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Abstract: We prepared the small pseudopeptide Lau-l-Dopa(OBn)2-d-Oxd-OBn (Lau = lauric acid;
l-Dopa = l-3,4-dihydroxyphenylalanine; d-Oxd = (4R,5S)-4-methyl-5-carboxyl-oxazolidin-2-one;
Bn = benzyl) through a number of coupling reactions between lauric acid, protected l-Dopa and
d-Oxd with an excellent overall yield. The ability of the product to form supramolecular organogels
has been tested with different organic solvents of increasing polarity and compared with the results
obtained with the small pseudopeptide Fmoc-l-Dopa(OBn)2-d-Oxd-OBn. The mechanical and
rheological properties of the organogels demonstrated solvent-dependent properties, with a storage
modulus of 82 kPa for the ethanol organogel. Finally, to have a preliminary test of the organogels’
ability to adsorb pollutants, we treated a sample of the ethanol organogel with an aqueous solution of
Rhodamine B (RhB) for 24 h. The water solution slowly lost its pink color, which became trapped in
the organogel.
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1. Introduction

Low-molecular-weight gelators (LMWG) are an interesting class of molecules that are able to form
supramolecular structures [1,2]. These molecules, having a molecular weight lower than 1000 Da and a
specific stereochemistry, can self-assemble thanks to weak interactions, including with hydrogen bonds,
π-π stacking and Van der Waals forces. Gelation process starts with the dissolution of the LMWG into
a solvent; by means of a trigger, gelator molecules start assembling in long structures, most commonly
fibers, which entangle leading to networks that are able to immobilize the solvent [3–5].

The critical parameters for the formation of gels are the gelator concentration, the solvent properties
and the trigger of the process [6–8]. The content of gelator in a gel is usually very small, since the
percentage of solid phase can be even less than 1%. The rest of the material is constituted by liquid
phase, usually a solvent that can partially dissolve the gelator. The transformation process of the
solution containing the gelator in a gel is due to the addition of an external stimulus (a trigger), such as
temperature variation [9,10], ultrasound sonication, pH change [11–14] or the addition of a chemical
species [15–18] which enables the alignment of the fibers.

Gel formation often requires several hours to be completed. By contrast, when ultrasound
sonication is used as a trigger, gelation can occur instantly at room temperature, which makes these gels
highly attractive for several applications [8]. When the gel is formed, no solvent flow is observed when
inverting the test tube upside-down, although the solvent mobility is still possible on a molecular level.

LMW-gels are receiving great interest because of the possibility to tailor the gelator structure
through simple synthetical steps, the ability to obtain materials with different properties and the gels
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being suitable for several applications [1,19,20]. However, it is still challenging to predict the gelation
attitude of these molecules from their structure, as a small modification can lead to a gel having
different properties, or could even prevent its formation [21].

Gels formed from organic solvents (organogels) have been known for decades and have been
applied for several industrial applications [3,22,23]. The high solvent content of these materials may
facilitate the diffusion of small molecules from another liquid. Moreover, the high surface area and
porosity of the gel structure together with the possibility to form a number of non-covalent interactions
may have a key role in molecules absorption. This effect may be applied to the removal of unwanted
pollutants from water, such as spill oil [4,24–27], toxic ions or dyes, also considering that gels are
solid-like materials from the rheological point of view, and can be handled as solids [28]. Moreover, it is
possible to exploit some other properties of gels (i.e., thixotropy) in several applications, from paints
and cleaning materials, to dermo-cosmetics and personal care products, to nutraceutics and food
processing [20,29].

2. Results and Discussion

A recent study on the possibility of developing a general road map to an ab initio design of a
gelator or a gel, has demonstrated that is not possible to achieve such a goal, as more molecular-level
insights into the self-assembly process leading to gelation are required [19,30,31].

Instead, success might come through systematic studies on a particular class of molecules. As a part
of this process, we are investigating derivatives of the l-Phe-d-Oxd moiety [l-Phe = l-phenylalanine;
d-Oxd = (4R,5S)-4-methyl-5-carboxyl-oxazolidin-2-one]. The d-Oxd moiety introduced is a little
molecule that mimics a constrained proline group and is able to block the peptide bond that is always
in the trans conformation [32,33]. We have successfully utilized d-Oxd in the formation of several
supramolecular materials [34–36], including hydrogels [37–39].

In this paper we want to investigate the gelling activity of small pseudopeptide built replacing
l-Phe with a fully protected l-Dopa (l-Dopa = 3,4-dihydroxyphenylalanine) and coupled with Lau
(Lau = lauric acid) [20,40], that is a long chain fatty acid, particularly suitable to form micelles,
supramolecular fibers and gels [41–43]. The replacement of l-Phe with l-Dopa allows the introduction
of two new functional groups on the gelator: we selected two Bn (benzyl) as protecting groups of the
hydroxyl groups on the aromatic ring, for their possibility to form π-π stacking interactions between
different gelator molecules.

Gelator Lau-l-Dopa(OBn)2-d-Oxd-OBn (A) was prepared by modification of a
procedure already reported for the preparation of Fmoc-l-Dopa(OBn)2-d-Oxd-OBn (Fmoc =

fluorenylmethoxycarbonyl) [44]. The synthesis started from the unprotected and commercially
available L-Dopa that was transformed in four steps into Boc-l-Dopa(OBn)2-OH (Boc =

tert-butyloxycarbonyl group) in a multigram scale with excellent yields. After coupling with the
D-Oxd moiety, the Boc group was replaced with the long chain of a fatty acid (Scheme 1). Gelator A
was obtained pure as a white solid in 67% overall yield from l-Dopa.

The ability of pseudopeptide A to form organogels was tested under several conditions. In a typical
procedure, the molecule was mixed with an organic solvent in 1% and 2% w/w concentration, then the
mixture was sonicated for a time ranging between 15 and 30 min to find out the best conditions to form
the gel. After several attempts, the best operating conditions include 2% w/w gelator concentration and
20 min sonication, because in any case no organogel was obtained with a 1% w/w gelator concentration.
The general method for the organogels preparation is to place a portion (20 mg) of gelator A in a
test tube with 1 mL of the organic solvent. The mixture is stirred and sonicated at room temperature
for 20 min, and then it is allowed to stand quiescently for 16 h. In Figure 1, we show the picture of
some representative samples of organogels prepared with this technique. They all look homogeneous
and opaque. Interestingly, the previously reported Fmoc-l-Dopa(OBn)2-d-Oxd-OBn [44] never forms
organogels under any conditions, either using organic solvents or solvents mixtures. This effect may
be due to the tendency of the saturated long chain of lauric acid to stick together producing fibers or



Gels 2019, 5, 27 3 of 11

micelles [45]. The formation of hydrogels failed because gelator A is insoluble in water, even if the
mixture is sonicated for 30 min.
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Scheme 1. Reagents and conditions: (i) SOCl2 (excess), MeOH, 0 °C, 24 h; (ii) Boc2O (2 equiv.), NaHCO3 
(2 equiv.), THF/H2O, r.t., 18 h; (iii) BnBr (2.2 equiv.), K2CO3 (2.2 equiv.), TBAB (0.2 equiv.), NaI (0.2 
equiv.), acetone, reflux, 4 h; (iv) 1M NaOH, MeOH/THF, r.t., 18 h; (v) 1M HCl; (vi) D-Oxd-OBn (1 
equiv.), HBTU (1.1 equiv.), DIEA (2 equiv.), dry ACN, r.t., 4 h; (vii) TFA (18 equiv.), CH2Cl2, r.t., 4 h; 
(viii) lauric acid (1 eq.), HBTU (1.1 eq.), DIEA (2.2 eq.), dry ACN, r.t. 2 h. 
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In Table 1 we report the results obtained preparing organogels under these conditions as a 
function of different solvents, that have been listed as a function of increasing polarity, using a scale 
where water is 100 [46], from very apolar toluene to very polar methanol. In any case, an organogel 
is formed.  

The first test to measure organogels properties is the dropping ball test that enables us to 
measure the organogel melting point. The melting points obtained with toluene, ethyl acetate and 
acetonitrile range all between 40 and 50 °C. In contrast, a thermally stronger gel was obtained with 
the polar ethanol, while methanol produces a very weak organogel, probably due to a limited 
solubility of gelator A in the solvent. The solvents boiling points (also listed in Table 1) do not appear 
to be strictly correlated to the organogels melting points. 
  

Scheme 1. Reagents and conditions: (i) SOCl2 (excess), MeOH, 0 ◦C, 24 h; (ii) Boc2O (2 equiv.),
NaHCO3 (2 equiv.), THF/H2O, r.t., 18 h; (iii) BnBr (2.2 equiv.), K2CO3 (2.2 equiv.), TBAB (0.2 equiv.),
NaI (0.2 equiv.), acetone, reflux, 4 h; (iv) 1M NaOH, MeOH/THF, r.t., 18 h; (v) 1M HCl; (vi) D-Oxd-OBn
(1 equiv.), HBTU (1.1 equiv.), DIEA (2 equiv.), dry ACN, r.t., 4 h; (vii) TFA (18 equiv.), CH2Cl2, r.t., 4 h;
(viii) lauric acid (1 eq.), HBTU (1.1 eq.), DIEA (2.2 eq.), dry ACN, r.t. 2 h.
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Figure 1. Photographs of the organogels obtained using a 2% w/w concentration of gelator A in
the following solvents listed as function of their polarity (from left to right): toluene, ethyl acetate,
acetonitrile, ethanol, methanol.

In Table 1 we report the results obtained preparing organogels under these conditions as a function
of different solvents, that have been listed as a function of increasing polarity, using a scale where
water is 100 [46], from very apolar toluene to very polar methanol. In any case, an organogel is formed.

Table 1. Summary of the conditions for organogel formation using gelators A in different solvents (all
measurements were done in triplicate).

Solvent Solvent Polarity 1 Solvent b.p. (◦C) Organogel m.p. (◦C) G′ (KPa) G” (KPa)

Toluene 9.9 110.6 40–41 10 1.5
Ethyl acetate 23 77 40–43 19 2.9
Acetonitrile 46 81.6 42–45 56 12.2
Ethanol 65.4 78.5 60–65 82 19
Methanol 76.2 64.6 25–28 2.3 0.3

1 Water is 100 [46].

The first test to measure organogels properties is the dropping ball test that enables us to measure
the organogel melting point. The melting points obtained with toluene, ethyl acetate and acetonitrile
range all between 40 and 50 ◦C. In contrast, a thermally stronger gel was obtained with the polar
ethanol, while methanol produces a very weak organogel, probably due to a limited solubility of
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gelator A in the solvent. The solvents boiling points (also listed in Table 1) do not appear to be strictly
correlated to the organogels melting points.

Good rheological properties are usually associated with a higher Tgel [14], so we measured the
viscoelastic behavior of the five organogels listed in Table 1: the storage and loss moduli (G′ and
G” respectively) were evaluated by amplitude sweep (Figure S1) and frequency sweep analysis at
23 ◦C (Figure 2). All the organogels tested are characterized by a “solid-like” behavior, i.e., the storage
modulus is approximately an order of magnitude higher than the loss component. In Table 1 we
reported the average G′ and G” values recorded from the frequency sweep experiments (γ = 0.04%) of
the organogels (ω = 1 s−1). As we had foreseen, the organogels strength nicely correlates with the
melting points measurements, confirming that ethanol provides the gel with the strongest network.
The measures have been all repeated (the mean measurements and the standard deviation bars are
shown in Figure 2).
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Figure 2. Frequency sweep experiments performed on the 2% w/w gels in the solvents listed by
increasing polarity: (a) toluene (black); (b) ethyl acetate (blue); (c) acetonitrile (green); (d) ethanol (red);
(e) methanol (orange). The analyses were performed on the gels about 20 hours after the gelation begun.
For more details see the Materials and Methods section.

The analysis of the rheological properties of ethanol organogel was repeated at different gelator
concentrations (1.5% and 3% w/w concentration). From the comparison of the frequency sweep
experiments (Figure S2), we can notice that the G′ modulus deeply increases, moving from 1.5% to the
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2% w/w concentration. In contrast, no change in the frequency dependent behavior is detected, if the
organogel concentration is further increased to 3% w/w.

Thixotropy [47–50] is a gel property related to the sol/gel equilibrium and describes the system
ability to recover the gel status after a strong stress that induces transformation into sol. Moreover,
self-healing property [18,48,51–53] may be defined as the ability to autonomously reconstruct the
bonding interactions after damage.

In Figure 3, we report the results obtained from measurements of the thixotropic properties of our
organogels. Multiple cycles of three steps were applied to the gels. During the first step, the sample
was subjected to a strain value within the LVE (linear viscoelastic) region and was characterized by G′

values greater than G”. When the applied strain was increased above the crossover point, the sample
behavior switched from gel-like to sol-like, with G” values greater than G′. Finally, the sample was
left at fixed strain within the LVE range to check the recovery of the gel-like behavior. Unfortunately,
the ethanol organogel has poor thixotropic properties, as its strength is highly reduced when it
recovers after the strain above the crossover point. The same inconvenient does not occur for the other
organogels that promptly recover their properties.
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Figure 3. Values of storage moduli G′ (solid circles) and loss moduli G” (empty cyrcles) recorded
during step strain experiments performed on organogels in the solvent listed by increasing polarity:
(a) toluene; (b) ethyl acetate; (c) acetonitrile; (d) ethanol; (e) methanol.
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Finally, to have a preliminary test of the organogels ability to absorb pollutants [54,55], we used
Rhodamine B (RhB) as model molecule. RhB, a model refractory organic dye pollutant which contains
four N-ethyl groups at either side of the xanthene ring, was chosen as the target pollutant, being an
important representative of xanthene dye that is widely used as a colorant in textiles and food stuffs,
and also a well-known water tracer fluorescent [56].

We treated a sample of the ethanol organogel with 1 mL of an aqueous solution of RhB (2 µM)
for 24 h. The water solution did not mix with the gel and slowly lost its pink color that moved to the
gel (Figure 4, Figures S3 and S4). To confirm this result, we measured the emission spectrum of the
water solution after treatment with the ethanol organogel in comparison with a fresh sample of the
aqueous solution of RhB. Under these experimental conditions, fluorescence intensity is proportional
to the fluorophore concentration [57,58]. After 24 h of absorption, the spectrum intensity (and so RhB
concentration in water) is reduced to 23% of the original sample, thus confirming that the molecule is
trapped into the organogel. The analysis was repeated twice after 48 h and after 72 h, but no variation
of the spectrum intensity of the sample was detected.
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Figure 4. (Left) Emission spectra of an aqueous solution of RhB (2.0 µM) (pink) and of the same solution
after being treated with the ethanol organogel for 24 hours (blue). (Right) Photograph of a fresh sample
of the aqueous solution of RhB, of the same sample after treatment with the ethanol organogel, and of
the organogel after 24 h (from left to right).

We also measured the amount of ethanol found in the aqueous phase after incubation by 1H NMR
analysis (Figure S5). After calculation of the mols of water and ethanol as a function of the corresponding
peak intensities, we found out that the water/ethanol ratio after 24 h is 9.5:0.5. No variations occur if
the measure is repeated after 48 h and 72 h.

3. Conclusions

This comparative study shows the formation of organogels based on aliphatic organic solvents,
as ethanol or acetonitrile. The preparation of organogels is usually based on aromatic solvents [4,19,25],
or alcohol/water mixtures [24].

We have demonstrated that the pseudopeptide Lau-l-Dopa(OBn)2-d-Oxd-OBn is an efficient
organogelator in 2% w/w concentration, as it can gelate solvents of increasing polarity, such as toluene,
ethyl acetate, acetonitrile, ethanol and methanol, in contrast with Fmoc-l-Dopa(OBn)2-d-Oxd-OBn
that never forms organogel under any conditions. The mechanical and rheological properties of the
organogels demonstrated solvent-dependent properties, with a storage modulus of 82 kPa for the
ethanol organogel.

This result suggests that the saturated long chain of the lauric acid is crucial for the formation
of the three-dimensional network. A sample of ethanol organogel was also treated with an aqueous
solution of RhB, to have a preliminary test of its ability to adsorb pollutants. After 24 h, the emission
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spectrum intensity of the RhB solution is reduced to 23% of the original sample, which was not modified
after 48 h and 72 h. Organogels prepared with gelators A may be employed in molecules absorption,
to remove unwanted pollutants from water.

4. Materials and Methods

All chemicals and solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA),
VWR International (Radnor, PA, USA) or Iris Biotech GmbH (Marktredwitz, Germany) and used as
received. Acetonitrile was distilled under an inert atmosphere before use. MilliQ water (Millipore,
resistivity = 18.2 mΩ cm) was used throughout. All reactions were carried out in dried glassware.
The melting points of the compounds are uncorrected. High quality infrared spectra (64 scans) were
obtained with an ATR-FT-IR Bruker Alpha System spectrometer (64 scans). All compounds were dried
in vacuo and all the sample preparations were performed in a nitrogen atmosphere. NMR spectra
were recorded with a Varian Inova 400 spectrometer at 400 MHz (1H NMR) and 100 MHz (13C NMR).
Chemical shifts are reported in δ values relative to the solvent peak.

4.1. Synthesis of Lau-l-Dopa(OBn)2-d-Oxd-OBn

Boc-l-Dopa(OBn)2-d-Oxd-OBn was synthetized following a multistep procedure in solution
and deprotected from the N-Boc group as reported in literature [44]. The resulting compound
(1 eq.) was dissolved in a solution of dry ACN and DIEA (2.2 eq.) and added dropwise to a stirred
solution of lauric acid (1 eq.) and HBTU (1.1 eq.) in dry ACN. After 2 h at r.t., the solution was
evaporated under reduced pressure, the residue was dissolved in DCM and extracted with H2O,
HCl 1M, NaHCO3, H2O. The organic layer was dried over sodium sulfate, filtered, and concentrated
under reduced pressure. The residue was washed with MeOH, sonicated and filtered. The product
(Lau-l-Dopa(OBn)2-d-Oxd-OBn) was obtained as a white solid with a yield of 85%. M.p. = 172–175 ◦C;
IR: 3324, 1792, 1739, 1711, 1645 cm−1; 1H-NMR (CDCl3): δ 0.9 (t, 3H, CH3 Lau), 1.25 (m, 18H, CH2 Lau),
1.36 (d, J = 6.4 Hz, 3H, CH3 Oxd), 2.1 (m, 2H, CH2CO Lau), 2.93 (dd, J = 6.8, 13.6 Hz, 1H, CHHβ-Dopa),
3.04 (dd, J = 6.0, 13.6 Hz, 1H, CHHβ-Dopa), 4.23 (d, J = 3.9 Hz, 1H, CHN Oxd), 4.49 (dq, J = 3.9, 6.4 Hz,
1H, CHO Oxd), 5.09 (s, 2H, CH2Ph), 5.11 (s, 2H, CH2Ph), 5.18 (s, 2H, CH2Ph), 5.92 (d, J =7.6 Hz, 1H,
NH), 6.00 (dt, J = 6.8, 7.6 Hz, 1H, CHα-Dopa), 6.69 (d, J = 8.0 Hz, 1H, CH Ar Dopa), 6.79 (s, 1H, CH
Ar Dopa), 6.81 (d, J = 8.0 Hz, 1H, CH Ar Dopa), 7.24–7.45 (m, 15H, ArH); 13C-NMR (CDCl3): δ 14.1,
21.1, 22.7, 25.5, 29.2, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 36.4, 38.1, 52.5, 61.8, 68.0, 71.3, 73.6, 115.0, 116.3,
122.3, 127.2, 127.4, 127.7, 127.8, 128.4, 128.5, 128.7, 128.8, 128.9, 134.6, 137.2, 137.3, 148.2, 148.9, 151.0,
167.3, 172.2.

4.2. Conditions for the Gel Formation

All organogels were prepared in a concentration of 2% w/w under the following conditions. 20 mg
of gelator (Lau-l-Dopa(OBn)2-d-Oxd-OBn) were placed in a test tube (8 mm of diameter) with 1 mL of
organic solvent (see Table 1). The solution was stirred for 5 min and sonicated for 20 min in order to
allow the complete dissolution of the sample and the formation of the organogel. All samples were
allowed to stand quiescently for 16 hours before further characterization.

4.3. Conditions for Tgel Determination

Tgel can be considered as the melting temperature of a gel. It was determined by placing a small
glass ball (diameter: 5 mm, weight: 165 mg) inside the test tube (8 mm of diameter) containing the gel.
When the gel is correctly formed, the ball is suspended on the top of it. The test tube is then gradually
heated (2 ◦C/min): Tgel is the temperature in which the ball penetrates inside the gel, because the
network is dissolved. Some gel samples melt, producing a clear solution (and this was the behavior of
our organogels), while in other cases the gelator shrinks and the solvent is ejected, as syneresis occurs.
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4.4. Rheology

Rheology experiments were carried out on an Anton Paar Rheometer MCR 102 using a parallel
plate configuration (25 mm diameter). Experiments were performed at constant temperature of 23 ◦C
controlled by the integrated Peltier system. All the analysis (amplitude sweep, frequency sweep and
thixotropy) were performed with fixed gap value of 0.5 mm. The samples were prepared the day
before the analysis and left overnight at controlled temperature of 20 ◦C to complete the gelation
process. Oscillatory amplitude sweep experiments (γ: 0.01−100%) were carried out at fixed frequency
of 10 rad·s−1, in order to determine the linear viscoelastic (LVE) range and the crossover point of the
gels (G” > G′). Once established the LVE of each organogel, frequency sweep tests were performed (ω:
0.1–100 rad·s−1) at constant strain within the LVE region of each sample (γ = 0.04%). To verify the
thixotropic properties of the samples, strain values within the crossover point region (for 400 s) and
over the crossover point region (for 300 s) were consecutively applied to the organogels, for three cycles.
The values of the applied strain were selected on the basis of the crossover point value obtained from
amplitude sweep experiment (within the crossover point: γ = 0.04%,ω = 10 s−1; over the crossover
point: γ = 100%,ω = 10 s−1).

4.5. Fluorescence Spectroscopy

The organogels were prepared the night before the measurement in a concentration of 2% w/w
under the aforementioned conditions. 1 mL of aqueous solution of Rhodamine B (2.0 µM) was then
placed on the top of the EtOH gel and left in the dark for 24 h (ratio gelator/Rhodamine = 12.9 × 103).
The above solution was analyzed in disposable cuvettes with optical path length of 1.0 cm. Fluorescence
spectra were collected with a Fluoromax-4 spectrofluorometer Horiba Jobin Yvon (emission spectra:
λexc = 550 nm; λem: 560–700 nm).

Supplementary Materials: The following are available online at http://www.mdpi.com/2310-2861/5/2/27/s1.

Author Contributions: Conceptualization, C.T. and N.Z.; Methodology, D.G. and N.Z.; Validation, D.G. and N.Z.;
Investigation, D.G. and N.Z.; Resources, C.T.; Data Curation, D.G.; Writing-Original Draft Preparation, C.T. and
D.G.; Writing-Review & Editing, C.T. and D.G.; Supervision, C.T.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sangeetha, N.M.; Maitra, U. Supramolecular gels: Functions and uses. Chem. Soc. Rev. 2005, 34, 821–936.
[CrossRef]

2. Yu, G.; Yan, X.; Han, C.; Huang, F. Characterization of supramolecular gels. Chem. Soc. Rev. 2013, 42,
6697–6722. [CrossRef] [PubMed]

3. Draper, E.R.; Adams, D.J. Low-Molecular-Weight Gels: The State of the Art. Chem 2017, 3, 390–410. [CrossRef]
4. Haldar, D.; Podder, D.; Roy Chowdhury, S.; Nandi, S. Tripeptide based super-organogelators: Structure and

function. New J. Chem. 2019, 3743–3749.
5. Pramanik, A.; Paikar, A.; Haldar, D. Sonication-induced instant fibrillation and fluorescent labeling of

tripeptide fibers. RSC Adv. 2015, 5, 53886–53892. [CrossRef]
6. Xiao, S.; Zou, Y.; Yu, M.; Yi, T.; Zhou, Y.; Li, F.; Huang, C. A photochromic fluorescent switch in an organogel

system with non-destructive readout ability. Chem. Commun. 2007, 0, 4758–4760. [CrossRef] [PubMed]
7. Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular

Biomaterials. Chem. Rev. 2015, 115, 13165–13307. [CrossRef]
8. Yu, X.; Chen, L.; Zhang, M.; Yi, T. Low-molecular-mass gels responding to ultrasound and mechanical stress:

Towards self-healing materials. Chem. Soc. Rev. 2014, 43, 5346–5371. [CrossRef] [PubMed]
9. Overstreet, D.J.; Dutta, D.; Stabenfeldt, S.E.; Vernon, B.L. Injectable hydrogels. J. Polym. Sci. Part B Polym. Phys.

2012, 50, 881–903. [CrossRef]

http://www.mdpi.com/2310-2861/5/2/27/s1
http://dx.doi.org/10.1039/b417081b
http://dx.doi.org/10.1039/c3cs60080g
http://www.ncbi.nlm.nih.gov/pubmed/23744396
http://dx.doi.org/10.1016/j.chempr.2017.07.012
http://dx.doi.org/10.1039/C5RA07864D
http://dx.doi.org/10.1039/b709409d
http://www.ncbi.nlm.nih.gov/pubmed/18004432
http://dx.doi.org/10.1021/acs.chemrev.5b00299
http://dx.doi.org/10.1039/C4CS00066H
http://www.ncbi.nlm.nih.gov/pubmed/24770929
http://dx.doi.org/10.1002/polb.23081


Gels 2019, 5, 27 9 of 11

10. Bhattacharjee, S.; Maiti, B.; Bhattacharya, S. First report of charge-transfer induced heat-set hydrogel.
Structural insights and remarkable properties. Nanoscale 2016, 8, 11224–11233. [CrossRef]

11. Zhou, S.L.; Matsumoto, S.; Tian, H.D.; Yamane, H.; Ojida, A.; Kiyonaka, S.; Hamachi, I. pH-responsive
shrinkage/swelling of a supramolecular hydrogel composed of two small amphiphilic molecules. Chem. A
Eur. J. 2005, 11, 1130–1136. [CrossRef]

12. Adams, D.J.; Mullen, L.M.; Berta, M.; Chen, L.; Frith, W.J. Relationship between molecular structure, gelation
behaviour and gel properties of Fmoc-dipeptides. Soft Matter 2010, 6, 1971–1980. [CrossRef]

13. Sutton, S.; Campbell, N.L.; Cooper, A.I.; Kirkland, M.; Frith, W.J.; Adams, D.J. Controlled release from
modified amino acid hydrogels governed by molecular size or network dynamics. Langmuir 2009, 25,
10285–10291. [CrossRef] [PubMed]

14. Zanna, N.; Merlettini, A.; Tatulli, G.; Milli, L.; Focarete, M.L.; Tomasini, C. Hydrogelation induced by
Fmoc-protected peptidomimetics. Langmuir 2015, 31, 12240–12250. [CrossRef]

15. Zanna, N.; Focaroli, S.; Merlettini, A.; Gentilucci, L.; Teti, G.; Falconi, M.; Tomasini, C. Thixotropic
Peptide-Based Physical Hydrogels Applied to Three-Dimensional Cell Culture. ACS Omega 2017, 2,
2374–2381. [CrossRef]

16. Zheng, Y.J.; Loh, X.J. Natural rheological modifiers for personal care. Polym. Adv. Technol. 2016, 27, 1664–1679.
[CrossRef]

17. Chakraborty, P.; Gazit, E. Amino Acid Based Self-assembled Nanostructures: Complex Structures from
Remarkably Simple Building Blocks. Chem. Nano. Mat. 2018, 4, 730–740. [CrossRef] [PubMed]

18. Zanna, N.; Merlettini, A.; Tomasini, C. Self-healing hydrogels triggered by amino acids. Org. Chem. Front.
2016, 3, 1699–1704. [CrossRef]

19. Dastidar, P. Supramolecular gelling agents: Can they be designed? Chem. Soc. Rev. 2008, 37, 2699–2715.
[CrossRef]
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