, for n € 7Z,

/ " dpy 17y = (x,U™Uy) = (U 'z, U™y) :/eimtdﬂU—lx7y7
T T

and a finite Radon measure g on T is uniquely characterized by its Fourier
coefficients 7i(n) = [, e""du, m € Z.
Now, for z, yEH and f € L

/ei”tf(eit)dux7y(eit) — /f zt d,uzU" zt /f zt d,LLU "ry( zt)
T
= (U, f(L)y) = (z,U"f
_ /emtd,ux,f(U)y(eit);
T
which implies

(7.2.11) F(e")dpzy(e") = d,ua:,f(U)y(eit)'
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With this at hands,
. (fg)(U)y) = / (o))t () = / F(E) g€ dtey ()
= /T F(€")dp gy () = /?T F(€")dpe, p gy (€”)
(e, £(

U)g(U))-

As a byproduct of the proof, we have that (fg)(U) = f(U)g(U) if f €
L>(T) and g € C(T),

@ TN = [ Faduay = (2,90) 1)
We can now prove that (fg)(U) = f(U)g(U) for f,g € LF(T),
(z, (fg)U)y) = /ngdu%y = /T Fdbagwyy = /T At )9y
(z, f

(U)g(U)y).

To show that A is a *-homomorphism,

(z, fU)y) = (f(U)x,y) =y, f(U)z)

as wished. O

2A different proof of (7.2.11), using the Lebesgue-Hausdorff theorem. For
x,y € H, let
Avy ={f € Lg(T): fdpuz,y = dﬂw,f(U)y}'
We know that C(T) C A, ,, and to apply the Lebesgue-Hausdorff theorem we only need to
show that f € A, if f is the pointwise limit of a uniformly bounded sequence f,, € A ,.
For g € C(T), by dominated convergence and lemma 7.1,

/T fodpey = lim /qr fngdpiz,y = lim /T 9diia, 1, (U)y
lim o0 (2, g(U) fn(U)y) = limn oo (g(U) "2, fu(U)y)
{g(U)z, f(U)y) = {z, g(U) f(U)y)

= /gduL,f(U)y7
T

hence, f € A;y. Thus, lemma 7.1 holds for f € Lg°(T).
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7.2.4. From the measurable calculus to projection valued mea-
sures. Let F be a Borel subset of T. We define u(E) = xg(U),

(7.2.12) (@ (E)) = [ sy = o)

The map E +— p(FE) defines a function from the Borel o-algebra into the set
of the projections of H. In fact,

pE) =xe(U) = xe(U) = u(E),
WE)* = xp(U) = xe(U) = u(E).

THEOREM 7.8. The map E — p(E) is a projection valued measure
on E. That 1s,

(1) p(0) =0 and u(T) = I;
(ii) if {En}2, is a sequence of disjoint, Borel measurable sets in T, then

H (U En) = n(En)

n=1
converges in the strong operator topology.

Having a measure, we expect to have an associated version of integral. In
this case, we would like to integrate functions f: T — C,

(7.2.13) /Tf(e”)du(e”) € L(H).

This can be done in a rigorous way. See e.g. §3.4 in Spectral theory in Hilbert
spaces (2009), ETH Ziirich lecture notes, by Emmanuel Kowalski. We will
give the expression in (7.2.13) the weak meaning

(72.14) (o ([ erane) vy = [ sy

PROOF. Property (i) is clear. Let {E,} be like in (ii) and £ = U2 | E,,
and let y € H. The vectors u(FE,)y, n > 1, are orthogonal and

> lleEDyl” < llyll?,
n=1

hence

> ul(Eny


https://people.math.ethz.ch/~kowalski/spectral-theory.pdf
https://people.math.ethz.ch/~kowalski/spectral-theory.pdf
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converges in H. Since for all z € H

(. 1(E)y) = /E iy = /E dptny = 3 (, u(Ea))

= <:B,Zu(En)y> ,

we have that > 7 u(E,) = p(E). O

The p.v.m. p and the spectral measures i, , are related by (7.2.12). The
advantage of p is that we can use it to define null-sets and an L*> norm. A
Borel subset E of T is a null-set for U if u(F) = 0. The countable union of
null-sets is obviously a null-set. A property P(e%) (e € T) holds p-almost
everywhere if the set where it fails is a null-set for u. A function ¢ : T — C
belongs to L (u) if there is C' < 0 such that |p(e?)| < C u — a.e.. The
minimum value of C' for which this holds is the L>(p)-norm of ¢, ||¢]| (1)

Observe that other LP(x)-norms can not be defined so easily. The advan-
tage of the L°°-norm is that it is based on the primitive notion of null-set,
not on the more sophisticated notion of the measure of a set (u is a measure,
but with values in the space of operators).

We now relate being null for y with being null for p, .. In analogy with
the case of finite positive Borel measures, we define the support of a p.v.m.
pon T to be the smallest closed subset F' of T such that u(T \ F) = 0.

THEOREM 7.9. [Nullsets for the p.v.m. associated with a unitary opera-
tor/

(i) For a Borel subset E of T the following are equivalent:

() j(B) =0,
(b) pzz(E) =0 forallz € H;

(€) poy(E) =0 for all z,y € H;

(d) feg.es(E) =0 for all eq,eg in an orthonormal basis of H.

(ii) For a Borel function ¢ : T — C,

el Loy = sup (|9 Lo (ua0) -
xeH

(iii) If f € Lg(T), then |[fU)[| = [1f ]| -
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Proor. (i) If p(E) = 0, then p, ,(E) = (x, u(E)y) = 0 for all z,y, which
by polarization is the same as i, ,(F) = 0 for all z. If (x,u(E)y) = 0 for
all x,y, on the other hand, u(E)y = 0 for all y, then u(FE) = 0. This shows
(a) <= (b) <= (c). On the other hand, (d) states that all "matrix
coefficients” (eq, (E)ep) = fiey s (E) of p(E) vanish, hence that u(E) = 0.

(ii) For aw > 0, using (i), we have

ol <a = pft:|p(e)]>a} =0
< forallz € H: pg.{t:|p(e")|>a}=0
= sup|lpflre < a,
T€H

hence || oo ) = Supep [lpll oo -
(iii) In one direction, for x € H we have

1F@))? = (o |f2U)) = / FPdes
T
< g 212 < 112l by (i),

hence, || f(U)|| < ||flLo (-
In the other direction, let 0 < A < || f[|goe () (we can assume || || L () > 0,

since if || f|| Lo (u) = O there is nothing to prove). By (ii), there is  in H such
that A < || f]|zo(ua..)- Hence, there exists a Borel set £ such that ji, ,(E) > 0
and |f(e™)| > X for e in E. Thus,

A

0 < /E (IFP = X)dpas s = / (U7 = X)djian

= /T(If|2 = Nty (0)ix ()
= (xe0)z,|fP(U)xeU)x) — X (xp(U)z, xe(U)z)
= IfO)xe)]|* = X|xe(U)z|*.

The strict inequality rules out the possibility that yg(U)x = 0, and the
inequality itself implies that

Mxe@)z| < [f(U)xe(U)x]]],
which implies that A < || f(U)||. Hence, ||f||zeq < |F(U)]]- O

7.2.5. From the continuous calculus to the multiplicative form.
Let’s go back to the continuous calculus. A vector x € H is cyclic for the
unitary operator U if the linear space

{f(U)z: fed(T)}
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is dense in H. The space V. = {f(U)x : f € C(T)} is invariant for the
action of U,

Uv Ccw.
In fact, V is invariant under the action of f(U) if f € C(T), [f(U)}(V) C V.

PROPOSITION 7.2. Suppose U has a cyclic vector x. Then, the map © :
C(T) = H, O(f) = f(U)x, extends to a unitary map from L*(T, py.) to H,
such that

(7.2.15) (O7'UO)f)(e) = e f(e™).

That is, U is unitarily equivalent to multiplication times e on L*(T, p;..),

PROOF. The map O is an L*(u, ) isometry on C(T),

If@)z]* = (@, f(U) f(U)) = (x, [ f](U)z) =/T!f|2duz,x.

As such, © extends to an isometry of C' (T)L (#m), the closure of C(T) in the

L*(p1, ) norm. The hypothesis that z is cyclic means that ©(C(T)) is dense
in H, hence that © is a surjective isometry. U

We can then use some kind of finite or infinite induction, to have a similar
result even when we do not have a cyclic vector at hands. We consider the

case where H is separable. The general case can be dealt with by Zorn’s
lemma.

THEOREM 7.10. [Spectral theorem for unitary operators: multiplicative
form] Let U be a unitary operator on a separable Hilbert space H. Then,
there exists a locally compact space X, a finite Borel measure v on X, and
a continuous function ¢ : X — R, and a unitary map © : L*(v) — H, such
that

(7.2.16) (O7'UO)f =€,

is multiplication times e .
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PROOF. Let {z,, : n > 1} be a orthogonal basis for H, normalized to have
Y1 lzall? < co. Let P(T) be the space of the trigonometric polynomials.
We construct a family of closed, mutually orthogonal subspaces H,,, whose
sum exhausts H.

H
o Let yy =y and Hy = {p(U)y, : p€ P(T)} .

o Lot ys = @5 — Ty € HE, and Hy = {p(U)ys - p € P(T)} .

o If Hy,...,H, 1 have been chosen, let v, = x,, — Tyw,0..¢H,_,Tn €
H
(Hi®---®H,1)*, and H, = {p(U)y, : pe P(T)} .

Pick p(U)y, € H,, and q(U)y,, € Hy, with m < n. Then,

(P(U)Yn, a(U)ym) = (Yn, (Pq)(U)ym) = 0,

because pq is a trigonometric polynomial, hence, (pq)(U)ym € Hy, to which
Yy, is orthogonal. Since the elements of the form p(U)y, are dense in H,, and
those of the form ¢(U)y,, are dense in H,,, we have that H, L H,,.

After exhausting the list of the z,’s, we have that @n>1 H,, is dense in
H. Some of H,’s might be trivial. In this case, we can remove them and
renumber the sequence. The nontrivial H,’s might be finitely many.

For fixed n, we are in the situation described by proposition 7.2. The
map O, : P(T) — H,,

On(p) = p(U),
extends to a unitary map from ©,, : L*(T, u,, ) — H,, and

(6, U6 f](e") = e" f(e't).

A150, g, (T) = [[gall? < Ifall®

Let A be the (discrete) set of the indices n (which might be finite or
infinite), and let X = T x A, with the product topology, which is locally
compact. Let v be the Borel measure which restricts to p,, ,,, on the com-
ponent T x {n}, and observe that v is finite. We can naturally identify
L*(X,v) = @B, c4 L*(T, piy, y.). Finally, define © : L*(X,v) — H summand
by summand,

Olr2(t 1y ) = On-

If F:TxA— C, then
(7.2.17) [(67'UO)F]|(e",n) = e"F(e",n).

The operator (©7'UO), that is, acts like multiplication times e on each
”cl-open” component T x {n} of X. O
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The representation we have provided of U as a multiplication operator is
not canonical, even when H = C2. Consider for instance

)

The vector ) cyclic, and this provides a representation with just an

. . 1 0
”invariant subspace”. The vectors (O)’ <1
representation with two ”invariant subspaces”.

The spaces H,, in the proof of theorem 7.10 are clearly invariant for U.

> are not, and they provide a

7.2.6. The spectral theory of a multiplication operator. The mul-
tiplicative form of the spectral theorem tells us that any unitary operator is
unitarily equivalent to a multiplication operator M, of the following form,
for which we can explicitly write down the spectrum, the spectral measures,
and so on.

(a) We have a locally compact space X and a finite positive Borel mea-
sure v, which we can assume to be finite, and a surjective local home-
omorphismn : X — T, such that M, : L*(v) — L*(v) is the operator
M,f=nf.

(b) o(M,) = n(supp(v)) C T is the spectrum of M,.

PRrROOF. Let 2z € T.

z € p(M,) (z— M, '€ L™(v)
In(x) — z| > € v — a.e. for some € > 0
n Y (D(z.€)) Nsupp(v) = O for some € > 0

D(z,e) Nn(supp(r)) = 0 for some € > 0
z & n(supp(v)).

reeee

g

(c) Let f € L*(v). The spectral measure uys; is such that, for any
trigonometric polynomial p : T — C,

/ PP = (Fp(My) f) 1200y = / pdus.
X T
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That is, dugy; = n.(|f]*dv). (Recall that the push-forward of a
measure v on X under a map 1 : X — Y is the measure defined by
[y ed(nw) = [ (pon)dv. Of course, this needs some measurability
assumptions, that is our case are easily verified). Similarly, duy, =

n.(gfdv).

(d) The p.v.m. p maps Borel measurable sets E in T to projections of
L3(v) in the following fashion:

/X FIu(E)gldv = (f, w(E)g) 12y = iyo(E) = /X xa(n)Fodv,
i.e. (xe(n)=xegon)
(7.2.18) 1(E)g = xeng, n(E) = Myw):-

(e) A Borel set E C T is a null-set for p if and only if 0 = xgpon =
Xn-1(E) V — a.e., i.e. if and only if v(n~'(E)) = 0.

(f) By (e) and the topological properties of n, n(supp(v)) = supp().

PROOF.
z ¢ supp(u) <= wu(D(z,¢)) =0 for some € > 0
< v(n ' (D(z,¢))) =0 for some € > 0, by (e)
< 1 Y(D(z¢€))Nsupp(v) = 0 for some € > 0
< D(z,¢) Nn(supp(v)) = 0 for some € >0
<z ¢n(supp(v)).

(g) By (b) and (f),

(7.2.19) supp(p) = o(M,).

7.2.7. Some applications of the spectral theorem in its multi-
plicative form. A notable advantage of the multiplicative form of the spec-
tral theory is that we can now use measure theory to study functional ana-
lytic properties of unitary operators. We start by highlighting the role of the
spectrum.
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THEOREM 7.11. [The spectrum and the support of the projection valued
measure] Let U : H — H be unitary, {p.. : * € H} be the family of the
spectral measures for U, and p be the projection valued measure associated

with U. We have

(7.2.20) supp(p) = o(U).

PROOF OF THEOREM 7.11. By the multiplicative form of the spectral
theorem, it suffices to show it for multiplication operators. This is done in

(7.2.19). O

COROLLARY 7.2. With the same notation of theorem 7.11, we also have
the following.

(i) For a function f € L*(n), f(U) = 0 if and only if f vanishes p-
a.e on o(U). Thus, the map f — [Xow) is the identity of L>(ju).
To highlight this fact, we also write L>*(u) = L>®(a(U)), and for
¢ : o(U) — C measurable and bounded, we write p(U) = f(U),
where f is any measurable extension of ¢ to T.

(ii) If {fn : n > 1} is a sequence in L>®(o(U)), if ||fallLe@) < C is
uniformly bounded, and f, — f pu— a.e., then f,(U) — f(U) in the
strong operator topology.

(ili) By Tietze extension theorem, the operator f — fl,w)y = Vf maps
C(T) onto C(c(U)). By (i), f({U) = 0 if and only if Vf = 0.
For g € C(o(U)), then, we can write g(U) := f(U). Now, if If
{gn : n > 1} is a sequence in C(a(U)) converging to g uniformly,
then g,(U) converges to g(U) uniformly.

Moreover, f — f(U) is an isometry of C(o(U)) into L(H).

Here is another sample application. We denote by U(H) the set of the
unitary operators on H, which is also a group under composition.

PROPOSITION 7.3. The unitary group U(H), endowed with the strong
operator topology, is arc-connected.

PROOF. We can assume that H = L?(v) and that Uf = e“f, where
¢ : X — R is measurable. For t € R, let

Ut.f = 6it<pf7

U = U,. Each Uy is unitary, Uy = I, and it is easy to prove that ¢t — U, is
strongly continuous from R to U(L?*(v)). (We have Uy = UUy: ¢ — Uy is a
strongly continuous one parameter group in U(L*(v))).
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Since any U can be connected to I, two such U’s can be connected to
each other. O

In general, there are many arcs of this group type connecting U to the
identity. We have in fact that

eigp _ ei(s&+27rn)
where n : X — 7 is any measurable function. The maps t — e(#+2™) pro-
vide one parameter groups joining U and I, and in general they are different
from each other.

7.2.8. Some final remarks. The various forms we have seen of the
spectral theorem for unitary operators, and their proofs, suggest a general
framework, strategy, and objectives.

(i) Given the operator L on the Hilbert space H, we see if we can
perform some simple algebraic operations on it. In this case, we
can consider linear combinations of U™ with complex coefficients,
where n can be both positive or negative. This provides a "restricted
calculus”, that in our case involves trigonometric polynomials p(e®),
which become the operators p(L).

We will see when working with unbounded operators that finding
a "restricted calculus” is not easy, since unbounded operators can
not be in general composed without restricting more and more the
domain. We will use instead the Cauchy kernel u +— ﬁ (u € R,

z € C\ R), and the operators (L — z)~! (the "resolvent map”).

(ii) If we have some information about convergence, we can extend the
"restricted calculus” to a ”continuous calculus”. Here we had, for
each f € C(T), a corresponding operator f(L). The good news is
that bounded, linear functionals on nice spaces of continuous func-
tions are in a bijection with finite Borel measures by Riesz theorem.
For instance, this is the case with the functionals

fe Az, f(L)y).
The "spectral” measures we have found are defined by the relation
(@ (L) = [ ey
T

With unbounded operators things will be trickier. Lacking a poly-
nomial, even less a continuous calculus, we have to resort to differ-
ent results from real and complex analysis. Following Tao and one



(7.2.21)

(iii)
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stream of literature, we will use Herglotz representation theorem, as-
sociating to each positive harmonic function defined on a half-plane
(and having suitable decay) a positive measure on the half-plane’s
boundary. This will produce ”spectral measures”, satisfying

(oL ty) = [ Dol

R U—2Z

In both cases,

(@) = [ wdpay )

the operator L becomes, in the world of each spectral measure, mul-
tiplication times the coordinate of the space.

Omne way to exploit the state of things described in (ii) is by extending
the integrals to Borel measurable functions,

(z,m(LYy) = /X m(u)dny (1),

for m Borel measurable and bounded. Here X is the ”"spectral set”:
the natural subset of the complex plane containing the spectra of
the operators L belonging to the class we are studying. The most
interesting instance is that of the characteristic functions, m = xg,
where F is measurable in X. Since x% = xz and yg is real valued,
if we have an effective calculus, then xz(L)? = xg(L) and xg(L)* =
xe(L); ie. pu(FE):=xgr(L) is a projection onto a closed subspace of
H! We have, that is, projection valued measures. By the way, these
are of the uttmost importance in quantum mechanics.

A different strategy consists in starting again with (ii). We have
realized that for elements of H having the form f(L)x (with x €
H fixed), the map © : f + f(L)z is an isometry from L*(f,.)
onto a "cyclic” subspace of H, and that © intertwines L with a
multiplication operator on L?(j, ). This is the main building block
of the multiplicative form of the spectral theorem.

7.3. Closed operators and their adjoints

Let D be a subspace of H and D L H be a linear operator. We say that
L is densely defined (d.d.) id D is dense in H. The graph TI'(L) of L is

T(L)={(f.Lf): f € D} C H x H.
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The Cartesian product H x H = H & H is itself a Hilbert space with the
inner product

The operator L is closed if T'(L) is closed in H x H, i.e. if

D> f,— fand Lf, — gin H, implies that f € D and g = Lf.
REMARK 7.1. Let D % H be closed, injective, and having closed range

(this holds if, for instance, L is a bijection). By the closed graph theorem,
Ran(L) L7 D s bounded.

EXAMPLE 7.1. The operator (Lf)(x) = zf(x), having domain D = {f €
L*R): zf € L*(R)} is closed.

An extension D, B [ of an operator D L H is a linear operator L;
with domain D; O D such that Dq|p = L.

The operator D Lo H s symmetric if for all f,g € D
(f,Lg) = (Lf,9)-
LEmMmA 7.2. If D L H is d.d. and symmetric, then
T(L) = (L)

is the graph of a closed, symmetric linear operator L, the closure of L. The
domain of L is denoted by D. Beware! D is not the closure of D in H (which

is H itself), but rather m (I'(L)). That is,
D={feH:3D>f,— f such that 3 lim f, € H}.
n—oo

If L, is a closed operator extending L, then I'(L;) D T'(L) D I'(L). In
this sense L is the minimal closed extension of L.

PROOF. Suppose I'(L) 3 (fu, Lf,) — (f,g), and set Lf = g. The defini-
tion is well posed if it does not depend on the sequence {f,} in D, but just
on f, and this happens if and only if (h,,, Lh,) — (0, p) with h, € D implies
that p = 0. For £k € D we have that

(k,p) = lim(k, Lh,) = lim(Lk, Lhy,) = 0,

hence p € D+ = H+ = 0, since D is dense in H. Let m(f,g) = f be the
projection onto the first coordinate in H x H. We have defined D L Hon

D:={f€H:3D> f, — fsuch that lim Lf, exists in H} = m(I'(L)),
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and (L) = T(L).

The operator L is linear. If D > f, — f, Lf, = g=Lf, D > h, — h,
and Lh, — k = h, then L(af, + bh,) — ag + bk = af + bh, where a,b are
scalars. Also, L is symmetric:

g

The adjoint of a d.d. linear operator D % H is defined as in the bounded
operator case, although we have to be careful with the domains. Let

D*={ge€ H: fw (g,Lf) is bounded on D}.

For each g € D*, by density of D in H and Riesz theorem, there exists a
unique L*g € H such that

(L*g,L) = (g, Lf).

It is an easy exercise showing that D* is a subspace of H and L* is a linear
operator.

REMARK 7.2. If L is d.d. and symmetric, then D* O D and L* extends
L. In fact, for g € D, f+— (Lf, g) = (f, Lg) is bounded, and L*g = Lg.

LEmMmA 7.3. If D LoHis d.d., then L* is closed.

PROOF. Let T(T) = {(T'f,f) : f € E} be the co-graph of an operator
EL H We prove that:

(7.3.1) [(-L"):={(-L*g,9): g€ D'} =T(L)* in H® H.
On the one hand, for f € D, we have

((=L%g,9),(f, Lf)) =—(L"g, f) + (9, Lf) =0,

which shows that I'(—L*) C T'(L)*. Conversely, (h,g) € I'(L)* if and only
it 0 = (h, f) + (g9, Lf) for all f in D, but this implies that f — (g, Lf)
is bounded on D (hence, g € D*), and that h = —L*g. Hence, (h,g) €
['(-=L*). By (7.3.1), T(=L*) is closed, which implies that T'(L*) is closed, as
wished. U

*

LEMMA 7.4. Let L be d.d. and symmetric. Then, L'* =L and L* = L .
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PROOF. By lemma 7.2 we have

N(-L*) = T(L)*=T(L) =r@)?*

hence, L* = L, which is our second thesis. As a consequence, using lemma
7.2 twice,

d —k

D(L*) =T(=L*)" =T(=L")* =T(L),
hence, L** = L. O

EXAMPLE 7.2. Unbounded operators provide examples of closed subspaces
M, N C H of a Hilbert space H such that the orthogonal projection my; onto
M maps N onto a dense subspace wp(N) # M. This fact is not evident
from pictures. A gemeral machine to produce counterexamples is by consid-
ering H = H x H, where H is infinite dimensional, M = H (say, the first
component), and N = I'(L), where D L Hisa d.d., closed, unbounded op-
erator (so that D, by the Hellinger-Toeplitz theorem, is strictly contained in
H). Then, m(I'(L)) = D is not the whole range of my, although it is dense
mn 1.

A consequence of lemma 7.3 is that, if L is d.d. and symmetric, then
L* is a closed extension of L, hence of L. We might hope that, under these
assumptions, L* = L. Unfortunately this is not the case.

REMARK 7.3. There are d.d., symmetric operators such that L* is not
symmetric. Since for all such operators L* = f* by lemma 7.4, such examples
arise even for some d.d., symmetric, closed operators. See the section on the
momentum operator for a concrete instance.

A d.d. defined operator D & H is self-adjoint (s.a.) if and only if
L=1L" D= D*and L = L*. In particular, self-adjoint operators are closed
(because L* is closed) and symmetric: if f — (g, Lf) is bounded on D, then

g€ D" =D, and (g, Lf) =(L"g, ) = (Ly, f).
Self-adjointness is much stronger than it looks.

REMARK 7.4. Let Dz & H be self-adjoint, and let D C F Y H be a
symmetric extension of L. Then, E = D. That is, L can not be extended to
a larger domain while preserving symmetry.

The proof is easy. If y € E, then

r = (y, Lr) = (y, Mx) = (My,x)

defines a bounded functional on D, hence, y € D = D*.



7.4. RESOLVENT AND SPECTRUM 195

Self-adjoint operators, that is, are maximal in the lattice of the symmetric
operators, ordered by extension. In particular, the domain of a self-adjoint
operator must be ”best possible”.

A d.d. symmetric operator D Loois just essentially self-adjoint if its
closure L is self-adjoint.

REMARK 7.5. A d.d. symmetric D Lo s essentially self-adjoint iof and
only if D = D*.

The next proposition gives a first, abstract criterion for self-adjointness.

PROPOSITION 7.4. Let D & H be d.d., closed, symmetric. Then, L is
self-adjoint if and only if L* is symmetric.

PrROOF. The only if direction is obvious. In the other direction, suppose
L* is symmetric. We claim that, then, D C D* and I'(L) C I'(L*). If g € D,
in fact, then |(g, Lf)| = [(Lg, f)| < ||Lg]| - || ]|, hence g € D*. For such ¢’s,
(Lg, f) = (g9, Lf) = (L*g, f) for all fin D, hence L*g = Lg. This shows that
D C D*, hence that I'(L) C I'(L*). We want to show the opposite inclusion.
Both I'(L) and I'(L*) are closed. Let (g, L*g) € I'(L*)©I'(L). For f € D,

0={((g,L"9), (f; L)) = (9, [) + (L"g, L),

then, f +— (L*g, Lf) = —(g, f) is bounded, hence L*g € D* and L**g = —g.
Then,
IL*glI* = (L™g,9) = ~llg]*,

which implies that g = 0. Thus, I'(L) = I'(L*), and L is self-adjoint. O
7.4. Resolvent and spectrum

7.4.1. Resolvent and spectrum for a general d.d. symmetric
operator. Consider D Lo symmetric, d.d., and closed, and z € C. We
say that z € o(L) belongs to the spectrumof Lif L—zl =L—2z:D — H is
not a bijection. This can happen because L — zI is not injective, or because
it is not surjective. If it is injective, we can still define R(z) = (L — z)~' :
Ran(L — z) — D.

LEMMA 7.5. Let D % H be closed, and z € C. If the inverse (L—2z)"":
H — D exists, then it is bounded.

PRrROOF. It sufficed to prove that T'((L — 2)~') = I'(L — z) is closed, and
apply the closed graph theorem. Suppose f, — f, and (L — z)f, = g in H,
so that Lf, — zf + g. Since L is closed, Lf = zf + g, i.e. g = (L — 2)f,
showing that T'(L — z) is closed. O
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As in the case of bounded operators, or of Banach algebras, we deduce
that the resolvent set p(L) = C\ o(L) of L is open.

EXERCISE 7.2. Let D % H be closed. Use a Neumann series to show
that p(L) is open. Deduce that the map z — R(z), R : p(L) — B(H), is
holomorphic.

EXERCISE 7.3. Let M, be the position opemtor M,f(z) = zf(xz) on
L*(R), with domain D = {f € L* : [o(1 + 2?)|f(x)]Pdz < co}. Show
that M, is self-adjoint and that its spectrum is o(M,) = R (which is not
compact).

The map z — R(z) = (L—2z)"! is the resolvent function of L, R : p(L) —
B(H).

In order to define R(z) = (L — 2)~! : Ran(L — 2) — D we just need
L — z to be injective, and not necessarily surjective. In the case of symmetric
operators we have some quantitative information.

LEMMA 7.6. Let D 2 H be d. d., symmetric and closed, and let z € C\R.
Then, Ran(L — z) is closed, R(z) : Ran(L — z) — D, and

1
|[Im(z)|
PROOF. By symmetry of L, for f € D we have (f, Lf) € R, hence,
| = Tmz| - If* = [m(f,(L—2)f)
< L =2)fI- 1111,

(7.4.1) IR()] <

showing that
(7.4.2) (L = 2) fIl = Tmz] - || f]]

This implies that L — z is injective.

If D> f, and (L — 2)f, — g, so that {(L — 2)f,} is Cauchy, then {f,}
is Cauchy as well by (7.4.2). Thus Lf, — g+ zf = Lf, because L is closed,
so g = (L — z)f. This shows that Ran(L — z) is closed.

Finally, equation (7.4.2) is equivalent to (7.4.1). O

PROPOSITION 7.5. Let D 2 H be d.d., symmetric, and closed.

(i) If z,w € C and R(z), R(w) are everywhere defined (i.e. z,w €
p(L)), then

(7.4.3) R(z) — R(w) = (z —w)R(z) R(w).
In particular R(z)R(w) = R(w)R(z) and R(z)R(w)
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(i) If z € C\R, and R(z), R(Z) € p(L), then R(2)* = R(z).
PRrooF. (i) Formally,

R(z) — R(w) =

= (z—w)R(z)R(w).
The expression after the first equality is well defined, since

(L—w)~

1 _-1
Qo) p kg B9,

H D.

(i) We have D 3 v = R(2)z,v = R(Z)y if and only if z = (L — 2)u,
y = (L —Z)v, hence
<LC, R(E)y> = <(L - Z)U,’U> = <U,, (L - E)”)
= (R(2)z,y).
The equalities hold for all 2,y in H because R(z) and R(Z) are defined on
H. Hence R(2)* = R(Z). O
The operator D = H is positive if (Lf,fy>0forall feH.

REMARK 7.6. If H is, as in our case, a Hilbert space on C, then positive
operators are symmetric. In fact,

(f. Lf)={f, Lf) = (LS, [),

and by polarization it follows that (f, Lg) = (f, Lg). It suffices to show that
the polarization identity holds even if an operator is sandwiched between the
vectors,

1 . : : . : .
(@, Ly) = ;[{aty, L(z+y))—(e—y, Lz —y))—i(z+iy, L(z+iy))+ie—iy, L{z—iy))].
The same is not true for Hilbert spaces over R. For instance, the matriz A =

11 iy . L .
(0 1) defines a positive operator from R? to itself, which is not symmetric.

LEMMA 7.7. Let D % H be a d.d. positive, closed operator, and let z € C
with Rez < 0. Then, R(z) is defined on Ran(L — z), which is closed, and

1

< .
IR < o
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The proof is similar to that of lemma 7.6.

PRrROOF. For f € D,
(7.4.4)
—Re(2)[If1* < (L=2)f. f) < I(L=2)fII-If]l, hence, [Rez|-[ fI| < [[(L—=2)f].

As in the previous lemma this implies that L — z is injective, that Ran(L — z)
is closed, and the estimate on || R(z)]|. O

We have a first, useful criterion for self-adjointness.

PROPOSITION 7.6. Let D 2 H be d. d., symmetric, and closed, let D* L,
H be its adjoint, and let z € C\ R.

(i) z € p(L) if and only if L* —Z is injective;
(i) if L = L* is self-adjoint, then z € p(L);
(iii) if 2,z € p(L), then L is self-adjoint.

COROLLARY 7.3. Let D & H be d.d., symmetric, and closed. Then, L
is self-adjoint if and only if +i € p(L), i.e. if and only if R(i), R(—i) are
defined on H.

PROOF. (i) R(z) is not defined on H if and only if Ran(L — z) # H, i.e.
if and only if there exists 0 # v L Ran(L — z), since we proved in lemma 7.7
that Ran(L — z) is closed. For all z € D, that is, (v, (L — 2)z) = 0. Thus,

(v, Lz)| = |2] - [{v,2)] < |2] - [Jo]| - |2,
which shows that v € D*, the domain of L*. Moreover,
(L = 2)v,2) = (o, (L - 2)a) = 0

for all x € D, hence (L* — Z)v = 0 because D is dense, showing that L* —Z
is not injective.
Viceversa, if 0 # v € ker(L* — z) for some v € D*, then for x € D

0= (L' —2)v,z) = (v, (L — x)x),

i.e. v € Dt contradicting the fact that L is d.d.

(i) By (i), if z ¢ p(L) then there is 0 # v € D* = D such that (L —Z)v =
(L* —Z)v = 0, which contradicts the inequality ||(L —Z)v|| > |Imz] - ||v]| # 0
in lemma 7.6.
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(iii) Let g € D*. For all f € H, then, using proposition 7.5 in the first
equality,

(f,RE(L*—=2)g)) = (R(2)f,(L" =Z)g) = (L — 2)R(2)f,9)
= (f,9)

The second equality holds because R(z)f € D(L — z), the domain of L — z.
Thus R(Z)(L* — Z)g = g, hence g € Ran(R(zZ)) = D. This shows that
D* C D, and the opposite inclusion holds for all closed, d.d., symmetric
operators. ]

The basic criterion of self-adjointness in corollary 7.3 is less innocent that
it seems. It requires, in fact, to show that for all a in H the equations

(L+i)x=a

have a solution z € D. If L is a differential operator, we need to solve
differential equations, and the domain D of the operator has to be chosen
in such a way that the solution x exists for all data a. Since L 4 ¢ must be
invertible, the domain for which L is self-adjoint, if it exists, it is uniquely
determined. In concrete situations, this and other criteria require tools from
"hard analysis”.

PROPOSITION 7.7. Let D = H be d. d., closed and symmetric, and z €
C\R.

(i) If z € p(L), then w € p(L) whenever |z —w| < |Imz|.

(i) If z € p(L) and w € C\ R is on the same side of z with respect to
the real line, then w € p(L).

PROOF. Item (i) can be easily proved by a Neumann series argument,
and item (ii) is a consequence of (i) and of the fact that half-planes are
path-connected. O

For positive operators we have an analogous proposition.

PROPOSITION 7.8. Let D 2 H be d.d., closed, symmetric, and positive,
and let w € C\ [0,400). Then, w € p(L) if and only if L is self-adjoint.

IF. By corollary 7.3, L is self-adjoint if and only if +i € p(L). Draw a
curve from i to w in the complex plane, which does not meet [0, c0). We can
use Neumann series on overlapping discs centered on the curve to show that
w € p(L), using the fact that ||R(2)] < “le‘ if ¢ R, and that |R(2)] < @
if Rez < 0.
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In the opposite direction, we use the same reasoning on curves starting
at w and ending at +i, respectively, showing that +i € p(L), hence that L
is self-adjoint. O

Sometimes it is easier working with essentially self-adjoint operators,
which do not require optimal information on the domain.

PROPOSITION 7.9. Let D 2 H be d.d., symmetric.

(i) L is essentially self-adjoint if and only if Ran(L £ i) are dense in
H.

(ii) If L > 0, then L is essentially self-adjoint if and only if Ran(L + 1)
18 dense i H.

(i) L is essentially self-adjoint if and only if ker(L* £ 1) = 0.

PROOF. (i) L is essentially self-adjoint <= L is self-adjoint <= L +i
are onto <= for all y in H there is Z in D such that (L £4)T7 =y <=
for all y € H there is a sequence D > z, — = such that Lz, — z = L7,
so that y = z & 4x. The latter holds if and only if for all ¥ in H we have
y = im(Lx, + iz,), i.e. if and only if y € Ran(L £14). This means that
Ran(L % 7) are dense in H.

(i) The proof is similar, using the criterion of self-adjointness for positive
operators.

(iii) ker(L* £ 14) > h if and only if f — (h, Lf) is bounded on D and

(h,Lf) = (L*h, f) = Filh, f) = (h, £if),

i.e. (h,(LF1)f)=0forall fe D: Ran(L £ 1) is dense, then, if and only if
ker(L* +1i) = 0. O

7.4.2. The bounded operator case. If H L H is bounded and self-
adjoint (the Hellinger-Toeplitz theorem says that if L is symmetric, then it

is bounded), the results obtained so far are easily summarized. For z € p(L),
let R(z) = (L —2)" 1.

(i) o(L) C R is compact (we already proved compactness in the con-
text of Banach algebras; the proof consisted in showing that the
Neumann series for R(z) = (L — 2)™! = z27Y(L/z — I)~! converges
for large z). If L > 0, then o(L) C [0,00). The map z — R(z) is
holomorphic from p(L) to H.
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(ii) We have the estimates:

IR(2) <

if L is self-adjoint,

1
[Imz|

1
|R(z)|]| < — ifx <0and L >0.
]

(iii) We still have the identities for the resolvent:
R(z) = R(w) = (z — w)R(2) R(w),
R(z)" = R(%).
There are two reasons for a real A to belong to o(L).

(i) L — A is not injective: there exists v # 0 in H such that Lv = Av. In
this case we say that A is an eigenvalue of L, and v is an eigenvector
corresponding to A (or that v € E) belongs to the eigenspace relative

to A).
(ii) L — A is not surjective.
7.5. Intermezzo: the momentum operator D = i_lj—x on various

domains

In this section we discuss the different operator theoretic properties of the
momentum operator D = i_lj—z when it is defined on this or that domain.
The right theoretical (as well as practical) framework to place the corre-
sponding phenomenology is that of the von Neumann index theorem. An in
depth discussion of the topic for physicists, with plenty of examples, is in
Self-adjoint extensions of operators and the teaching of quantum mechanics
(2001), Guy BONNEAU Jacques FARAUT, Galliano VALENT. The proof
of the index theorem can be found, e.g., in M. Reed, B. Simon Methods of
modern mathematical physics: II Fourier Analysis, Self-Adjointness (1975),
Academic Press, p. 135-141.

We will use the same symbol D for the operator on different domains.
We will, however, always specify its domain, not to cause confusion.

7.5.1. The real line. The operator (D, C}(R)), C}(R) D=i""d/dz,

is symmetric and has graph

I(D,C;(R)) = {(¢,Dy) : ¢ € C.(R)}.

Since the Fourier transform is unitary (by Plancherel), we can consider the
multiplication operator M, = D in place of D, where the starting domain is

F(Ce(R)).


https://arxiv.org/pdf/quant-ph/0103153
https://arxiv.org/pdf/quant-ph/0103153
https://books.google.it/books?id=zHzNCgAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false
https://books.google.it/books?id=zHzNCgAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false
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Let
(7.5.1) HY(R) ={p € L*(R) : M,p € L*(R)}

which is normed by
ol = / (1 + ) |B(w) Pdw.

This is the Sobolev space H'(R) in disguise, but we do not need here being
aware of it. For p € C1(R),

lellzn = llellz: + 1¢'11Z,
which is the norm induced by the L? X L? norm on the graph I'(D, C}(R)).
PROPOSITION 7.10. The closure of F (CL(R)) 2 L2(R) is
F(HY(R)) = L*(R).
Moreover, this extension is self-adjoint.

PROOF. We show first that ' (M,,, F (C}(R))) C I'(M,, F(H")). Sup-
pose (¢, n) is in the closure of T' (M, F (C(R))):

F(CH(R) > ¢, — ¢ and Mytp, — nin L.

Then, there is a subsequence ¥, (w) — ¥ (w) a.e. w, and a smaller subse-
quence wip,; (w) — n(w). Hence, wip(w) = n(w) a.e. w. Hence, (¥, n) €
(M, F(H"Y)).

In the opposite direction, consider ¢y = ¢ € F(H'(R)). We use an
approximation of the identity. Let h € C2°(R) with support in [—1,1], A > 0
and such that [, h(z)de = 1. Let hy(z) = nh(nz), so that h,(0) = 1,
|ﬁ;(w)| < 1, and ?L;(w) = ﬁ(w/n) — 1 uniformly on compact sets. The
function h, x ¢ lies in L*(R) N C*=(R). Also, (h, * ¢)’ € L*(R) because

o % Y1 = o=l < ol < oo
" L 2m "EE = on L

We have
| Mo — MmeLz = ||g/5c<J(ﬁ; —1D|lzz = 0asn — oo

by dominated convergence, since wp(w) € L% Then,

1 N o —
|7 % @ — || 7 = [|hn* @ — |72 + o [1Mof = Moshy, oll72 — 0 as n — oco.
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The function 1) = h,, * ¢ might not lie in C.(R). Fix a function n € C*(R)
such that 0 <n <1, n(z) = 1 for || <1 and n(z) = 0 for |z| > 2, and let
Yn(x) = p(@)n(z/n) = P(z)n.(x). Then, ¢, € C:(R),

| — ||z = 0 as n — oo

by dominated convergence, and

1@ = n)llzz = (9" =1m0) = ¥l 22
< W =)z + e

Since ¢’ € L?, the first term tends to zero as n — oo by dominated conver-
gence; while the second term goes to zero as n — oo because

1
|72 = o) /<| - () *1 (z/n)dz — 0 as n — oo.

We have finished the proof that T (M,,, F (C}(R))) = ['(M,, F(H")): T(M,,, F(H"))
is (modulo a unitary map) the closure of (D, C}(R)).

To finish the proof, we have to show that F(H?!) LEN L3(R) is self-adjoint.
Let g € L*(R) be such that the following map is bounded on F(H"):

e ole M Lz——/ D (@

~ L [t

By density of H'(R) in L?(R), it must be M,g € L*(R), hence, g € F(H"),
which proves self-adjointness. O

7.5.2. D on some domains of functions on [—m,7].
7.5.2.1. D on C}(—x, 7). The operator C}(—m, 7) = L*[—, ] is densely
defined and it is symmetric,

(75.2)
/_ P(a)i™ ! (z)de = z‘l[@(x)w(@]”ﬂ*/

™ ™

PP = [ @)

Its closure is symmetric as well. We show that it is not self-ajoint.
For a complex number k, let ey(z) = e**. Then, e, € L*[—n,n] and
De;, = i 'kej,. The function e, belongs to the domain of D*. In fact,

o (ex, Dp)r2 = / " i (z)da = ZE/ F i () da

—T —T
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is bounded in L?-norm on C}(—m, 7). If D* where self-adjoint, it would be
symmetric, but this would imply that

ijlej, ex)rz = (D*ej er) 2 = (e, Dex) e =i 'k(e;, ex) 12,

which implies that j = —k for all j, k real, which is absurd.

The closure of C}(—m,7) LEN L?[—m, 7| provides an example of closed,
densely defined, symmetric operator which is not self-adjoint. We will see
below, however, that this operator has infinitely many self-adjoint extensions.

7.5.22. D on C,,.[-m, 7]. We consider here C}, [—m, 7] 2y L2[—m, 7],
which is densely defined and symmetric in virtue of the periodicity: the

boundary term in (7.5.2) vanish for different reasons. Clearly C [—m, 7| D

per
Cl(—m,7), hence, the closure of C’;er

[—7, 7] D, L*[—m, 7] is a closed, sym-
metric extension of the closure of C}(—m, ) LN L*[—m, @]

We can reason like we did with C.(R), with some simplifications. Let
H},. be the space of those ¢ € L?[—m, 7| such that M,% € (*(Z), where

(Myh)(n) = n - h(n). We show first that C},, is dense in H' with respect to
the norm

1, . 1 - 1 ~
el = 5181 + 5 IMPlE = 5 7.1+ n)fEm)

Let on(z) = % Zlnl <N P(n)e™*, a trigonometric polynomial which surely

sits in O,
1M — Moon |7 = Z n?|@(n)]* — 0 as n — oo,
|n|>N

and a fortiori || — ¢n||r2 — 0 as N — oc.
As we did before, one first shows that, modulo a passage to the frequency
side, the closure of T'(D,C}, ) can be identified with T'(M,, F(H')); then

per
that H' 2 L2 is self-adjoint. Details are left to the non-indolent reader.
7.5.2.3. D on C;0,27]. The operator D is symmetric also on the space

C3[0,27] = {¢ € C'[0,27] : p(27) = €"(0)},

where A € R (and we might consider X € [0,27)). The map ¢ +— e o = h

maps C} onto C},,. and we have

(Dy)(x) = (Mr(x) + (Dh)(x))e™,
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hence,

el = 57 3 P
IDels = 5= SO+ mPRm)l
For ¢ € C} we have then that the norm induced by the graph of D is
lellzs = llellze + IDelze = % Y [+ (A +n)hn)P,

We call H; the completion of C§ with respect to this norm. The operator D

acts on h as M Atn, Mmultiplication times A+n. It is now routine verifying that

M., is unitarily equivalent to the closure of D, and that it is self-adjoint.
7.5.2.4. Final remarks on the finite interval case. The closure of the op-

erator Dy = C} D, 12 is not self-adjoint, but we have found a one-parametr
family of self-adjoint extensions of it. The adjoint D{ of Dy, which is not
symmetric, is a common extension of all these self-adjoint extensions we have
found.

7.5.2.5. The case of [0,00). Finally, we mention the case of C}(0, o) LN
L?(0, 00), which is symmetric and densely defined. To show that its closure is
not self-adjoint, use a reasoning similar to that we used with C,(0, 27), using
the functions uy(z) = e (A > 0). von Neumann’s index theory shows
that, in fact, this operator does not have any self-adjoint extension.

7.6. The spectral theorem: measurable calculus form

In this section we discuss the measurable calculus form of the spectral

theorem: if D % H is self-adjoint and m € LF(R), we can make sense of

the expression H ™8 I as a bounded operator. The map m — m(L) is

a x-homomorphism, and in fact a *-isomorphism after a notion of ”almost
everywhere” is set up. This is a far reaching extension of the holomorphic
calculus in two respects: we go beyond holomorphic functions; we can deal
with unbounded operators (in particular, with linear differential operators).
The advantage of the measurable calculus form is that it is canonical: the
operator m(L) is uniquely determined by m and L.

The statement, however, is long and somehow intricate. In the next
section we will translate it into a more transparent form, showing that L
is unitarily equivalent to a multiplication operator on a nice measure space.
The price to pay is that we will not have universality. We will show how
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to find a unitary map © : H — L?*(v), where v is a suitable measure on a
suitable measurable space, but neither v, nor ©, are uniquely determined: a
number of arbitrary choices will be made.

7.6.1. The measurable calculus for a general self-adjoint opera-
tor. Let D % H be self-adjoint and f € H. Define:

(7.6.1) Frp(2) = (f, R(2)[), = € p(L).

THEOREM 7.12. (i) Fyy is holomorphic on p(L) DO C\R. Moreover,
Fry(2) = Frs(2).

(ii) We have the estimate

[Frp(2)] <

(iii) If z € C4, then Frs(2) € CL UR.
(iv) We have
lim ™'y F(iy) = |/

Y—r+0o0

(v) There exists ps,r > 0, a finite Borel measure on R, with

dpys(u)
u—z

(7.6.2) U R()f) = Frp(z) = - /

™

for all z € C\ R. Moreover, W%(R) = || fII*

(vi) If L > 0, then supp(uys.s) C [0, +00).

The measures {py s : f € H} are the spectral measures for the operator
L. By polarization, we can extend the family to {us, : f,9 € H}, where

™ u—z

(7.63) ﬂ@@:ﬁﬂ@mzléﬂﬁ&l

for z € C\ R.

PROOF. (i) and (ii). We proved that the function z — R(z) is holomor-
phic from C\ R to (H), hence F} s is holomorphic, and

171 - Nlgll

Fe | <|IR . . <
[Frgl < IR -IA- gl < Tz
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(iii). If z = z + 4y with y > 0, then

ImFy ;(2) = Im(f, R(z)f) = Im{(L=2)R(2)f, R(2) ) = y(R(2) f, B(2) f) = 0.

(iv) and (v). By (ii), (iii), and Herglotz theorem, there exists a positive,
finite, Borel measure pif s on the real line such that (7.6.2) holds for z € C,..
Since R(z)* = R(Z) and the measure is real valued, the relation extends to
C_. After splitting the Cauchy kernel in its real and imaginary parts, we
have

2

.1 1 y
Ly F, (iy) = Z—/&d —/—d “1A(y)+B
i yFy s (iy) ) RN uf,f(u)+7T RrEey fgp(u) = (y)+B(y).

For the imaginary part we have

1 t
Aly) = - /t2+1duff(ty)—>0asy—>oo

because fif,s is finite and h(t) = = € Co(R). We are left with the task of
proving that B(y) — || f||* as y — oo. We start by computing
20lmFys(iy) = (f, R(iy)f) — (f, R(iy) f) = (f, [R(iy) — R(=iy)]f)
= (f,2iyR(—iy)R(iy)f) by the resolvent identity
— 2iy | Riiy) I
Pick f = R(i)g € D (recall that [R(:)|(H) = D):

ylmFys(iy) = y*||R(iy)R(i)g]
4 ) 2
= [R(zy.) _ R(z)]g by the resolvent identity
iy —1
. 92 R(i R(i 2

- [ R@)gl?
since || R(iy)|| < i More generally, if f,g € H, then
(I RGy) Il = IRGy)R(1)g|)|* < y*[|R(iy)f — R(iy)R(i)g|]”
< YRGS - R()gl
< [If = R@)gl?,
because ||R(iy)|| < 1/y. Thus,
RGN = I < ly([RGy) fIl = [[RGy) R(E)g])]

+yl[Riy)R@)gll = [[R(@)gl[| + [[R(i)g = f]]
< 2f = R()gll + lyl|R(iy) R(i)gll — [ R()g]]]
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For fixed € > 0 choose first ¢ such that || f — R(i)g|| < €, then y. such that
vl R(iy) R(i)gl| — [[R(i)g||| < € for y > y.. This shows that y|R(iy)f| —
Il £, as wished.

(vi). This property will be more easily proved after we have the spectral
theory in its multiplication form. 0

LEMMA 7.8. If p,v are finite Borel measures on R such that [ dﬁ? =
) for all z € C\ R, then p=v.

Ruz

PROOF. For z =z + iy, y > 0, let hy(z) =L [} d“f;), so that

u

ky(z) = y(2) ;ih_y(x) - %/R (u gd;)gui Y2 = (Py = p) (@),

hence, k:Ay(w) = fi(w)e ¥l If h, = h_, = 0, then Ji = 0, hence y = 0. O
As usual, uniqueness leads to formulas.

PROPOSITION 7.11. The map (f,g) — pyrq from H x H to the space of
the finite Borel measures on R is sesquilinear and

Hfg = Hg,f-

ProoF. We just prove the last item, the other proofs being similar.

L[ reg) - G R

u—=z

O

Since ”’ff(R = |If]I?, by polarization we have “fg( = (f,9). We de-
note by LOO(]R) the space of the Borel measurable, bounded functions on R,
normed with the sup norm. The subscript means that we do not have a no-
tion of almost everywhere, and neither of essential supremum. For m € Lg°

we define I'(f, g) by

(7.6.4) I'(f,g): /m Ydpsg(u), I': Hx H— C.
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By proposition 7.11, I' is sesquilinear, and

il rg(R
D) < il 28R < s - o)

By a corollary of the Banach-Steinhaus theorem there is a bounded operator

m(L) on H such that I'(f,g) = (f,m(L)g); i.e.

(7.6.5) (f, / m(u)dis o (u

The map m — m(L) is the measurable calculus for L. We already know how
it forks for some maps m:

(7.6.6)

m(z) =1 — m(L) = I is the identity operator : (f,g) = — / i ():
(7.6.7)

me) = (=2 = (D)= RE) 2 € R: (fRE) = 1 [ —dugyw)

™

We will split the measurable calculus theorem into two statements.

THEOREM 7.13. [Spectral theorem, measurable calculus 1] There exists a
unique linear map A : LE(R) — L(H) such that

(i) for z € C\R,
N

(ii) if m, is a uniformly bounded sequence in LP(R), and m, — m
pointwise, then A(m,,) or A(m).

The map is the one in (7.6.5),

(FAmg) =~ [ )iy ()

PROOF. The map m — m(L) has properties (i,ii). To prove uniqueness,
we check that the hypothesis of the Lebesgue-Hausdorff theorem are verified.
By (i) and linearity,

(P (P57 0) = om (s ) et

_ 1 Y "
N 7T/R(x—u)2+y2d'uf’g( )
= Pylprgl(z).
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Let P(z) = w = A(1,P,), where 7,9 (u) = ¢(u — x). Then,

(f;P(2)g) = P,lpsgl(x).
For ¢ € C.(R),

Bl = Jim - 3 /N

where the convergence holds at least pointwise. Using (ii) in the last equality,

= [ Bl = < [ Plelwd,

N—oo T
n=—N

- <f, lim > P(—n/N+iy)<p(n/N)%g>

N—oo T
n=—N

= (f,AMP,l¢])g) -

- < £, lim = > A(rn/Nwa)sO(n/N)%g>

Using again (ii),

- etwdunst) = - [ tim Pl
= (i Pida)
= (/. A(p)g).

Thus,

(f,A(p)g) = % /R o(u)dpygg(u)

for ¢ € C.(R). By (ii) again, this extends to Cyp(R), and we can apply the
Lebesgue-Hausdorff theorem. O

THEOREM 7.14. [Spectral theorem, measurable calculus II] Let D 5 H
be self-adjoint.



7.6. THE SPECTRAL THEOREM: MEASURABLE CALCULUS FORM 211

(i) The map m — m(L) satisfies m(L)* =m(L).
(1) dpg p(z)g(u) = =dpysg(u) for all z € C\ R.
(iil) dpgm(r)g(w) = m(u)dpsq(u) for all m € L.
(iv) m — m(L) is multiplicative (it is a *-morphism of x-algebras).
(v) [Im(L)] < lml[rg-

(vi) For E C R, a Borel set, define u(E) = xg(L). Then, u is a pro-
jection valued measure (p.v.m.):

(a) u(E) : H — H is an orthogonal projection;

(b) if E = UX | E, with the E,’s Borel, disjoint, then u(E) =
Yoo 1W(Ey), where the series converges in the strong operator
topology.

(¢) u(@) =0 and p(R) = 1.
(vii) If E is bounded, then Ran(u(E)) C D.
(viil) For f € H and g € D, dpuyr,(u) = udpyq(u).

(ix) Let D, = U¥_;Ran(u[—N, N]). Then, D, is dense in D and D. L
D..

(x) We have D = {f € H : % [. |ul*duss(u) < oo}. In particular,

D™ D ifme Le.

(xi) If m,m’ € L§°, m'(u) = um(u), then

(a) if fe H, thenm(L)f € D and m/(L)f = Lm(L)f;
(b) if f € D, then m'(L)f =m(L)Lf.

PROOF. (i). Linearity is clear. Also,

(fom(L)'g) = lg.mDf) = - / m(u)dug,fw)
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(ii) We have
% / sre) g R fy = R~ RE))

u—w w—z

1 1 1 1

= — — d
7r/Rw—z<u—w u—z) tralt)
1 1 1

= — d

Uu—wu—=z

hence,
1
ditg p(z)g(u) = ——dpyg(u).
(iif). From (ii),
dpgg(u) — dpgp(u) -
ditg Ry =~ = i ug_ =" = dugre)(v) = dpne) rg,
hence,

%/w — (f,R(=Im(L)g) = (RE)f,m(L)g)
— /mud,uR fg /m deR (u)

= ;/}R;n_uzd/‘f,g(u)
(iv). By (iii),

Aptgm (Lym(r)g (W) = m' (W) dptgmryg(w) = m'(w)m(u)dpg.g(w) = dpg pmm)z)g(w)-
(v)-
Im(L)f|I> = (LY'm(L)f) = (f,m(Lym(L)f) = (f,|m[*(L)f)

- /rm g0

Il [ dngol) = e 117

IN

(vi). Since
pE)" =Xe(L) = xp(L) = p(E),
the operator u(FE) is self-adjoint, and

1(E)* = xEH(L) = xe(L) = u(E),



7.6. THE SPECTRAL THEOREM: MEASURABLE CALCULUS FORM 213

hence, u(E) is an orthogonal projection. Also, if EN F = (), then

MEUF) = xeur(L) = xe(L) + xr(L) = ((E) + p(F),

thus
N 2
1u(E) = 3 BN = || (e (L) = xonmim) 7|
n=1
=[x @]
1
= ;/;':’ " duff_n;i-l / dpvg, g
= Z (B fII? = 0 as N — oo
n=N+1
because
Z BT = - =+ [ dugy = B < BRI < 1P

hence the tail of the series tends to zero.

(vii). Recall that if z ¢ R, then H L D is a bijection. It suffices to show,
then, that for each f € D there is h € H such that u(E)f = R(z)h. For now
only formally, such h is given by h = R(z) " 'u(E)f, so that

(9.h) = (9, R(z) "w(E) f) = (g, (L — 2)u(E) f) = ! /R(u — 2)xe(u)dpg, f(u).

e

With this euristics at hands, we set m(u) = (v — 2)xg(u), m € L, and
compute:

R = = [y 0 = 1 [ )it
= (9. u(E)f),

which gives h = m(L)f.
(viii). If g € D and z ¢ R, then g = R(z)h for some h € H, and
Lg = LR(z)h. Set m(u) = -, with w ¢ R. On the one hand,

o L[ ) [ )
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On the other hand,

1 d U 1 U z d U
(f,R(w)h) = / Zf—h( ):%/( v ) Mf,_h()
rR\uU—2 u—2z) u—w
d:u R(2)h
= /m w)dpis riz)n(u )——/ﬁ
dpiy,
— )d _E | g
/m fif,q(u /u—w

Comparing the two expressions we have

dqug / /Udﬂfg()
o[ e 2 [ gyt =~ [ )

which shows that dp s r,(u) = udpsg(u), as wished.
As byproduct of the proof, we have that
(7.6.8)

1 du
—/duf,R(w)Lg(U) = —/ ng /m u)dpigg(u /dume)g( ),
T JR ™ JRr

hence, R(w)Lg = m(L)g for all g € D. We have then:

(7.6.9) R(w)L = m(L)|p.

In particular, m(L)(D) C D, since the range of R(w) is D.
(ix). Let E, = [—n,n], so that by (vii) we have that u(E,)(H) =
Ran(u(E,)) C D. If f = pu(E,)h, by (viii)

dﬂg,Lf(u) = udg, f( ) = udy, XEnh(u) = UXE, (u)dﬂg,h(u)
m(w)dpg p(u) with m(u) = wyg, (u), bounded,

m(u)X g, (w)dpgn(w) = m(u)dug r(u)

= dﬂg,m(L)ﬁ

so that Lf = m(L)f = w(E,)m(L)f € Ran(u(E,)). This shows that

Ran(u(E,)) L Ran(u(E,)), hence that D, is mapped by L into itself.
We have to show that D, is dense in H. For f € H, in fact,

(B f - 1P = / dyipy — 0
R\E,

as n — oo by dominated convergence.
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(x). If f € D, then, by (viii).

1 1
0o > |LfI? =2 / djir gy (u) = & / udpizg 5 (u)
T R T R

1 2
= — d .
ﬂ/Ru ,uﬂf(u)

In the opposite direction, we could try the following:

1 [, 1
> = [ ud = lim = [ w?d
00 - /]R u'dpyp(u) = lim — L g (u)
.1 5
= Jim 2 i) aens ()
.1 ST
- 11_)111 % d/'LLu(En)f,Lu(en)f<u> by (V111)7 sice /'L(En)f € -DC - D7
n o R

— 3 2
= lim [[p(E) f"

The idea is good, but short of showing that f € D. We use the same
calculation in estimating a Cauchy tail:

1
= _/d/“’l‘L,U«(En+m\En)fyLN(En—m\En)(u)
T Jr

1
= - / u’dpug, g (u)
™ En+m\En

— 0 as n — oo by dominated convergence.

We have shown the existence of h = lim,,_,o Lu(E,)f. Since L is closed and
w(E,) f — f, we have that f € D and h=Lf.
(xi). We compute:

1 1
o [ dtninymin) = = [ )Py = [ )Py ) <

T T
hence, by (x), m(L)f € D if f € H. We can now compute

(D) = = [ um(dugyw) =+ [l

™

1 .
= —/dufyLm(L)g(u) since m(L)g € D
R

™

= (f, Lm(L)g).
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We have shown that m/(L) = Lm(L).
In the other direction,

(fml(Lyg) = / wm(u)djig o)

™

1
= —/m(u)duﬁLg(u) since g € D
T Jr

= l/Rd/’Lfvm(L)Lg(u) - <f7m<L)Lg>7

T
hence, m/(L) = m(L)L on D. O

7.7. The spectral theorem: multiplication form

7.7.1. The multiplicative form of the spectral theorem. We pro-

ceed like in the case of the unitary operators. Let D L I be self-adjoint.
A subset V of H is invariant for L in the sense of the measurable claculus if
m(L)(V) CV for all m € LP(R).

LEMMA 7.9. Let D 5 H be a self-adjoint operator.
(i) If V is invariant for L, then V is linear and closed.

(ii) If V is invariant for L, then V1 is invariant, and w|ym(L) =
m(L)ﬂV

(iii) If V is invariant for L, then DNV is dense in V and L(DNV) CV

15 closed and symmetric.
(iv) If V is invariant for L, then DNV LV s self-adjoint.

(v) There is an index set A and invariant subspaces Vo, a € A, such

that
H= @ V..

aEA

If H is separable, the index set is at most countable.
PROOF. (i) is clear. (ii) If g € V* and f € V, then
(m(L)g, f) = (g,m(L)"f) = (g m(L)f) = 0,
thus m(L)g € V4. For h € H,

m(L)h = m(L)nyh +m(L)my. € VoV,
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hence, my(m(L)h) = m(L)myh, as wished.

(iii) At first sight it may not seem obvious that Ly is densely defined in
V. Let p be the projection valued measure associated with L, and recall that
D. = Uy > 0u[—N,N]is dense in D. If h € V, then u[—N,NJh € V N D,
because V' is invariant. Knowing this, the proof that D. NV is dense in V' is
wholly similar to that that D, is dense in H.

For h = p[-N,N]f € VN D. (f € V), we have that Lh = m(L)f with
m(t) = tx—n,nj(t), hence Lh € V because V is invariant. This shows that
L|y maps D, NV into V. Since L maps D, into D., L maps D, NV into
D.NV.

We now verify that L(DNV) C V. Suppose g € DNV C D. Since L is
self-adjoint, there is f in H, unique, such that ¢ = R(7)f. Then,

DNV 3g=RG)f=R()ryf+ R(i)my.f,

with R(i)my f € V and R(i)my . f € V+ because V and V* are both invariant.
Thus R(i)my. f = 0, which in turns implies that 7. f = 0, since R(1) is a
bijection. Hence, f € V. We have shown that ¢ = R(i)f with f € V. Then,

Lg=(L—=9)RG)f +iR@)f = f+RG)f €V,

as we had to prove, because V is invariant.
The symmetry of L|y, : DNV — V follows immediately from what we
have proved and the fact that L is symmetric. Finally,

T(L|y) =T(L)NV x V,

which is closed because I'(L) and V" are closed.

(iv) To show that L|p : DNV — H is self-adjoint, it suffices to verify
that +i € p(L|y), i.e. that L]y, £i: DNV — V is invertible; something we
did while proving (iii).

(v) The proof is step-by-step identical to the one for the unitary operator
case. U

. We now proceed exactly like in §7.2.5. A vector f € H is cyclic for the
self-adjoint operator D % H if {m(L)f :m € LF(R)} is dense in H.

PROPOSITION 7.12. Suppose L has a cyclic vector f. Then, the map
O: L*[R) — H, O(f) = f(L)x, extends to a unitary map from L*(R, uy¢)
to H, such that

(7.7.1) (O71LOYmM)(t) = tm(t).
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That is, L is unitarily equivalent to multiplication times ¢ on L*(R, ;. ),

LR, ppg) — H

W

LA(R, pyy) —— H

PROOF. The map © is an L*(uy, ;) isometry on Lg°(R),
(LI = (o) m(E)) = (P (0)) = [ Py

As such, © extends to an isometry of LSO(R)LZ)(MJ), the closure of L*(R) in
the L?(p1) norm. The hypothesis that f is cyclic means that ©(LF(R)) is
dense in H, hence that © is a surjective isometry.

Suppose now that m € Li°(R) is such that am(x) = m/(z) defines a
bounded function. Such m’s are dense in L*(uy ), and, by theorem 7.14
(ix),

LO(m) = Lm(L)f = m'(L)f = ©(M;m) .

The relation extends by the unitary equivalence to the domain om M,. [

THEOREM 7.15. [Spectral theorem for self-adjoint operators: multiplica-

tive form/ Let D L Hbea self-adjoint operator on a separable Hilbert space
H. Then, there exists a locally compact space X, a finite Borel measure v on
X, and a continuous function ¢ : X — R, and a unitary map © : L*(v) — H,
such that

(7.7.2) (O 'UO)m = om,
15 multiplication times .

The proof follows from proposition 7.12 and lemma 7.9 (v) (with an index
set A which is at most countable, in the separable case), line by line as in
the corresponding statement for the unitary operators. In fact, the proof
produces a rather concrete model for X and ¢.

(i) X =R x A, with the product topology (A is considered discrete);

(ii) dv(x,n) = duy, 1, (x), where f, is the cyclic vector for the n'™ sum-
mand in the decomposition of H into invariant vectors;

(iii) ¢(x,n) = z: ¢ multiplies times the coordinate x on each copy R x
{n} of the real line.

A picture of ¢ can be obtained by changing coordinates in such a way R x {n}
is mapped onto (—1/2+n,1/2 4+ n).
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7.7.2. Some consequences.

7.7.2.1. The spectral theory of a multiplication operator. We translate
here in the world of self-adjoint operators what we saw in §7.2.6 for the
unitary operators. We omit the proofs, which are essentially the same.

The multiplicative form of the spectral theorem tells us that any self-
adjoint operator is unitarily equivalent to a multiplication operator M, of
the following form, for which we can explicitly write down the spectrum, the
spectral measures, and so on.

(a) We have a locally compact space X and a finite, positive Borel mea-
sure v, which we can assume to be finite, and a surjective local home-
omorphismn : X — R, such that M,, : L*(v) — L*(v) is the operator
M, f =nf. Actually, we should specify the domain of M,,

D(M,) ={f: X — C such that / (14 n?)|f)*dv < oo}
X

(b) o(M,) = n(supp(v)) C T is the spectrum of M,.

(c) Let f € L*(v). The spectral measure uys; is such that, for any
bounded function m : R — C,

/ m(f Pdv = (f, m(My) f)r2) = / mdjiy,;.
X R

That is, dpy ;= n.(|f|*dv). Similarly, dusy = n.(gfdv).

(d) The p.v.m. p maps Borel measurable sets E in R to projections of
L3(v) in the following fashion:

/X T E)gldv = (f, i(E)g) 120y = ps.9(E) = /X xe(n) fgdv,
i.e. (xe(n)=xeon)
(7.7.3) w(E)g = xe(n)g, m(E) = Mw-

(e) A Borel set E C R is a null-set for p if and only if 0 = xgon =
Xn-1(B) V — a.e., i.e. if and only if v(n~'(E)) = 0.

(f) By (e) and the topological properties of n, n(supp(v)) = supp(p).
(8) By (b) and (f),
(7.7.4) supp(p) = o(My).
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7.7.2.2. Some applications of the spectral theorem in its multiplicative
form.

THEOREM 7.16. Let L : D — H be self-adjoint, {p,. : © € H} be the
family of the spectral measures for L, and i be the projection valued measure
associated with L. We have

(7.7.5) supp(p) = o(L).

PROOF OF THEOREM 7.16. By the multiplicative form of the spectral
theorem, it suffices to show it for multiplication operators. This is done in

(7.7.4). 0

COROLLARY 7.4. With the same notation of theorem 7.16, we also have
the following.

(i) For a function f € L*>(u), f(L) = 0 if and only if f vanishes p-
a.e on o(L). Thus, the map f — fxo) s the identity of L>(ju).
To highlight this fact, we also write L>(u) = L*(o(L)), and for
¢ : o(L) — C measurable and bounded, we write (L) = f(L),
where f is any measurable extension of ¢ to R.

(i) If {fn : n > 1} is a sequence in L=(o(L)), if || fallte@) < C s
uniformly bounded, and f, — f u— a.e., then f,(L) — f(L) in the
strong operator topology.

Another application is a relationship between unitary and self-adjoint
operators. We will see some deeper result when we discuss Stone’s theorem
of strongly continuous, one parameter groups of unitary operators.

THEOREM 7.17. (i) Let H Y H be a unitary operator. Then there
exist self-adjoint operators L, some of which are bounded, such that
U =el.

(ii) Viceversa, if D LoHois self-adjoint, then e is a unitary operator
for allt € R.

PROOF. (i) See proposition 7.3. (ii) By the measurable calculus, L is
unitarily equivalent to M, on some measure space, with n measurable and
real valued. It is easy to see, by the uniqueness of the measurable calculus,
that e®™n = M_u,, and the latter is a unitary operator on L*(v) for all
teR. O
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7.8. One parameter groups of unitary operators and Stone’s
theorem

A one parameter group of unitary operators on a Hilbert space H is a
map t — U; from R to the group U(H) of the unitary operators on H such
that

(7.8.1) Usir = UUy, and Uy = 1.

The group is strongly continuous if the map is continuous with respect to the
strong operator topology,

(7.8.2) limUh = h in H
t—0

for all h € H.

PROPOSITION 7.13. Let D & H be self-adjoint, and fort € R let U; :=
e, Then,

(i) t — U, is a strongly continuous group of unitary operators;

(ii) for all f € D,

(7.8.3) lim

Uf—f
iy —— =iLJ

mn H;
(iii) if f € H\ D, then the limit in 7.8.3 does not exist.

The proposition might be read as providing a solution for the abstract,
general version of the Schroedinger equation. The equation

14

7.8.4 n
(7.8.4) (i

u(t) = Lu(t),

where v : R — H, has a solution u satisfying u(0) = f € D, which is provided
by

(7.8.5) u(t) = et f.

It is an important fact that the function w in (7.8.5) makes perfect sense,
and it is strongly continuous, even when f € H \ D.
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ProOOF. By the spectral theorem in multiplicative form, it suffices to
prove the proposition for an operator of the form L = M, on H = L*(v),
where v is a finite Radon measure on a locally compact metric space X, and
g : X — R is continuous. In this framework, U; = M.,y is the operator
of multiplication times €Y. Since || = 1, the operator is unitary, as we

remarked earlier, and U} is multiplication times e~*9.

(i) We only have to verify continuity.

|Utgsf — Utf“%Q(y) = / e — 11| fPdv — 0 as s — 0,
X

by dominated convergence.

(ii) We have

U o itg_l
#_@‘Lf:CE " —ig)f—)Oast—>OV—a.e.0nX,

and . .
eztg _ 1 eztg _ 1

t tg
because |(e® — 1)/t| is bounded on R\ {0}. We have then that

‘ = |g| ’ < Clg|

ety —1 9
(S - ) 1] <+ vlse € 20,

if f € D, the domain of M,. Then

eitg -1 .
— 1
(S -9)s
by dominated convergence.
(iii) Viceversa, if there is h € L?(v) such that

lim
t—0

= O’
L2(v)

eztg . 1

tf_h

lim
t—0

— 0,
L2(v)

then, for some sequence t,, — 0,

eitng_l
ifg—h=1lm ——f—-—h=0v—a.e.,
n—00 t

n

hence, L*(v) 3 fg, f, which is the condition for membership of f in D.

This simple proposition has a converse.

O



7.8. ONE PARAMETER GROUPS OF UNITARY OPERATORS AND STONE’S THEOREM 223

THEOREM 7.18. [Stone’s theorem] Let {U,}ier be a strongly continuous
one parameter group of unitary operators on H. Then, there exists a unique

self-adjoint operator D Lo I such that U, = e'r.

I present here two proofs. The first one, from Reed and Simon, does not
require the Lebesgue-Hausdorff theorem. The second one, from Tao’s notes,
makes use of it.

PROOF FROM [16]. For ¢ € C*(R) and f € H, let

fo= [ eovisat
R
which you might think of as a "smoothing” of the vector f, and let
D =span{f,:p e C> fe H}.

Let n(t) = 1/en(t/€) and approximation of the identity,

n e CE(R), n(t) = 0 |t > 1, n >0, /n(t)dx _1
R
We have then:
W —fl = H [ oo - f]dtH < [ no s s sl

lt|<e
— Qase—0.

This shows that D is dense in H.
For f, € D,

U, —1 Uge — U,
f, = / oty =y
S R S

_ / P =8) =) gy

— —/go'(T)UdeTinHass—>0,
R

since
lim QD(T B S) B (10(7—) _ —QOI(T),
s—0 S

uniformly with respect to 7.
For f, € D, it is now natural defining

Lfgo = i_lf—cp’a


https://terrytao.wordpress.com/2011/12/20/the-spectral-theorem-and-its-converses-for-unbounded-symmetric-operators/
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so that L : D — D. Also, it is easily verified that U, : D — D, and in fact
that U,[f,] = [Usf],. We now verify that

(7.8.6) UsLf, = LU f,.
In fact,

Ustga = Usi_lf—cp’ = i_l[Usf]—cp’ = L[Usf]w
— LU,f..

Also, L is symmetric on D,

s_[ . —S_I
(foLgy) = lli% <f<pa UT9¢> = lim <U _ f<p=9¢> = (Lfo9y)-

s—0 ’iS

We have to prove that D L His essentially self-adjoint, i.e. that ker(L* —
i) = 0. Suppose that u € ker(L* —i). Then, for all f € D,

d—(u,Utf) = (u,iLU.f) = i(L*u, U f)

dt
= i(iu, U f) = (u, U f).
ie. at) = (u, U f) satisfies o/ (t) = a(t), «(0) = (u, f). It must be

a(t) = e'(u, f).

On the other hand, it must be |a(t)| = [(u, U f)| < |lu|| - || f]l, hence 0 =
a(0) = (u, f). Since D is dense in H, u = 0. O

The second proof is more spectral. We can not use directly the spectral
theorem in its multiplicative form, because we do not know at this stage if
the operators U; can be simultaneously ”diagonalized”. The proof has to go
back to spectral measures, which have to be reconstructed from scratch to
fit the present case, where we have a continuum of operators to work with
simultaneously:.

PROOF FROM [22]. Step I. By proposition 7.13, the domain of L and its
action are determined by the group,

Uef — f

f

U, f —
D:{fGH:hm feXistsinH},Lf:i_llim =T
t—0 t—0 t

Step II. We show that (simultaneous diagonalization) for each f in H there
is a finite, positive Radon measure py ¢ on R such that:

s (B) = £, and (f,Usf) = / ey ()
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The function ¢(t) = (f, U.f) is continuous on R,

o(t) = ()| < WA -0 = UslFl = 1V MU = fIl = Oas t — s,

uniformly, by the hypothesis of continuity. Also, ¢ is positive definite,

Z So(tm - tl)cmc_l == Z <ClUtlf7 CmUtmf>
I,m=1 I,m=1

= Y lenls, fI? > 0.
m=1

By Bochner’s theorem a measure with the desired properties exists and it is
unique. Also,

ps (R) = / O duy s (x) = (f, 1F) = I

Step III. By polarization, for all f,g € H we can construct Radon, finite,
complex measures fif 4 such that

(f Usg) = / iy (),

and the map (f, g) — py4 is sesquilinear. Moreover,

/R ¢dupg(a) = (f,Uig) = (U_if.g) = (g, Ucf)

= / eimdlug,f<x>7
R

ie. pfg = Tig f, by the injectivity of the Fourier transform on the space of
the complex measures.

Step IV. For each m € Li°(R) there is a unique operator m(L) in L(H)
such that

(Fom(Dg) = [ i)y (o).
Clearly, the map m +— m(L) is linear. Also,
(7.8.7) [m(L)|| < [|ml|rg-

Moreover, If m, — m pointwise, m,,m € L°(R), and the m,’s are uni-
formly bounded, then

(7.8.8) lim m,(L) =m(L)

n—o0
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in the weak operator topology. Elementary estimates, the definition of jiy g,
and the fact that us (R) = || f]|?, imply that

[ mta)dug (o)

Passing to sup for ||f]], ||g]| < 1, we see that the sesquilinear form

< Cllmll g (LA + Nlgl)-

(f.9) / m(z)dpg g (2)

is bounded, hence that a bounded operator m(L) € £ with the desired prop-
erties exists, and the estimate on its norm improves to ||m(L)|| < [|m/||re,
by estimating the integral.

The limit in (7.8.8) follows from dominated convergence.

Step V. We have

dpgm(n)g(x) = m(x)dpsq(2).
We start with m(z) = €**, which corresponds to, we will see, m(L) = Us.
For all ¢,

189) [ e dugy (o) = [ SOy (o) = (Vi)
R R
(7.8.10) = ([ UUg)) = / )

hence, e"*duy ,(x) = duy, .4(z). As a consequence, fif,g = fu_,f.g, Since

/ e s ,q(7) = (f,UsUrg) = (U_, f,Usg) = / e dpy_,z4()
R R

and the Fourier transform is injective on the class of the finite Borel measures.
Then, for m € L§° and t € R,

/Re"txm(:c)duf,g(x) = /m T)dpig,q(v /m )t f.9(2)
= (U=tf,m(L)g) = {f, Um(L)g)
_ /R €Aty )9 (),

which, again by injectivity of the Fourier transform, implies m(x)duyq(x) =
ditgm(1)g ()

3 thank Terence Tao for providing me this argument, which shortened a more intricate
one in a previous version of the notes.
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Step VI. The map m +— m(L) is a x-homomorphism from LF(R) to L(H).
We proceed exactly as in the case of the unitary operators. Linearity is clear
from Step IV, and the multiplicative property follows from Step V,

(f,(mn)(L)g) = /Rmnd,ux,y:/Rmdux,n(L)y

- /Rduw,m(L)n(L)y = (f,m(L)n(L)g),

if f,g € H and m.n € LP(R). The fact that m(L)* = m(L) is left as an
exercise.

Step VII. For each Borel measurable E in R, define u(E) € L(H) by

(7.811) FalE)g) = [ dugy

Then, i : B(R) — L(H) is a projection valued measure. The proof of this
fact is wholly similar to the one in section 7.2.4.

Step VIII. There exists a self-adjoint operator L having p as its spectral
measure. We first define L as a densely defined, symmetric operator, and
show that it is essentially self-adjoint. Let

D. = Uyns1p[—N, NJ,

which is dense in H (the proof is identical to that we have seen when proving
the spectral theorem). For g € D, define Lg by

(f,Lg) ::/Rud,uf,g(u).

The integral converges absolutely because, for some N > 1, dusg(u) =

dpry - .Njg (1) = Xi-n.3) (W) dpg g ().

Since the function u + wu is real valued, L is symmetric. Moreover,
L(u[—N,NJ|(H)) C u|—N, N](H). From this, it is easy to deduce that (L +
i)(H) is dense in H. In fact, on u[—N, N|(H),

(f. (L% i)g) = / (st i)z

and we have 1 < |u#i|? < N?+1, hence L+i : u[—N, N|(H) — u[—N, N](H)
is invertible with bounded inverse. Hence, L is essentially self-adjoint.
Next, we have to show that p is the p.v.m. associated to L, or, equiva-

lently, that jr, are the spectral measures associated with L, let’s call them
vrg. If z € C\ R, then

N

u—=z
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If we verify that

(7.8.12) (f,(L—2)"lg) = /R d/if,g(u)’

u—z

we have p5, = vy, by the uniqueness of the Herglotz representation, and we
are done.
Let m(u) = -1, so that (f,m(L)g) = [, %. Then,

(f. (L — 2)m(L)g) = / (4= 2) gy () = {f. (0= 2)m(2)dpg g (w) = {f. g).

Hence m(L) = (L — z)~ !, and (7.8.12) holds.

Step IX. Conclusion. By the multiplicative form of the spectral theorem,
after a unitary map our operator L has the form Ly = n¢ on L*(X,\) for
some measure space (X, \) (and 7 is measurable and real valued), and the
operators U, have the form U,p = €. Stone’s theorem now follows from
its converse, proposition 7.13. 0

7.9. Some applications to bounded and compact self-adjoint
operators, and to the spectrum

Having at your disposal various versions of the spectral theorem for self-
adjoint operators, especially the multiplicative one, by means of pictures,
intuition, and measure theory, a number of conclusions can be drawn. We
make a list of some of them, without striving for the greatest generality. The
hints should be enough for you to come up with a proof.

7.9.1. Bounded operators, continuous calculus, spectrum.

(i) A self-adjoint operator L is bounded if and only if the corresponding
p.v.m. measure has bounded support in R. If u has support in
[-N.N], then L = Lu[—N.N]| is bounded. Viceversa, is the support
of u is unbounded you can find elements f,, € H with || f,|| = 1 and
[Lfnll = n.

(ii) Continuous calculus. Let L be a self-adjoint operator, and for ¢ €
C(o(L)), consider the operators p(L), as we did in the measurable
calculus. Then, @ — (L) is an homeomorphic isometry from C(o)
endowed with the sup norm and a subalgebra of L(H) with respect
to the operator norm.

(iii) The spectral mapping theorem. Let D L Hbea self-adjoint
operator (possibly unbounded), and let m € L*>(u), where p is the
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associated p.v.m. Then, o(m(L)) = ess-ran(m), where the essen-
tial range is with respect to p. If m € C(o(L)), then o(m(L)) =
m(o(L)).

(iv) An eigenvalue \ of D L H is a scalar such that Lf = \f for some
0 # f € D. Any such f is an eigenvector relative to A, and the sub-
space of the eigenvectors relative to \ is the eigenspace relative to
. It is clear that A € o(L), hence A € R if L is self-adjoint. In this
case, if u # X are two eigenvectors, the corresponding eigenspaces
are orthogonal. The set of the eigenvalues, o4(L), is the discrete
spectrum of L. To see this compute (f, Lg) = (Lf,g) when f g
are eigenvectors relative to A, u, respectively.

(v) If f is an eigenvector relative to A and m € C.(o(L)), then m(\) is
an eigenvalue, having f as eigenvector. If ||f|| = 1, then

m(\) = (fm(L)f) = / () dug ()

for all m € C.(R); which correspond to the fact that py s is a Dirac
delta at .

(vi) If A € o(L) is not an eigenvalue, then L — \ has dense range in
H. A simple way to prove this is by verifying the statement when
L = M, is a multiplication operator on L*(X, v), where X is locally
compact and v is a finite Radon measure. There, you can show that
A is an eigenvalue if and only if v ”contains” a positive multiple of
Dirac delta ad; (i.e. v > ad; and v —ade L §¢) and A = n(¢). If A is
not an eigenvalue, then, n71(\) C X is a set which does not support
point masses of v.

(vii) Let u be the p.v.m. associated to D LoH, self-adjoint. Then, \ €
R\ {0} is an eigenvalue of L is and only if u({\}) # 0. Let E =

W({\V)(H) 3 f. Then
(9, Lf) = (g, Lu({A)) f) = /{ | x) = /{ | () = Mg 1)

Thus, if £ # 0, then X is an eigenvalue.

Viceversa, if A is an eigenvalue with eigenvector f, then for all m €

Ce(R)

A / m(z)dpg s(x) = Mf.m(L)f) = {f, Im(L) ) = / (@) djug g (2),

R
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This implies that py s is supported on {A}, and

I = /{ | @) = / dyig s () = £1P,

which shows that f = pu({\})f € E.

(viii) The Cayley map I': R — T,

mduces a bijection
L—U=T(L)=(L—i)(L+i)!

from the family of the self-adjoint operators onto the family of the
unitary operators. If jiy, are the spectral measures for U and vy,
are those for L, and m € LF(T), then

(fm(U)g) = / m(e)dpg (")
= [ mr @), (O(e)

_ / (T*m) (@) d([M gz, ()
= (f.m(T(L))g).

Recall that the pull-back of T = C by I' is R —> C, while
the push-forward of a measure  on T by ® = I'"! is defined by

(D) (E) = u(@7H(E)).
What we said can be rephrased as vy, = [[' .z,

7.9.2. Compact self-adjoint operators and their inverses. A bounded
operator L : H — H is compact if the image L(B;) of the unit ball of H has
compact closure in H. Here we always assume L to be self-adjoint.

(i) Let L be self-adjoint, bounded, and let ju be the corresponding p.v.m.
Then, L is compact if and only if p|r\(—e,e) reduces to a finite number
of point masses. The if part is easy. For the only if, suppose there
is € > 0 for which the requirement fails. Then we can find infinitely
many, disjoint, measurable subsets E,, in R\ (—¢, €) with u(E,) # 0.
Pick a unit vector f, in each [u(E,)](H): {f.} is bounded, but
{Lf,} does not have convergent subsequences.
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(ii) From (i) it is easy proving that self-adjoint L is compact if and only
if there are L,, self-adjoint with finite rank such that ||L — L,|| — 0
as n — 0o.

(iii) Hilbert-Schmidt Theorem. If L is self-adjoint, then L is compact
if and only if (when H is separable and infinite dimensional) (a)
o(L) = {\.} U{0}, with finitely many \,’s, or A, — 0; (b) each \,

15 an eigenvalue, and its eigenspace is finite dimensional.

(iv) An self-adjoint operator D 2 H has a compact inverse (separable,
infinite dimensional case) if and only if: (a) o(M) = {u,} C R\ {0}
with |p,| —; (b) each py, is an eigenvalue, and its eigenspace is finite
dimensional.

(v) With M as in (iv), and M positive, the eigenvalues 0 < p < -+ <
n < ... can be computed using the Rayleigh quotients.

. (z,Mz)

M= ohen o2
pick x1 such that the minimum is achieved

. (z,Mz)

po = mn B 2> s

pick xo such that the minimum is achieved

M
min (@, M)

Otzlorman s ||lg]2 =Y

fin

pick x, such that the minimum is achieved
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