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Abstract: Fragrances are volatile organic compounds widely used in our daily life. Unfortunately,
the high volatility required to reach human receptors reduces their persistency in the air. To contrast
this effect, several strategies may be used. Among them, we present here the combination of
two techniques: the microencapsulation in supramolecular gels and the use of profragrances. We
report a study on the controlled lactonization of four esters derived from o-coumaric acid. The
ester lactonization spontaneously occurs after exposure to solar light, releasing coumarin and the
corresponding alcohol. To determine the rate of fragrance release, we compared the reaction in
solution and in a supramolecular gel and we demonstrated that the lactonization reaction always
occurs slower in the gel. We also studied the more suitable gel for this aim, by comparing the
properties of two supramolecular gels obtained with the gelator Boc-L-DOPA(Bn)2-OH in a 1:1
ethanol/water mixture in different gelator concentration (0.2% and 1% w/v). The gel prepared with
1% w/v gelator concentration is stronger and less transparent than the other and was used for the
profragrances encapsulation. In any case, we obtained a significative reduction of lactonization
reaction in gel, compared with the same reaction in solution.

Keywords: lactonization; L-DOPA; low molecular weight gelators; profragrances; solar light;
supramolecular gels; xerogels

1. Introduction

Fragrances are volatile organic compounds widely used in our daily life, as smell is a
powerful trigger for the subconscious and awakens emotions [1,2]. Biologically, volatile
molecules are recognized by all species and used as a means of communication, so it is
important to develop their application to facilitate human interactions [3]. Unfortunately,
the high volatility required to reach the human receptors means that these molecules are
not persistent in the air [4,5] The need to increase the persistency of olfactive perception
prompted the researchers to design several strategies. Among them, microencapsulation is
widely used in the cosmetic, food, agriculture, and pharmaceutical industries, [6,7] as the
encapsulation of a specific substance can not only enhance its stability against degradation,
but can also allow a controlled release of the substance in a specific medium [2,8]. The use
of gels fulfils all these requirements and may be certainly applied for microencapsulation.
In particular, supramolecular gels based on low-molecular-weight gelators (LMWGs) have
recently attracted great attention due to their wide applicability in many fields, being
used in optoelectronics [9], nanomaterials, shape memories, templated synthesis and
crystallization, [10] as well as drug carriers and cell culture medium [11–14]. The formation
of LMW gels is driven by weak noncovalent interactions, such as ion−ion, H-bonding,
π−π stacking, and van der Waals [15,16]. These interactions facilitate the generation of
a 3D network of self-assembled fibers that immobilize the solvent within the entangled
supramolecular structure, leading to the gel formation. LMW peptide gelators offer many
advantages compared to polymers. Their chemical structure is easily tuneable, they can
respond to different stimuli (triggers) to form/disrupt the gel network, and they are often
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biocompatible and biodegradable [17–21]. The controlled release of fragrances from gel
media has been reported by us [22] and other research groups [6,8,23–32].

The use of profragrances is another strategy to increase the persistency of volatile
fragrances. Profragrances are non-volatile and odorless molecules which release the volatile
fragrances by bond cleavage [33–37]. Specific reaction conditions, such as hydrolysis,
temperature changes, as well as the action of light, oxygen, enzymes, or microorganisms,
can be used to liberate the many different chemical functionalities. For example, Schiff
bases have been studied because they have a low volatility and, at the same time, they can
be hydrolyzed in an acidic environment [22,38–40]. The hydrolysis is a crucial step and by
regulating it, it is possible to prolong or shorten the time in which the fragrance is perceived.
Oxygen was also considered as a possible trigger for profragrance modification, because of
its reactivity with labile groups (for example aldehydes) which also alters products during
prolonged storage. However, because of oxygen ubiquity, oxygen-sensitive precursors can
undergo continuous and uncontrolled oxidation reactions rather than a triggered release in
a specific application. This is the reason why a very limited number of oxygen-sensitive
fragrance delivery systems have been reported so far [41,42].

Another example is the UVA-sensitive photocleavable delivery systems. Since the
surfaces on which the evaporation of the volatiles takes place are usually exposed to natural
daylight, photoresponsive delivery systems were found to be particularly appropriate to
control the release of bioactive volatile compounds.

As the aim of both profragrances and encapsulating medium is to release fragrances in
a given time to extend their persistency in the air, the combination of these two techniques
may significantly increase the release time and the persistency of the fragrance. Starting
from this assumption, we studied the controlled cleavage of a group of profragrances that
release coumarin and selected alcohols by lactonization catalyzed by solar light. In this
project, four photolabile profragrances were selected as they easily undergo light-driven
lactonization. All of them were successfully synthesized, purified, and characterized.
Besides the kinetics of fragrance release from the profragrances, we investigated the role
of the encapsulation of these compounds in supramolecular gels made from peptide
based LMWGs.

2. Results and Discussion

The general reaction for profragrance lactonization is reported in Figure 1. This
process was successfully studied in solution on Scentaurus Tonkarose, [43] a profragrance
triggered by light. Exposure to solar light, and in particular to the UVA portion of the
spectrum, provides the necessary energy to induce (E)/(Z)-isomerization followed by
a spontaneous lactonization reaction, which leads to the release of coumarin and the
perfumed alcohol. This reaction was completed in solution in 15 min. The potential of
(E)-o-hydroxycinnamates has motivated researchers to put more effort on searching for
more profragrances as well as establishing methodologies to incorporate them in different
products in the past few decades.
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Figure 1. Photoisomerization and lactonization of E-o-hydroxy cinnamates. Substituents on the
aromatic rings are omitted for the sake of clarity.

The study of the controlled photo-cleavage of this class of profragrances requires the
preliminary analysis of two aspects: the synthesis and characterization of the reagents and
the preparation of the gel that entraps the molecules. Then, the behavior of entrapped
profragrances exposed to solar light is studied.
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2.1. Profragrances Preparation

Profragrances A–D were prepared by Mitsunobu esterification [44] from o-hydroxy
cynnamic acid and four alcohols as depicted in Scheme 1. The reactions proceed in 1 h,
with the formation of the products as white solids in high yields, ranging between 87% and
98% after purification obtained by silica gel chromatography. We chose these alcohols as
they are all fragrances widely used in perfumery and show different chemical structures so
that we can also study the effect of the alcohol structure on the kinetic of the lactonization.
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Scheme 1. Schematic representation of the preparation of the profragrances A–D.

2.2. Gel Characterization

Then we studied the conditions for the formation of gels that may be employed to
trap the molecules. The ideal gel should increase the time of coumarin formation from
compounds A–D, without interfering with this process with side reactions.

For this aim, we prepared some gels using Boc-L-DOPA(Bn)2-OH [45,46], a gelator
widely used in our research lab (Figure 2) [47]. This gelator can form a variety of noncova-
lent interactions (π-π stackings between the aromatic rings and H-bonds in the carbamate
and carboxylic acid portions, as illustrated in Figure S1) and demonstrated its robustness
forming gels under several conditions and in the presence of different fillers [10,48–50].
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Figure 2. Chemical structure of the gelator Boc-L-DOPA(Bn)2-OH.

In this work, the gels were prepared in a 1:1 mixture of water and ethanol, a suitable
solvent for both gel formation and for the solubilization of the synthesized profragrances.
A preliminary study was performed to determine the minimum gelation concentration
(MGC), which resulted to be 0.2% w/v (G02), as at lower concentrations no gel formed
(Figure S2). Then, we prepared two gels, G02 and G1 (containing the gelator in 1.0% w/v
concentration in 1:1 EtOH/H2O) and we analyzed their properties with several techniques
to compare them and to establish which is the most suitable to study the effect of gelator
concentration on the kinetics of lactonization and fragrance release.

To study the formation of the fibers which constitute the gel, we analyzed samples
G02 and G1 by FT-IR spectroscopy (Figures 3 and S3), together with the gelator solu-
tion in ethanol. The analyses of the FT-IR spectra of the solution and gels, as well as
the comparison between the peaks that have appeared or disappeared, allows to gather
information about the driving forces of the hydrogelation process [51–53]. In the region
between 1800 and 1500 cm−1, the peaks positions of the carbonyl of the gelators G02 and
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G1 have wavenumbers lower than those of the peaks of the solution S. In particular, the
peaks at 1723 and at 1699 cm−1 recorded for S are totally absent in both G02 and G1, while
the peak at 1685 cm−1 of S is totally absent in G02 while slightly visible in G1, and in both
gels replaced with a large peak centered at 1648 cm−1. This effect may be ascribed to the
formation of hydrogen bonds in the fibers, which is complete for G02, while a residual
amount of free gelator (peak at 1685 cm−1) is still present in G1. This outcome is confirmed
by a morphological analysis of the samples, performed with an optical microscope on wet
samples, which reveals that they both have a fibrous structure, denser for sample G1 than
for G02 (Figure S4).
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The viscoelastic properties of the two samples of gels were measured with a rheometer.
The measurement of the amplitude sweep of G02 and G1 demonstrated that they are
both gels as the G′ modulus is always higher than G′′, although G1 is far stiffer than
G02 (Figure 4 and Table S1). Both samples have a significant elasticity, confirmed by the
long linear viscoelastic range (LVER). It is worth noticing that G02 presents a remarkable
elasticity, as the crossover point (breaking point of the gel network) is at 100% of the range
of shear strain studied.
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To get further information on the structure of G02 and G1, we prepared the corre-
sponding xerogels XG02 and XG1 and we analyzed them by scanning electron microscopy
(SEM) and X-ray powder diffraction (XRD). In Figure 5, the images from XG1 (top) and
XG02 (bottom) are reported. The low magnification images show that in both samples
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extremely long fibers were present. They were up to several hundred of micro-meters
long with a thickness not higher than 1 µm, thus having a very high aspect ratio. While
in XG02 the fibers are mainly single, in XG1 many of them are associated in bundles. The
high magnification images confirmed this observation and revealed additional differences
between the two samples. In XG02, only fibrous material is present, and the fibers show a
minimal branching and entanglement. Diversely, in XG1, the fibers are highly branched
and entangled. Moreover, a non-fibrous material, such as thin films, is connecting the fibers.
The greater presence of branching and entanglement in XG1 than in XG02 agrees with the
higher mechanical parameters of G1 than G02, while the interconnecting films are probably
generated by the drying process.
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Additional information on XG02 and XG1 xerogels was provided by the analysis of
the XRD diffraction patterns (Figure 6). The two patterns show exactly the same diffraction
peaks, indicating that the same crystalline material is present in the two xerogels. The
diverse diffraction intensities could be due to the different xerogel macrostructure (see SEM
observations), which could not be completely removed by the powdering process. The
diffraction profiles also show that a higher content of amorphous material is present in XG1
than XG02. This is revealed by the broad band around 2theta of 20◦, indicated by the green
line in Figure 6. The analysis of the integrated diffraction intensities of the XRD profiles
indicates that in the sample XG1 there is approximately 7 wt.% of amorphous phase. This
phase could be associated with unreacted molecules (see FTIR analyses) and form the thin
films connecting the fibers in XG1 (see SEM images).
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These results demonstrate that in both cases fibers are formed, but their branching and
entanglement vary according to the starting gelator concentration. This effect may strongly
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affect the time for the light-driven controlled release of fragrances, as a denser network
may better entrap the profragrance, interfering with the solar light catalyzed lactonization
reaction and prolonging the time of release. For this reason, we compared the kinetics of
the lactonization in two gels (G02-A and G1-A), both containing the profragrance A in
2.5 mg/mL in ethanol/water 1:1 mixture and varying the gelator concentration according to
the previous results. We also analyzed the kinetics of lactonization for a solution containing
only the profragrance A in 2.5 mg/mL in ethanol/water 1:1 mixture (S-A). The kinetic of
the reaction was observed for all the samples after the exposure to a light beam from a solar
lamp (for details, see Section 4).

We prepared the three samples G02-A, G1-A, and S-A both in quartz cuvettes and in
glass vials, to also check the impact of the cell material and geometry on the lactonization
kinetics. The two gels readily formed under the same conditions reported for G02 and G1,
as A is completely soluble in the solvent mixture and has no impact on the gelation process.

The release was observed at 30 and 120 min and conversions were calculated on the
disappearance of A, using a calibration curve (Figures S5 and S6) made by injecting the
standard solutions of the profragrances into HPLC-MS (Figure 7 and Table S2). The results
demonstrate that using a quartz cuvette or a glass vial has only a modest effect on the
kinetic. In contrast, the gelator concentration has a strong impact on the kinetic, mainly at
30 min, showing that the denser G1 gel can better modulate the fragrance release. So, only
this gel was used for the following tests.
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Figure 7. Kinetics of the lactonization of profragrance A under selected conditions using
the solar lamp. The experiments were repeated in triplicate and results are expressed as
mean ± standard deviation.

2.3. Controlled Cleavage of Profragrances A–D

The lactonization kinetics for the four profragrances A–D, both in solution and trapped
into G1 was analyzed at 30 and 120 min, exposing the samples prepared in glass vials at
the solar light, to have more realistic information on the behavior of these materials in the
environment. The analyses were performed in May–June 2022 in Rimini (Italy) selecting
only sunny days. The UV index was monitored everyday of exposure for each sample and
is reported in Figure S7. Glass containers were used for each sample, as we previously
demonstrated that the kinetic is not affected by the material of the container, and glass is
commonly used for commercial purposes.

Gels G1-B, G1-C, and G1-D were prepared following the above reported conditions
for the preparation of G1-A, while the corresponding solutions S-A, S-B, S-C, and S-D were
prepared in a 1:1 mixture of H2O and ethanol. In all the samples, the concentration of the
profragrances was 2.5 mg/mL and the reaction conversion was observed with HPLC-MS
analysis as previously reported.

The controlled lactonization was monitored at the same times previously selected
for the conversion analysis of A with the solar lamp. In this case, the intensity of the UV
radiation is variable, as a function of the daytime.
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A general analysis of the results demonstrates that any profragrance trapped in G1
has reduced lactonization kinetics (Figure 8 and Table S3) compared to the profragrances
dissolved in the solvent. Indeed, after 120 min, all the molecules have completely reacted
in the solution, while in gel the conversions range between 48.3 and 62.4% for G1-A, G1-B
and G1-C. In contrast, the conversion in G1-D is 80.4%, which is quite high, even though
the shielding effect of the gel is still effective. Thus, the conversion after 300 and 450 min of
sun exposal was measured only for gels, and the conversion for G1-A, G1-B, and G1-C was
never complete. Only with G1-D was the conversion almost 100%. This different behavior
may be ascribed to the steric hindrance of the alcohols side chains, which is larger for the
molecules containing the aromatic ring (A, B, and C). In addition, A and C have reduced
mobility compared with B, and thus their reactivity is further reduced by the gel.
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Figure 8. Kinetic of the lactonization of profragrances A–D in solution (S) and in gel (G1) using
solar light- Top left: profragrance A; top right: profragrance B; bottom left: profragrance C; bottom
right: profragrance D. The experiments were repeated in triplicate and results are expressed as
mean ± standard deviation.

3. Conclusions

In this paper, we reported a study on the controlled lactonization of four esters derived
from o-coumaric acid. The lactonization to coumarin spontaneously occurs after exposure
to solar light, releasing coumarin and the corresponding alcohol. All these molecules belong
to the family of fragrances. To enhance the persistency of the odor, it is very important to
increase the time of fragrance release by slow lactonization of the profragrance. For this
aim, we compared the reaction in solution and in gel and we could demonstrate that in
gel the lactonization reaction always occurs slower. We also studied which is the more
suitable gel for this aim, by comparing the properties of two supramolecular gels obtained
with the gelator Boc-L-DOPA(Bn)2-OH in a 1:1 ethanol/water mixture in different gelator
concentration (0.2% and 1% w/v). The gel prepared with 1% w/v gelator concentration is
stronger and less transparent than the other gel, and the SEM analysis of the corresponding
xerogel reveals that the fibers pack in a very efficient way. We compared the controlled
lactonization of one fragrance in both gels and we could demonstrate that these gels better
control the process. So, we used the 1% w/v gel for the other three fragrances. In any case,
we obtained a significative reduction of the lactonization reaction in gel compared with the
same reaction in solution.
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4. Materials and Methods
4.1. General Remarks for the Synthetic Procedure

All reactions were carried out in dried glassware. The melting points of the compounds
were determined in open capillaries and are uncorrected. All compounds were dried in
vacuo and all the sample preparations were performed in a nitrogen atmosphere.

High quality infrared spectra (64 scans) were obtained at 2 cm−1 resolution with an
ATR-IR Agilent (Santa Clara, CA, USA) Cary 630 FTIR spectrometer. NMR spectra were
recorded with a Varian (Palo Alto, CA, USA) Inova 400 spectrometer at 400 MHz (1H
NMR) and at 100 MHz (13C NMR). Chemical shifts are reported in δ values relative to the
solvent peak. An Agilent (Santa Clara, CA, USA) 1260 Infinity II liquid chromatograph
coupled to a Mass Spectrometer MSD/XT equipped with an electrospray ionization source
and operating with a single quadrupole mass analyzer was used to check the purity of
compounds. The HPLC was equipped with a Phenomenex Gemini C18 −3µ—110 Å
column (40 ◦C) and H2O/CH3CN with 0.2% formic acid was used as solvent. The MS was
used in positive ion mode, m/z = 50–2000, fragmentor 70 V.

Diisopropyl azodicarboxylate and triphenylphosphine were purchased from Ther-
moFisher Scientific (Kandel, Germany), trans-o-coumaric acid and L-DOPA were purchased
from TCI (Tokyo, Japan), and the four alcohols (benzyl alcohol, phenylethyl, cinnamyl alco-
hol, 9-decen-1yl alcohol) were provided from Farotti s.r.l. (Rimini, Italy). All the solvents
were purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.2. General Method for the Preparation of Profragrances A–D

Diisopropyl azodicarboxylate (0.252 mL, 2 mmol) was dissolved in THF (1.9 mL)
and added over 15 min period to a solution of alcohol (1 mmol), trans-o-coumaric acid
(210 mg, 2 mmol), and triphenylphosphine (336 mg, 2 mmol) in THF (4.5 mL) at room
temperature (rt). The reaction was stirred for 1.5 h at rt. After this time, the reaction
mixture was diluted with ethyl acetate, and then washed with brine, dried over sodium
sulfate, filtered, and concentrated at reduced pressure. The residue was purified by silica
gel column chromatography to give a white solid.

A: Eluant mixture for chromatography: cyclohexane/ethyl acetate 8/2; yield 98.3%
(230.9 mg). Mp 85–86 ◦C; IR-ATR: 3204, 1674, 1623, 1602, 1587 cm−1; 1H-NMR (400 MHz,
CDCl3) δ 5.27 (2H, s, COOCH2), 6.46 (1H, s, OH), 6.69 (1H, d, J = 16 Hz, PhCH = CH), 6.78
(1H, dd, J = 1.2, 8 Hz, Haromatic), 6.90 (1H, dt, J = 1.2, 7.6 Hz, Haromatic), 7.22 (1H, dt, J = 1.6,
7.2 Hz, Haromatic), 7.30–7.46 (6H, m, Haromatic), 8.07 (1H, d, J = 16 Hz, PhCH = CH); 13C-NMR
(100 MHz, CDCl3) δ 168.17, 155.32, 141.13, 136.02, 131.51, 129.32, 128.59, 128.25, 128.24,
121.62, 120.79, 118.10, 116.39, 66.48; HPLC-MS(ESI): 7.8 min; [M+H+]: 255, [M+Na+]: 277.

B: Eluant mixture for chromatography: cyclohexane/ethyl acetate 9/1; yield 89.1%
(230.9 mg). Mp 100–102 ◦C; IR-ATR: 3192, 1675, 1630, 1598 cm−1; 1H-NMR (400 MHz,
CDCl3) δ 3.02 (2H, t, J = 8 Hz, CH2CH2Ph), 4.44 (2H, t, J = 8 Hz, COOCH2), 6.63 (1H, d,
J = 16 Hz, PhCH = CH), 6.76 (1H, bs, OH), 6.83 (1H, d, J = 8 Hz, Haromatic), 6.90 (1H, t,
J = 8 Hz, Haromatic), 7.20–7.33 (6H, m, Haromatic), 7.45 (1H, dd, J = 4, 8 Hz, Haromatic), 8.04
(1H, d, J = 16 Hz, PhCH = CH); 13C-NMR (100 MHz, CDCl3) δ 168.40, 155.42, 140.92, 137.83,
136.68, 131.50, 129.20, 128.95, 128.53, 126.58, 121.64, 120.70, 118.11, 116.42, 65.22, 35.19, 21.97;
HPLC-MS(ESI): 8.2 min; [M+H+]: 269, [M+Na+]: 291.

C: Eluant mixture for chromatography: cyclohexane/ethyl acetate 9/1; yield 86.9%
(230.9 mg). Mp 133–136 ◦C; IR-ATR: 3192, 1670, 1622, 1599, 1587 cm−1; 1H-NMR (400 MHz,
CDCl3) δ 4.89 (2H, d, J = 6.4 Hz, COOCH2), 6.36 (1H, dt, J = 4, 16 Hz, CH2CH = CHPh),
6.50 (1H, s, OH), 6.69 (2H, d, J = 16 Hz, PhCH = CH), 6.83(1H, d, J = 8 Hz, Haromatic), 6.91
(1H, t, J = 8 Hz, Haromatic), 7.19–7.27 (2H, m, Haromatic), 7.32 (2H, t, J = 4 Hz, Haromatic), 7.40
(2H, m, Haromatic), 7.46 (1H, d, J = 8 Hz, Haromatic), 8.07 (1H, d, J = 16 Hz, PhCH = CH);
13C-NMR (100 MHz, CDCl3) δ 168.08, 155.33, 141.01, 136.22, 134.27, 131.50, 129.30, 128.59,
128.05, 126.64, 123.25, 121.66, 120.80, 118.15, 116.41, 65.29; HPLC-MS(ESI): 8.7 min, [M+H+]:
281, [M+Na+]: 303.
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D: Eluant mixture for chromatography: cyclohexane/ethyl acetate 9/1; yield 89.7%
(173.6 mg). M.p. 57–59 ◦C; IR-ATR: 3192, 1665, 1639, 1615, 1597, 1557 cm−1; 1H-NMR
(CDCl3, 400 MHz): δ 1.28–1.40 (10H, m, Haliphatic), 1.70 (2H, m, OCH2CH2), 2.02 (2H,
m, H2C-C = C), 4.20 (2H, t, J = 8 Hz, COOCH2), 4.91 (1H, m, CH = CHH), 4.98 (1H, m,
CH = CHH), 5.79 (1H, ddt, J = 8, 12, 17.2 Hz, CH2CH = CH2), 6.55 (1H, bs, OH), 6.61 (1H, d,
J = 16 Hz, PhCH = CH), 6.83 (1H, dd, J = 1.2, 8 Hz, Haromatic), 6.90 (1H, dt, J = 1.2, 7.6 Hz,
Haromatic), 7.22 (1H, dt, J = 1.6, 8 Hz, Haromatic), 7.45 (1H, dd, J = 1.6, 7.6 Hz, Haromatic), 8.01
(1H, d, J = 16, PhCH = CH); 13C-NMR (100 MHz, CDCl3) δ 175.75, 140.39, 139.17, 136.50,
131.33, 129.18, 121.74, 120.72, 118.54, 116.36, 114.13, 64.83, 33.76, 29.33, 29.20, 29.02, 28.86,
28.69, 25.94; HPLC-MS(ESI): 12.03 min; [M+H+]: 303, [M+Na+]: 325.

4.3. Gel Preparation

The gels used for the fragrance release studies were directly prepared in 2 mL HPLC
glass vials and the gels used for the rheological analysis were prepared in 7.0 mL Sterilin
Cups®. All the gels were left to rest for 16 h at room temperature and they were kept in the
dark before their use.

For both 1% and 0.2% w/v concentrations, the gelator was dissolved in the organic
solvent (ethanol) by alternating manual shaking and ultrasound sonication until the disso-
lution of the compound was achieved (few minutes). To trigger the formation of the gel,
Milli-Q® H2O was added to the vial and immediately gently swirled to allow the mixing
of the two solvents. In the case of the gel containing the profragrances for the release
studies, a stock solution of the profragrance in ethanol was prepared and added to the vial
that already contained the specific amount of gelator. Then, the gelator was dissolved by
ultrasound sonication and, right after, Milli-Q® H2O was added to form the gel. The ratio
EtOH/H2O in all the samples was kept to 1:1 and the final concentration of profragrance in
each gel was 2.5 mg/mL.

4.4. IR Analysis of the Gels Samples

The gels and the solutions used for the infrared spectra were prepared in 2 mL HPLC
glass vials. All the gels were left to rest for 16 h at room temperature after their preparation.
A small quantity of the gels was withdrawn with a spatula, paying attention not to break
the whole bulk. In the case of the ethanol solution, a few drops were enough to record the
spectra. The spectra were recorded using the same instrument reported in Section 4.1.

4.5. Optical Microscope Analysis

The optical microscope images were recorded using a Nikon (Minato, Japan) ECLIPSE
Ti2 Inverted Research Microscope with a 10× or 20×magnifier. A piece of the gel sample
prepared in the Sterilin Cups® was cut with a spatula and analyzed while wet.

4.6. Rheological Analysis

The rheological analyses were performed using an Anton Paar (Graz, Austria) MCR102
rheometer. A vane and cup measuring system was used, setting a gap of 2.1 mm. The gels
were prepared as described and tested directly in the Thermo Fisher Scientific (Waltham,
MA, USA) Sterilin Cup® which fits in the rheometer. Oscillatory amplitude sweep exper-
iments (γ: 0.01−100%) were performed at 23 ◦C using a constant angular frequency of
10 rad/s. The amplitude sweep was repeated three times for each gel and the resulting
points of the graphs are provided as mean ± standard deviation.

4.7. SEM Analysis

Scanning electron micrographs were recorded on gold coated samples using a Zeiss
(Oberkochen, Germany) LEO 1530 operating with a tension of 5 kV.
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4.8. X-ray Powder Diffraction Analysis

X-ray powder diffraction (XRPD) measurements were performed with a Malvern
Panalytical (Amelo, The Netherlands) PanAnalytical X’Pert Pro diffractometer equipped
with X’Celerator detector with Cu Kα radiation. The samples were ground before the
measurements. The diffraction profiles were analyzed using the software X’Pert High
Score Plus.

4.9. Solar Lamp Details

The studies of the kinetic of lactonization with the solar lamp were performed using
a xenon arc source to simulate the natural sunlight exposure. A 150-W xenon arc lamp
(solar simulator, model 68805, Oriel Corporation, Stratford, CT, USA) was used with a
dichroic mirror (Oriel, model 81405) to block visible and IR radiation in order to minimize
sample heating.

4.10. HPLC Analysis

The calibration curves were built with six or seven different dilutions of the stock
solution for each profragrance dissolved in acetonitrile. The stock solutions were made
with a known profragrance concentration of 1.25 mg/mL, and then the dilutions were
made: 1:10, 1:20, 1:50, 1:100, 1:200, 1:500, 1:1000. Each one was analyzed with the HPLC-MS
system to obtain the value of each profragrance peak. Then, the concentration of each
solution was plotted versus the related peak area (Figures S5 and S6).

For the fragrance release studies with the solar lamp and with the natural sunlight:
after the proper interval of time of exposure, each gel was diluted in 1 mL of acetonitrile,
and a 1:10 dilution in acetonitrile was made for the HPLC analysis. In the case of the
fragrance release studies in solution: after the proper interval of time of exposure, for each
solution, a 1:20 dilution was made for the HPLC-MS analysis. In any case (solar lamp and
sunlight, gels, and solutions), the experiments were performed in triplicate and the data
presented as mean ± standard deviation. The HPLC-MS used and the analyses conditions
are the same as reported in Section 4.1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels9040350/s1, IR-ATR, 1H NMR, 13C NMR spectra and HPLC-
MS analysis of compounds A-D; Figure S1: Possible interactions of the gelator molecules by H-bonds;
Figure S2: Photographs of the trials for the measurement of the MGC of Boc-L-DOPA(Bn)2-OH in a
1:1 mixture of H2O and EtOH; Figure S3: FT-IR spectra of the gels G02 and G1, compared with the
solution S of the gelator Boc-L-DOPA(Bn)2-OH; Figure S4: Optical microscope images of wet samples
of G02 and G1; Table S1: Amplitude sweep of samples G02 and G1; Figure S5: Calibration curves
to calculate the disappearance of A and B by HPLC-MS; Figure S6: Calibration curves to calculate
the disappearance of C and D by HPLC-MS; Table S2: Kinetic of the lactonization of profragrance A
under selected conditions using the solar lamp; Figure S7: Curve of the UV index recorded during
the sunny days of exposure of the samples to sun light; Table S3: Kinetic of the lactonization of
profragrances A-D under selected conditions under the sun light.
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