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Non-Iterative Simulation Methods for Virtual
Analog Modelling
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Abstract—The simulation of nonlinear components is central to
virtual analog simulation. In audio effects, circuits often include de-
vices such as diodes and transistors, mostly operating in a strongly
nonlinear regime. Mathematical models are in the form of systems
of nonlinear ordinary differential equations (ODEs), and tradi-
tional integrators, such as the trapezoid and midpoint methods,
can be employed as solvers. These methods are fully implicit and
require the solution of a nonlinear algebraic system at each time
step, introducing further complications regarding the existence and
uniqueness of the solution, as well as the choice of halting conditions
for the iterative root finder. On the other hand, fast explicit methods
such as Forward Euler, are prone to unstable behaviour at standard
audio sample rates. For these reasons, in this work, a family of
linearly-implicit schemes is presented. These schemes take the form
of a perturbation expansion, making the construction of higher-
order schemes possible. Compared with classic implicit designs, the
proposed methods have the advantage of efficiency, since the update
is computed in a single iteration. Furthermore, the existence and
uniqueness of the update are proven by simple inspection of the
update matrix. Compared to classic explicit designs, the proposed
schemes display stable behaviour at standard audio sample rates. In
the case of a single scalar ODE, sufficient conditions for numerical
stability can be derived, imposing constraints on the choice of the
sampling rate. Several theoretical results are provided, as well as
numerical examples for typical stiff equations used in virtual analog
modelling.

Index Terms—Virtual analog modeling, finite difference
schemes, ordinary differential equations.

I. INTRODUCTION

IN RECENT years, an increasing number of numerical sim-
ulation techniques have become available for the digital

emulation of strongly nonlinear analog audio circuits. Discrete-
time algorithm design is governed by a number of problems:
these include achieving reasonable accuracy, computational ef-
ficiency, and the ensuring of robust (numerically stable) be-
haviour. Various virtual analog (VA) modeling frameworks have
emerged, including state-space models (SSMs) [1], [2], [3],
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Port-Hamiltonian Systems (PHSs) [4], [5], and Wave Digital
Filters (WDFs) [6], [7], [8].

In an SSM, the system is represented directly in terms of
physical “Kirchhoff” quantities, such as voltages and currents,
and ultimately as a first order system of nonlinear ordinary
differential equations (ODEs), or more generally differential-
algebraic equations (DAEs). Discretisation may be performed
using a number of well-known numerical integration methods,
often of implicit character, such as the trapezoid and midpoint
methods [9]. A PHS representation extends this direct represen-
tation in terms of currents and voltages, but using a Hamiltonian
structure. In this framework, energetically passive behaviour
may be translated directly to the numerical setting when an
implicit discrete gradient method is employed for time discreti-
sation [10]. A numerically-stable simulation algorithm results
from this approach. WDFs, on the other hand, are a scattering
formulation employing wave variables, rather than currents and
voltages directly. In the linear case, WDFs have the property
of unconditional stability, through a passivity property encoded
into power-preserving elements and scattering junctions (and
thus are similar to PHS in this respect). Until recent years,
WDF-based VA methods were limited to systems with a single
one-port nonlinearity, though this limitation has since been
overcome [11], [12]. The use of the trapezoid rule (equivalent to
a bilinear transformation in the frequency domain in the case of a
linear system) is assumed in almost all WDF models, though the
use of general linear multistep methods has been proposed [13].

Though all such frameworks have proven successful in han-
dling many virtual analog systems, they rely mostly on fully-
implicit numerical methods, generally requiring iterative root
finders such as Newton-Raphson [14]. An exception is the case
of circuits including a single scalar nonlinear element, which
may be resolved explicitly in the wave domain by placing the
nonlinearity at the “root” of the WDF network [6], [15]. For
typical VA systems, the iterative search for zeros is a computa-
tional bottleneck and furthermore is serial in nature, though in
some cases the number of Newton-Raphson iterations may be
kept low through a judicious selection of the free parameters in
a nonlinear WDF [16]. Beyond this basic computational cost,
numerous theoretical and computational difficulties emerge:
iterative methods typically operate at a variable cost at each
time step (depending on the number of iterations required in
order to achieve a predefined error); the user is faced with
new choices regarding appropriate tolerance thresholds and the
maximum number of iterations; and existence and uniqueness of
numerically-computed solutions is generally not ensured [17].
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Though standard explicit methods avoiding iterative solvers are
available, their behaviour is prone to numerical instability in
the case of the strong nonlinearities that occur in VA modeling,
and may require high oversampling factors to yield reasonable
results [18].

This context motivates the current study: it will be shown
that the typical form of virtual analog nonlinearities lends itself
naturally to linearly implicit discretisations, in that at each time
step, the unknown update vector is expressed as the solution
of a linear system of equations [19], [20]. These new schemes,
obtained in the form of a perturbation expansion of increasing
order of accuracy, are thus non-iterative. These schemes may
be viewed as an application of modified equation techniques,
employed typically in the context of linear partial differential
equations [21], [22], [23], [24]. Compared to fully-implicit
methods, the proposed schemes have the advantage of efficiency,
and of constant operation count per time step. The results pre-
sented here expnd considerably on previous work by the same
authors [25]. Stability results are available in the case of a VA
model described by a single ODE (such as the diode clipper), and
partial results are available in the case of a vector nonlinearity.
A general framework to obtain the expansion coefficients for
higher-accurate schemes is presented, and the theoretical results
are validated by numerous numerical examples.

The article is organised as follows. Section II presents the test
case of a scalar nonlinear equation, and standard discretisations
of explicit (forward Euler and Runge-Kutta 4) and implicit
(trapezoid and midpoint) type. The ability of these schemes to
handle stiff problems is tested in the case of the diode clipper.
Section III introduces the proposed non-iterative schemes, in the
form of a general perturbation expansion. Stability conditions
are given in the scalar case for functions that are commonly used
to model nonlinear audio components. It is shown that, unlike
fully explicit designs, the proposed schemes remain stable even
under large input amplitudes, as demonstrated in a number of
numerical experiments. Section IV generalises the scalar case
to the vector case, and typical virtual analog systems (the ring
modulator, and a nonlinear filter) are framed in this context.
Section V assesses the properties of the numerical designs in
a number of experiments. Partial results regarding the stabil-
ity of non-iterative schemes in the vector case are given in
Appendix.

II. BASIC NUMERICAL METHODS

Consider the basic scalar test problem, defined as

dx

dt
+ f = u (1)

x = x(t) is the unknown depending on time t ≥ 0, and initial-
ized with x(0) = x0. u = u(t) is a known driving function, and
f = f(x) is a nonlinear function. Equation (1), when gener-
alized to the vector case, serves as the basis for many virtual
analog models written in a state space form [1], [2], [26]. The
zero-input case is useful for analysis purposes:

dx

dt
+ f = 0 (2)

In this article, we assume that

xf(x) ≥ 0 (3)

so that the nonlinearity is sector-bounded to [0, ∞], and thus
corresponds to a passive loss mechanism [27]. In the zero-input
case (2), it immediately follows that

d

dt

(
1

2
x2

)
=

dx

dt
x = −fx ≤ 0 (4)

and the solution magnitude decreases monotonically, so that

|x(t)| ≤ |x(0)| = |x0| ∀t ≥ 0 (5)

There are many families of numerical methods that can be
used in order to solve (1) or its vector generalisations approxi-
mately; these differ widely in terms of computational cost and
their stability properties. In this article, we will only consider
numerical methods operating with a fixed time stepT , in s, where
Fs = 1/T is the sample rate, as is standard in audio applications.
In this case, the unknown x(t) will be approximated by a time
series xn, for integer n ≥ 0, where t = nT ; similarly, un is an
input sequence (possibly drawn from samples of a continuous
waveform u(t) at times t = nT ). All such schemes will be
assumed initialised with x0 = x0.

A. Explicit Methods

As a first step, define the forward difference operator δ+,
through its application to a general time series zn, by

δ+z
n =

1

T

(
zn+1 − zn

)
(6)

The most basic explicit numerical method for solving (1) is the
Forward Euler (FE) method, which may be written as

δ+x
n + fn = un → xn+1 = xn − Tfn + Tun (7)

where fn � f(xn). xn+1 may be computed directly from pre-
viously computed values of x and the input signal u. FE is first
order accurate in the time step T .

The many generalizations include the linear multistep and
Runge-Kutta families of numerical methods (and RK4 in par-
ticular), which trade increased computational cost for increased
order of accuracy [9]. All such methods must observe a stability
condition, usually derived in the linearized case, and framed in
terms of an upper bound on the time step T .

B. Implicit Methods

First define the averaging operator μ+, through its application
to a time series zn, by

μ+z
n =

1

2

(
zn+1 + zn

)
(8)

Two important and widely used methods may be defined, with
reference to the model problem (1), by:

Midpoint Rule : δ+x
n + f(μ+x

n) = μ+u
n (9a)

Trapezoid Rule : δ+x
n + μ+f

n = μ+u
n (9b)

Both are implicit schemes, requiring the solution of a nonlinear
algebraic equation in the unknown valuexn+1 at every time step.
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For the midpoint rule, one must solve

xn+1 − xn + Tf

(
1

2

(
xn+1 + xn

))− T

2

(
un+1 + un

)
= 0

(10)
and for the trapezoid rule,

xn+1 − xn +
T

2
fn+1 +

T

2
fn − T

2

(
un+1 + un

)
= 0 (11)

In either case, an iterative method (such as Newton Raph-
son [14]) will be necessary in general. Beyond greatly increased
computational cost, new issues emerge, including choices of
stopping criteria, initialisation, variable computational load
(generally undesirable for real time applications) as well as
existence/uniqueness of solutions. When f is linear, both the
midpoint and trapezoid rules coalesce into the equivalent of the
application of the bilinear transform to approximate the time
derivative in the frequency domain (and thus are equivalent to
wave digital filtering [28] in this case). Both the midpoint rule
and trapezoid rule are formally second order accurate.

Both methods are unconditionally stable, allowing for very
robust behaviour suitable for the modeling of strong nonlinear-
ities that occur in virtual analog circuits. In the zero-input case,
for the midpoint rule, it is true that, for a passive nonlinearity,

δ+

(
1

2
(xn)2

)
= μ+x

nδ+x
n = −μ+x

nf(μ+x
n) ≤ 0 (12)

and thus

|xn| ≤ |x0| = |x0| ∀n ≥ 0 (13)

For the trapezoid rule, one may arrive at the energy balance

δ+

(
1

2
(wn)2

)
= −μ+ (xnfn) ≤ 0 (14)

where wn =
√

(xn)2 + (T 2/4)(fn)2 and thus

|xn| ≤ |wn| ≤ |w0| =
√

(x0)2 + (T 2/4)(f0)2 (15)

and again, the solution may be bounded in terms of the initial
conditions, but behaviour is no longer necessarily monotonic.

C. Example: Diode Clipper

As a practical example of the behaviour of these methods in
virtual analog modeling, consider the case of the diode clipper,
as described in [29]. Here, f(x) and u(t) are defined by

f(x) =
x

RC
+

2Is
C

sinh

(
x

VT

)
u(t) =

v(t)

RC
(16)

Following Yeh [18], we use parameters R= 2.2 kΩ, C = 10 nF,
Is = 2.52 nA, and VT = 45.3 mV. As a comparison, illustrating
some of the features of the basic methods just described, con-
sider operation at an oversampled rate of 4× 48 kHz, using a
sinusoidal input voltage signal v(t) = v0 sin(2πf0t). In Fig. 1,
numerical results are shown for FE, RK4, and the midpoint and
trapezoid rules, for a peak input voltage of v0 = 1.3 V, and a
frequency of f0 = 1 kHz.

Even for this relatively low input voltage, severe numerical
distortion is visible in the case of the FE and RK4 methods;
beyond v0 = 1.3 V, the explicit methods are unstable. This can
be alleviated by increasing the sample rate, but, as pointed out
by Yeh, upwards of 30× oversampling may be required for good

Fig. 1. Simulation results for the diode clipper, at a sample rate of 4× 48 kHz,
and using v0 = 1.3 V, f0 = 1 kHz, for simulation methods as indicated.

Fig. 2. Diode clipper: Average number of iterations/sample as a function of
driving frequency f0, for the midpoint rule (left) and trapezoid rule (right) at
different input voltages v0 as indicated, and at a sample rate of 4× 48 kHz.

behaviour at higher input voltages (up to 4.5 V). In contrast, both
the midpoint and trapezoid rule produce good results at an audio
rate, but now at increased computational cost per sample, due
to the need for an iterative root-finding method (here Newton-
Raphson). Using a relative error stopping threshold (in this case,
such that the relative difference 1− xk+1/xk of the kth iteration
falls below 10−15), the average number of iterations per sample
for both the midpoint rule and trapezoid rule are as shown in
Fig. 2. For this case of a low input voltage, it is approximately 4
for both the midpoint and trapezoid rules, but this number grows
with the amplitude of the input signal and the driving frequency,
or if the sample rate is reduced.

III. A FAMILY OF NON-ITERATIVE SCHEMES

In Section II, we saw the key features of two families of
integrators. Explicit methods are relatively cheap, computation-
ally, but have poor stability properties, requiring operation at
an oversampled rate. In contrast, implicit methods are much
better behaved numerically, but incur additional computational
expense per sample due to the need for iterative solvers.

In this section, a new family of methods is proposed, following
from preliminary work presented in [25], which allows good
numerical behaviour without the need for iterative techniques.
These methods exploit the properties of typical nonlinearities
that occur in virtual analog modeling, and are thus less general
than the methods described in Section II. A key new requirement
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is that f(x) satisfy the property:

lim
|x|→0

f(x)/x < ∞ (17)

More simply, f(x) must approach 0 smoothly in the limit of
small x. This condition is reasonable for virtually all nonlinear-
ities that appear in the virtual analog modeling literature. The
sector-boundedness condition (3) is assumed to continue to hold
and implies, furthermore, that

f(x)/x ≥ 0 (18)

Note that these conditions require that f approaches zero for
small x: some nonlinear circuits elements do not meet this
requirement, such as triodes, where the grid current does not
approach zero as the anode voltage becomes small [30].

A. Zero-Input Case

Consider first the zero-input case for the model problem, as
in (2). Under condition (17), this may be rewritten as

dx

dt
+ gx = 0 g(x) � f(x)

x
(19)

An explicit family of schemes may be written, using the operator
definitions from (6) and (8), as

σ(P )(xn)δ+x
n + gnμ+x

n = 0 (20)

Here, the discrete-time sequence gn is defined as gn � fn/xn.
The factor σ(P )(xn) will take the form of a general perturbation
expansion with scale T , the time step:

σ(P )(xn) =
P∑

p=0

T pζ(p)(xn) (21)

Here, ζ(0) = 1, and the functions ζ(p)(z), p = 1, . . . , P , can be
set to achieve desired formal orders of accuracy in the scheme
above (up to order P + 1), and settings will be given in the next
subsection; because the leading term in σ(P )(xn) is of order
1, scheme (20) is formally consistent with the model system
(19). The construction of higher-order, one-step schemes of
this kind falls within the larger context of modified equation
methods, typically employed for the numerical integration of
partial differential equations [21], [22]. To the knowledge of
the authors, the construction of higher-order schemes for model
problem (1), under conditions (17), (18) was presented for the
first time in a previous publication by the authors [25], and the
results therein are extended here.

Scheme (20) allows explicit updating, when rewritten as:

xn+1 =
1− κn

1 + κn
xn κn =

Tgn

2σ(P )(xn)
(22)

In this form, a basic stability condition may be arrived at: when
κn > 0, or when

σ(P )(z) > 0 ∀z ∈ R (23)

we have, immediately,

|xn| ≤ |x0| = |x0| ∀n ≥ 0 (24)

and the numerical solution is monotonically decreasing. Condi-
tion (23) may hold over a restricted range of values for the time
step T , and thus stability is conditional in this case.

Under the stronger condition that

σ(P )(z) > 0 ∀z ∈ R and ∀T > 0 (25)

we have unconditional stability—the scheme will produce
bounded solutions regardless of the choice of time step T .

The conditions above are sufficient, but not necessary for
stability. That is, there may be cases where these conditions
are violated, and the scheme still behaves in a stable manner.
Such conditions may be arrived at via a numerical study of the
function σ(P )(z), as shown in the examples of Section III-C.

B. Order of Accuracy

The general order of accuracy of scheme (20), despite being
a one-step explicit method, may be set arbitrarily, though new
order-dependent conditions on the nonlinearity f intervene.

To analyse this, we would like to show that the time series xn

generated by scheme (20) are samples of a continuous function
x̂(t) satisfying a modified equation that coincides with the model
problem (2) up to a term in TP+1:

H � dx̂

dt
+ f = O(TP+1) (26)

The operators δ+ and μ+, when applied to x̂, and expanded
in Taylor series about the point t = nT may be written as

δ+ =

∞∑
r=1

T r−1

r!

dr

dtr
μ+ = 1 +

∞∑
s=1

T s

2s!

ds

dts
(27)

Employing the form ofσ(P ) from (21), and the expansions above
gives the following form for scheme (20):(

P∑
p=0

T pζ(p)

)( ∞∑
r=1

T r−1

r!

drx̂

dtr

)
+ g

(
x̂+

∞∑
s=1

T s

2s!

dsx̂

dts

)
= 0

(28)
Arranging this in a series in terms of ascending powers of T
yields the form

∞∑
p=0

T p

(p+ 1)!
G(p) = 0 (29)

where G(0) = H and G(p), 1 ≤ p ≤ P , have the form:

G(p) =
dp+1x̂

dtp+1
+

p+ 1

2
g
dpx̂

dtp
+

p∑
r=1

(p+ 1)!

r!

drx̂

dtr
ζ(p−r+1)

(30)
At this point, one may arrive at settings such that

G(p) =
dp

dtp
H 0 ≤ p ≤ P (31)

Up to p = 3, this yields the settings:

ζ(1) =
1

2
(f ′ − g) (32a)

ζ(2) =
1

12

(
(f ′)2 − 2ff ′′) (32b)

ζ(3) =
1

24
f2f ′′′ (32c)

where f ′, f ′′ and f ′′′ refer to the first to third derivatives of the
function f in terms of its argument, evaluated at x̂. (Note that
by consistency, the condition (31) for G(0) holds by default.)
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TABLE I
NONLINEAR FUNCTIONS f(x) AND ASSOCIATED FUNCTIONS ζ(1), ζ(2) AND ζ(3)

Under these conditions, and from (29) and (31),(
P∑

p=0

T p

(p+ 1)!

dp

dtp

)
H = O(TP+1) (33)

which implies (26) or accuracy to (P + 1)th order.

C. Examples

In this section, examples of nonlinear functions f(x) that
occur in virtual analog modelling will be examined with regard
to the family of schemes (20). All satisfy the properties (3) and
(17). The examples of the cubic, tanh, sinh and exponential
nonlinearities, all parameterized by a constant a > 0 are given
in Table I, alongside expressions for ζ(1), ζ(2) and ζ(3). The
results in this section are derived by studying numerically the
behaviour of the function σ(P )(z), as pointed out at the end of
Section III-A.

The cubic and sinh nonlinearities share most features. For
second order accuracy, σ(1) ≥ 1 > 0, so we have unconditional
stability in this case. We cannot obtain such a bound for the
third order accurate scheme, as σ(2) is negatively unbounded.
But in either case, we haveσ(3) ≥ 1 > 0, and thus unconditional
stability for the fourth order accurate scheme.

The hyperbolic tangent nonlinearity appears frequently as
a soft-clipping mechanism in virtual analog, including in the
Moog 4-pole ladder filter [31], [32], [33]. Here, the situation
is more complex, as the functions ζ(p) generally change sign.
Conditional stability conditions, in terms of an upper bound on
the time step T may be arrived at:

T ≤ 1

0.2129a︸ ︷︷ ︸
2ndorder

T ≤ 1

0.1372a︸ ︷︷ ︸
3rdorder

T ≤ 1

0.1017a︸ ︷︷ ︸
4thorder

(34)

For the exponential nonlinearity, conditions for accuracy to
second and fourth order are:

T ≤ 1

0.1492a︸ ︷︷ ︸
2ndorder

T ≤ 1

0.0579a︸ ︷︷ ︸
4thorder

(35)

A stability condition for the third order accurate scheme is not
available in this case.

As examples of the behaviour of the integrators described
above, consider the very basic case of the four nonlinearities
described here, all initialized withx(0) = 1, and witha = 1, and
run for a fixed duration of 1 s. In Fig. 3, the relative error between
the numerical and exact solution at the end of the simulation
interval is shown, as a function of sample rate, and for orders of
accuracy (P + 1) up to P = 3. In all cases, error decreases as

Fig. 3. Relative error between exact and numerically-computed solutions, for
the four nonlinearities described in this section, and using schemes of order of
accuracy as indicated.

expected, as the (P + 1)th power of the sample rate (visible as
a slope of −(P + 1) in this log/log plot).

D. Sources and the Diode Clipper

Returning now to the diode clipper, presented in Section II-C,
consider now scheme (20) including a source term:

σ(P )(xn)δ+x
n + gnμ+x

n − μ+u
n = 0 (36)

where f and u are as defined in (16), and g = f/x.
Consider operation at a high input voltage, using scheme (36)

to second order accuracy at a moderately oversampled rate of
4× 48 kHz, and using a sinusoidal input with peak voltage
amplitude v0 and frequency f0. For low- to medium-range fre-
quencies, the behaviour of the scheme is essentially equivalent
to that produced by either the midpoint or trapezoid methods,
as illustrated in Fig. 4, at left; recall that neither FE nor RK4 is
numerically stable under these conditions, even at a 4× over-
sampled rate. Under extreme conditions, spurious oscillations
appear in both the midpoint method and the non-iterative method
relative to the trapezoid rule, but there is no explosive instability.
See Fig. 4, right column. The operation count and run time of
the non-iterative scheme are now a small fraction of the cost of
running an iterative method (indeed, the operation count for the
non-iterative method is approximately equivalent to one iteration
of Newton Raphson). As can be seen from Fig. 2, at f0 = 5 kHz,
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Fig. 4. Output voltage for the diode clipper, using a sinusoidal input of peak
voltage v0 = 4.5 V, and at a moderate frequency f0 (1 kHz, left column) and
a high frequency (5 kHz, right column). Results are shown using the midpoint
method (top row), the trapezoid rule (middle row) and a second-order accurate
non-iterative scheme (36), all running at 4× 48 kHz.

and at a sample rate of 4× 48 kHz, both the midpoint and
trapezoid rules require between 5 and 6 iterations per sample.

IV. VECTOR SYSTEMS

The extension to the vector case is direct, and allows non-
iterative emulation of a variety of VA systems. In continuous
time, and after scaling, system (1) is generalized to:

dx

dt
+ f = u(t). (37)

Here, x = x(t) ∈ RM is an M -element state vector. The non-
linearity is expressed through the vector f ∈ RM :

f(x) = Bx+ Fq(η(x)), (38)

whereB ∈ RM×M andF ∈ RM×N are constant coefficient ma-
trices and Bs = (B+BT )/2 is assumed positive-semidefinite.
q = q(η) ∈ RN is a vector whose components qk, k =
1, . . . , N are nonlinear functions of the scalar arguments ηk, i.e.
q(η) = [q1(η1), . . ., qN (ηN )]ᵀ. It is assumed that each qk(ηk),
k = 1 . . . , N , satisfies the sector-boundedness property (3) and
the limit condition (17) with respect to its argument ηk. Further-
more, η ∈ RN is defined as

η = Fᵀ x+ c(t). (39)

Here, u(t) ∈ RM and c(t) ∈ RN are time-dependent sources.
For ease of notation, in (38) a linear term has been extracted
within f ; the vector q contains the residual nonlinear effects.
System (37) is a nonlinear state-space model, obtained from the
general form found in e.g. [2], under restrictions on the forms
of B and η.

System (37) possesses a natural Lyapunov function xTx/2
in the zero-input case, leading to the following dissipative

Fig. 5. Schematics of the ring modulator circuit, from [34]. Shaded areas
represent transformers.

behaviour:
d

dt

(
xᵀx
2

)
= xᵀ dx

dt
= −xᵀf = −xTBsx− ηTq(η) ≤ 0,

(40)
The last inequality follows immediately from positive semi-
definiteness of Bs, and sector-boundedness of q.

At this point, we turn our attention to a pair of examples:
the ring modulator, and the Korg35 filter, both of great practical
interest in VA modeling.

A. Ring Modulator

From [34], a model for the ring modulator can be written as
in (37). with M = 5 and N = 4. Given the matrices

A = diag([C,C,Cp, L, L]) (41a)

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
Rm

0 0 −1 0

0 1
Ra

0 0 −1

0 0 1
Ri

0 0

1 0 0 0 0

0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ F0 =

1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1

−1 1 1 −1

−2 −2 2 2

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(41b)

one has

B = A−1/2B0A
−1/2 F = A−1/2F0 (42)

Here, C,Cp are capacitances, L is an inductance, and
Rm, Ra, Ri are resistances; all are constant, and assumed posi-
tive. See Section V-A for numerical values for these constants.
The state vector is x = A1/2[vi, v2, v3, ii, i2]

ᵀ, for voltages
v1, v2, v3 and currents i1, i2. See Fig. 5. The source vectors u(t)
and c(t) are defined in terms of scalar modulator and carrier
source signals um(t) and uc(t) respectively by

u = A−1/2
[

1
Rm

, 0, 0, 0, 0
]ᵀ

um(t), c = [−1,−1, 1, 1]ᵀuc(t).

The nonlinear functions are given as

qk(ηk) = Is

(
eηk/VT − 1

)
, k = 1, . . ., N, (43)

where here, Is, VT are the saturation current and thermal voltage,
respectively. The nonlinear functions (43) clearly individually
satisfy the sector-boundedness (3) and limit (17) conditions. It
is remarked that B0 (and thus B), is not symmetric, but has a
positive semidefinite symmetric part.
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Fig. 6. Plot of q(η), q/η, dq/dη and q/η − dq/dη, with q as per (46), for the
Korg35 filter, for α = 0.5 (solid line), α = 1 (dotted line) and α = 2 (dashed
line). Here, β = 0.1289, and ω = 1.

B. Korg35 Filter

An analysis of the Korg35 filter is given in [35]. In this model,
one has M = 2, N = 1 and, under a linear transformation, the
model can be written in form (37), with

B = ω

[
0 1

−1 2− α

]
, F =

[
0

1

]
, u =

[
ω

3VT

0

]
u(t), (44)

and c = 0. Here,ω is the cutoff frequency of the filter, andα ≥ 0
is a resonance parameter, to be specified shortly. u(t) is the input
source voltage. In this system, the statex is a two-element vector
whose components are

x1 =
v1 + v2
3VT

, x2 =
v2
3VT

, (45)

where vk(t) is the voltage across the kth capacitor in the physical
circuit, and VT is the thermal voltage. A circuit diagram is
available in [35]. The nonlinear function is given in this case
by

q(η) = ω sign(η)
(
W
(
βe0.75α|η|+β

)
− β

)
, (46)

and it is straightforward to show that the sector-boundedness
and limit conditions are satisfied. Here, W (z) is the Lambert W
function of z. See also Fig. 6. By inspection of the form of B in
(44), it is immediate to verify that its symmetric part is diagonal,
with eigenvalues 0, ω(2− α), and is thus positive-semidefinite
under the condition that

α ≤ 2. (47)

While this condition certainly suffices for absolute stability
(i.e., monotonic decay of the Lyapunov function (40)), it is
however not necessary, as it depends only on the properties
of the linearized system, through B. A more refined analysis,
taking into account the combination of B and the nonlinearity
is tractable in this case, and a sufficient and necessary condition
for monotonic decay is obtained when

α ≤ 2 +
1

ω
min

(
q(η)

η

)
→ α ≤ 8 + 8β

4 + β
≈ 2 +

3β

2
. (48)

Since β is small, the sufficient condition (47) is in fact not very
restrictive. This system is able to self-oscillate, since q(η)

η is

Fig. 7. Ring modulator simulation results. with parameters and input signals
as given in Section V-A, and for uc,max = 0.5 V (left column) and 2 V (right
column). Reference solutions (top row) are computed using the trapezoid rule
at a sample rate fs = 200 · 48 kHz. The errors are computed as the difference
between the reference solution and the output of the three methods using a
sample rate fs = 4 · 48 kHz. Newton-Raphson is run with a tolerance threshold
τ = 10−10, and the maximum number of iterations is limited to 100. The output
is y = v2.

bounded for large |η|. When

2 + min

(
q(η)

η

)
< α < 2 + max

(
q(η)

η

)
, (49)

(i.e. for 2 < α < 8), the filter is partly dissipative, and limit
cycles are observed [35]. When α ≥ 8, the system exhibits
unbounded growth.

V. NUMERICAL METHODS AND EXAMPLES

System (37) may be integrated using vector extensions of
the trapezoid, midpoint, and the non-iterative schemes. In the
following, the zero input case is shown. The numerical schemes
are given as follows:

Trapezoid: δ+x
n + μ+f

n = 0, (50a)

Midpoint: δ+x
n + f(μ+x

n) = 0, (50b)

Non-iterative: σ(P )(xn)δ+x
n +Gnμ+x

n = 0. (50c)

Here, in analogy with (20), and suppressing the time index n,

G = B+ FDFᵀ, (51)

where D = diag(qi/ηi). For the non-iterative scheme, a pertur-
bation expansion analogous to (21) may be obtained in the vector
case to a desired order P + 1. The first two terms are given here
explicitly as

σ(0) = I, (52a)
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Fig. 8. Exact solution (solid line) and non-iterative output (grey line), for a
peak carrier voltage of uc,max = 3 V.

Fig. 9. Korg35 filter. Response to input trianlge wave, with peak amplitude
u0 = 10 V, and frequency as indicated. The cutoff frequency is ω = 20 · 103π,
Vt = 25.85 mV, β = 0.1289 and α = 1.2. For the simulations, the sample rate
is2 · 48kHz. Line styles: dashed (trapezoid); dash-dotted (midpoint); solid (non-
iterative,P = 1). Newton-Raphson is run with a tolerance threshold τ = 10−15,
and the maximum number of iterations is capped at 20. The output is y = x2.

Fig. 10. Korg35 filter. The parameters for these simulations are the same as
Fig. 10, but the input wave is square.

σ(1) = I+
T

2
F (Λ−D)Fᵀ, (52b)

where I denotes the k × k identity matrix, and Λ =
diag(dqi/dηi).

When sources are included, these can be approximated using
the averaging operator, as

u(t) → μ+u
n, c(t) → μ+c

n. (53)

Fig. 11. Korg35. Average Number of iterations for the trapezoid and midpoint
rules, using an input square wave of input frequency f0, and peak amplitude u0.
The sample rate used for all simulations is 2 · 48 kHz. Here, Newton-Raphson
is run with a tolerance threshold τ = 10−10.

The use of the operator μ+ in front of the sources serves two
purposes: the local truncation error is maintained to O(T 2) and
the input signal is low-passed.

A. Example: Ring Modulator

Consider the ring modulator, as described in Section IV-A,
with circuit parameters Is = 40.63 nA; Vt = 56.3 mV; C =
Cp = 10 nF; L = 0.8 H; Ra = 600 Ω; Ri = 50 Ω; Rm =
80 Ω. Consider sinusoidal inputs um(t) = 1.2 sin(800πt) and
uc(t) = uc,max sin(3780πt), for different peak carrier ampli-
tudes uc,max. This is a very stringent test of numerical method
performance in VA. Even for relatively small carrier amplitudes
uc,max, standard explicit methods fail entirely. (For, example,
if uc,max = 0.5 V, then FE is unstable at sample rates below
3.3 MHz.)

In Fig. 7, numerical results are shown under the choices
uc,max = 0.5 V and uc,max = 2 V. In both cases, errors are
smallest in the case of the trapezoid rule, and largest for the
non-iterative method. However, at the relative tolerance thresh-
old of 10−10 employed for Newton Raphson, at uc,max = 2 V,
the trapezoid and midpoint rules require 6.2 and 26.8 iterations
per sample, respectively. At higher carrier input amplitudes
(uc,max = 3 V), however, the non-iterative method begins to
exhibit spurious oscillatory behaviour (see Fig. 8), and at even
higher amplitudes will become unstable, signalling an as-yet
undetermined stability condition. Such non-iterative methods
allow operation at rates far below those of standard explicit
methods such as FE.

B. Example: Korg35

In Figs. 9 and 10, the Korg35 filter is tested, again under large
input amplitudes. Here, the output of the schemes is relatively
well behaved, since the nonlinearity is quite soft compared to
that of the diode clipper or ring modulator.

Fig. 11 shows the average number of iterations needed for
convergence of the iterative schemes up to a tolerance threshold
of 10−10. While the trapezoid method requires significant fewer
iterations than the midpoint method, around 4 such iterations
are required for higher input frequencies, compared with a single
iteration of the non-iterative scheme. One problem here concerns
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the evaluation of the Lambert W function. While in these exam-
ples Matlab’slambertwwas used, this generally requires some
kind of iterative solver, such as Fritsch’s iteration, see e.g. [36],
[37]. A separate iterative method is required in order to evaluate
the Lambert function, in addition to any iterative solver required
in order to perform an update, and remains as a fixed cost, and
is independent of the choice of numerical method (i.e. iterative
or non-iterative).

VI. CONCLUSION

Analog circuits often include nonlinear components to pro-
cess audio signals. Virtual models, particularly when geared
toward real-time applications, must ensure the stability of the
resulting time stepping schemes. It has been shown here that
the stability of typical virtual analog state-space models can be
analysed by means of Lyapunov functions. Lyapunov stability
carries over to the discrete case, when discretisation is performed
using the trapezoid and the midpoint methods. While stable,
such methods are fully implicit, and require the solution of
a nonlinear algebraic system of equations at each time step.
Further complications arise in the choice of tolerance thresh-
olds, and halting conditions. For these reasons, in this work a
family of higher-order linearly implicit schemes was derived
in the form of a perturbation expansion. Since the update is
expressed as a linear system of equations, no iterative methods
are required. Compared with standard implicit schemes, these
schemes have the advantage of efficiency, and avoid entirely the
problem of tolerance thresholds. Stability of the schemes in the
absence of sources can be inferred using Lyapunov arguments,
and sufficient stability conditions can be given in the case of
models described by a single scalar ODE. The extensions to
vector systems is possible, and numerical examples show that
the non-iterative schemes can run very efficiently, compared
with fully implicit methods. Stability results are more difficult
to obtain in the vector case; some partial results appear in
Appendix. Stability results for systems including a source, as
well as for vector systems, are worthy of future investigations.

APPENDIX

NUMERICAL STABILITY

The non-iterative schemes presented here outperform stan-
dard expicit methods (such as FE or RK4). That is, they are
able to produce output comparable to that of a standard itera-
tive solver (e.g. trapezoid), at high input levels where standard
explicit methods, such as FE or RK4 fail, or require very high
oversampling factors in order to operate. In the case of a scalar
system (with M = N = 1), stability results have been shown in
Section III. In the case of vector systems, the situation is less
clear, but the desirable attribute of robust performance with a
low oversampling factor, and at high input amplitudes remains.
Some partial results are presented here.

To this end, consider system (37)–(38), with an arbitrary state
sizeM , but with a single nonlinearity, so thatN = 1. In this case,
F = v is a constant M × 1 vector, but B remains a constant
M ×M matrix, with positive definite symmetric part. Using
the non-iterative scheme (50c), with the second-order choice of

σ(1) from (52b), gives:

G = B+ dvvT σ(1) = I+
T

2
(λ − d)vvT (54)

where here, D = d = dn and Λ = λ = λn are now scalar non-
linear functions of the state xn. Henceforth here, the time index
n is suppressed.

The scheme, under zero input conditions, is of the form:(
I+

T (λ − d)

2
vvT

)
δ+x+ (B+ dvvT )μ+x = 0 (55)

Noting that the matrix left-multiplying δ+x is of the form of
a rank 1 perturbation of the identity, the Sherman-Morrison
identity [38] may be used to arrive at:

δ+x+

(
I−

T
2 (λ − d)vvT

(1 + T
2 (λ − d)|v|2)

)
(B+ dvvT )μ+x = 0

(56)
This leads, finally, to

δ+

(
1

2
xTx

)
+Q = 0 (57)

where

Q =
dzTvvT z− T

2 (λ − d)zTvvTBz

1 + T
2 (λ − d)|v|2 + zTBz (58)

and z = μ+x.
In order for the natural choice of 1

2x
Tx to be a Lyapunov

function for this scheme, we require Q ≥ 0 for all z. Conditions
on λ and d ensuring this are not immediately forthcoming. It is
easily seen that Q ≥ 0 under the edge case of a linear system
(when λ = d = 0), in which case

Q = zTBz = zTBsz ≥ 0 (59)

In the case where B = 0, the expression for Q reduces to

Q =
dzTvvT z

1 + T
2 (λ − d)|v|2 (60)

in which case, given that d ≥ 0 from the sector-boundedness
condition, if λ ≥ d, then again Q ≥ 0. This is indeed the case
for the Korg35, as illustrated in Fig. 6. If λ ≤ d, we arrive at
conditional stability in the same manner as in Section III.

Instability has not been observed using this scheme in the case
of the Korg35, which has N = 1 and is of the form above. This
could imply that the natural choice of Lyapunov function is not
suitable in this case, but this remains unproven. Given the good
behaviour of the scheme, it may be that a different form is more
appropriate.

The more general case of a system with multiple nonlinearities
(i.e. N > 1) is more difficult, and in this case the scheme
presented here does exhibit numerical instability (as in the case
of the ring modulator), though at much higher driving amplitudes
than standard explicit methods such as FE or RK4.

REFERENCES

[1] K. Dempwolf, M. Holters, and U. Zölzer, “Discretisation of parametric
analog circuits for real-time simulations,” in Proc. Digit. Audio Effects,
Graz, Austria, 2010.

[2] M. Holters and U. Zölzer, “A generalized method for the derivation of
non-linear state-space models from circuit schematics,” in Proc. Eur. Sig.
Proces. Conf., Nice, France, 2015, pp. 1073–1077.



3198 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

[3] J. D. Parker, F. Esqueda, and A. Bergner, “Modelling of nonlinear state-
space systems using a deep neural network,” in Proc. Int. Conf. Digit.
Audio Effects, Birmingham, U.K., 2019, pp. 2–6.

[4] A. Falaize and T. Hélie, “Passive guaranteed simulation of analog audio
circuits: A port-hamiltonian approach,” Appl. Sci., vol. 6, no. 10, 2016,
Art. no. 273.

[5] R. Müller and T. Hélie, “Power-balanced modelling of circuits as skew gra-
dient systems,” in Proc. Int. Conf. Digit. Audio Effects, 2018, pp. 264–271.

[6] A. Sarti and G. De Poli, “Toward nonlinear wave digital filters,” IEEE
Trans. Sig. Process., vol. 47, no. 6, pp. 1654–1668, Jun. 1999.

[7] K. J. Werner, V. Nangia, A. Bernardini, J. O. Smith III, and A. Sarti, “An
improved and generalized diode clipper model for wave digital filters,” in
Proc. Audio Eng. Soc. Conv. 139, New York, USA, 2015.

[8] A. Bernardini, Advances in Wave Digital Modeling of Linear and Nonlin-
ear Systems: A Summary. Cham, Switzerland: Springer, 2020, pp. 3–15.

[9] J. Butcher, Numerical Methods for Ordinary Differential Equations, 3rd
ed. Hoboken, NJ, USA: Wiley, 2003.

[10] T. Itoh and K. Abe, “Hamiltonian-conserving discrete canonical equations
based on variational difference quotients,” J. Comput. Phys., vol. 76, no. 1,
pp. 85–102, May 1988.

[11] T. Schwerdtfeger and A. Kummert, “A multidimensional approach to
wave digital filters with multiple nonlinearities,” in Proc. 22nd Eur. Signal
Proces. Conf., 2014, pp. 2405–2409.

[12] K. Werner, V. Nangia, J. Smith, and J. Abel, “Resolving wave digital
filters with multiple/multiport nonlinearities,” in Proc. Int. Conf. Digit.
Audio Effects, 2015, pp. 387–394.

[13] A. Bernardini, P. Maffezzoni, and A. Sarti, “Linear multi-step discretiza-
tion methods with variable step-size in nonlinear wave digital structures
for virtual analog modeling,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 27, no. 11, pp. 1763–1776, Nov. 2019.

[14] E. Süli and D. Mayers, An Introduction to Numerical Analysis. Cambridge,
U.K.: Cambridge Univ. Press, 2003.

[15] K. Meerkotter and R. Scholz, “Digital simulation of nonlinear circuits
by wave digital filter principles,” in Proc. IEEE Int. Symp. Circuits Syst.,
1989, pp. 720–723.

[16] A. Bernardini, E. Bozzo, F. Fontana, and A. Sarti, “A wave digital
Newton-Raphson method for virtual analog modeling of audio circuits
with multiple one-port nonlinearities,” IEEE Trans. Audio Speech Lang.
Process., vol. 29, pp. 2162–2173, 2021.

[17] F. Fontana and E. Bozzo, “Newton–Raphson solution of nonlinear delay-
free loop filter networks,” IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., vol. 27, no. 10, pp. 1590–1600, Oct. 2019.

[18] D. T. Yeh, J. S. Abel, A. Vladimirescu, and J. O. Smith, “Numerical
methods for simulation of guitar distortion circuits,” Comput. Music J.,
vol. 32, no. 2, pp. 23–42, 2008.

[19] R. Scraton, “Second-order linearly implicit methods for stiff differential
equations,” Int. J. Comput. Math., vol. 20, no. 1, pp. 57–66, 1986.

[20] M. Ducceschi, S. Bilbao, S. Willemsen, and S. Serafin, “Linearly-implicit
schemes for collisions in musical acoustics based on energy quadratisa-
tion,” J. Acoust. Soc. Am., vol. 149, no. 5, pp. 3502–3516, 2021.

[21] R. Warming and B. Hyett, “The modified equation approach to the stabil-
ity and accuracy analysis of finite-difference methods,” J. Comp. Phys.,
vol. 14, no. 2, pp. 159–179, 1974.

[22] P. Joly and J. Rodríguez, “Optimized higher order time discretization of
second order hyperbolic problems: Construction and numerical study,” J.
Comput. Appl. Math., vol. 234, no. 6, pp. 1953–1961, 2010.

[23] S. Bilbao and B. Hamilton, “Higher-order accurate two-step finite differ-
ence schemes for the many-dimensional wave equation,” J. Comput. Phys.,
vol. 367, pp. 134–165, 2018.

[24] M. Ducceschi and S. Bilbao, “Conservative finite difference time domain
schemes for the prestressed timoshenko, shear and euler-bernoulli beam
equations,” Wave Motion, vol. 89, pp. 142–165, 2019.

[25] M. Ducceschi, S. Bilbao, and C. J. Webb, “Non-iterative schemes for the
simulation of nonlinear audio circuits,” in Proc. Digit. Audio Effects, 2021,
pp. 25–32.

[26] D. Yeh, J. Abel, and J. O. Smith, “Automated physical modeling of
nonlinear audio circuits for real-time audio effects–part I: Theoretical
development,” IEEE Trans. Audio Speech Lang. Proces., vol. 18, no. 4,
pp. 728–737, May 2010.

[27] G. Zames, “On the input-output stability of time-varying nonlinear feed-
back svstems-part II: Conditions involving circles in the frequency plane
and sector nonlinearities,” IEEE Trans. Autom. Control, vol. 11, no. 3,
pp. 465–476, Jul. 1966.

[28] A. Fettweis, “Wave digital filters: Theory and practice,” Proc. IEEE,
vol. 74, no. 2, pp. 270–327, Feb. 1986.

[29] D. Yeh, J. Abel, and J. Smith, “Simulation of the diode limiter in guitar dis-
tortion circuits by numerical solution of ordinary differential equations,”
in Proc. Int. Conf. Digit. Audio Effects, 2007, pp. 197–204.

[30] K. Dempwolf and U. Zölzer, “A physically-motivated triode model for
circuit simulations,” in Proc. Int. Conf. Digit. Audio Effects, 2011.

[31] A. Huovilainen, “Nonlinear digital implementation of the moog ladder
filter,” in Proc. Int. Conf. Digit. Audio Effects, 2004, pp. 61–64.

[32] T. Hélie, “On the use of volterra series for real-time simulations of weakly
nonlinear analog audio devices: Application to the moog ladder filter,” in
Proc. Int. Conf. Digit. Audio Effects, Montreal, Canada, 2006, pp. 7–12.

[33] T. Hélie, “Lyapunov stability analysis of the moog ladder filter and dissi-
pativity aspects in numerical solutions,” in Proc. Int. Conf. Digit. Audio
Effects, Paris, France, 2011, pp. 45–52.

[34] R. Hoffmann-Burchardi, “Digital simulation of the diode ring modulator
for musical applications,” in Proc. Int. Conf. Digit. Audio Effects, Espoo,
Finland, 2008, pp. 165–168.

[35] D. Mohammed, S. Bilbao, and M. Ducceschi, “Applications of port Hamil-
tonian methods to non-iterative stable simulations of the korg35 and moog
4-pole VCF,” in Proc. 24th Int. Conf. Digit. Audio Effects, Vienna, Austria,
2021, pp. 33–40.
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