
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/372941368

Fast Estimation Of Wood Elastic Constants Using Least-Squares

Conference Paper · September 2023

CITATIONS

0
READS

126

4 authors:

Sebastian Duran

University of Bologna

10 PUBLICATIONS   8 CITATIONS   

SEE PROFILE

Michele Ducceschi

University of Bologna

60 PUBLICATIONS   371 CITATIONS   

SEE PROFILE

Henna Tahvanainen

University of Bologna

24 PUBLICATIONS   65 CITATIONS   

SEE PROFILE

Ludovico Ausiello

University of Portsmouth

18 PUBLICATIONS   17 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Michele Ducceschi on 06 August 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/372941368_Fast_Estimation_Of_Wood_Elastic_Constants_Using_Least-Squares?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/372941368_Fast_Estimation_Of_Wood_Elastic_Constants_Using_Least-Squares?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian-Duran-3?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian-Duran-3?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bologna?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian-Duran-3?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michele-Ducceschi?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michele-Ducceschi?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bologna?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michele-Ducceschi?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Henna-Tahvanainen?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Henna-Tahvanainen?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bologna?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Henna-Tahvanainen?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ludovico-Ausiello-2?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ludovico-Ausiello-2?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Portsmouth?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ludovico-Ausiello-2?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michele-Ducceschi?enrichId=rgreq-5ebd138b6a849df7d8229e8771bad0c3-XXX&enrichSource=Y292ZXJQYWdlOzM3Mjk0MTM2ODtBUzoxMTQzMTI4MTE3OTY3MjI2MEAxNjkxMzEyODQzNzkx&el=1_x_10&_esc=publicationCoverPdf


10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

FAST ESTIMATION OF WOOD ELASTIC CONSTANTS USING
LEAST-SQUARES

Sebastian Duran1∗ Michele Ducceschi1 Henna Tahvanainen1

Ludovico Ausiello2

1 Department of Industrial Engineering, University of Bologna, Italy
2 SENE, University of Portsmouth, Portsmouth, Hampshire, UK

ABSTRACT

Mechanical properties of materials represent, among oth-
ers, one of the most relevant topics in musical acoustics.
Such features can be used to better understand the be-
haviour of musical instruments or to evaluate the impact of
design interventions, and build accurate physical models.
In this regard, this paper aims to introduce an accessible
procedure to estimate the elastic constants of wood using
a thin plate. Compared to previous methods in the liter-
ature, the inverse problem is here formulated linearly in
the rigidity constants, thus allowing a unique solution via
a matrix inverse, and using a least-squares formulation.
The reliability of the method is numerically proven in a
number of examples.

Keywords: experimental modal analysis, finite element
method, elastic constants, wood

1. INTRODUCTION

The problem of determining the elastic constants of wood
emerges in various applications in sound synthesis and
luthiery. Possible applications vary from the virtual
prototyping of musical instruments, allowing for faster
and more efficient product development processes [1],
to model-aided conservation of historical instruments [2]
and to sound synthesis purposes requiring accurate input

*Corresponding author: sebastian.duran2@unibo.it.
Copyright: ©2023 Sebastian Duran et. al This is an open-
access article distributed under the terms of the Creative Com-
mons Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

data to generate realistic models [3]. Often, the elastic
constants of woods are approximated from literature, such
as [4, 5].

Nonetheless, the impact of the material and its elas-
tic constants proved to be both mechanically quantifi-
able as well as perceptually noticeable [6, 7]. When
an accurate estimation of such properties is needed, two
main approaches are defined, namely destructive or non-
destructive methods [8]. While the first represents an in-
vasive analysis method based on static loading tests, non-
destructive methods take advantage of experimental and
numerical approaches. The latter approach represents a
non-invasive and fast procedure for the identification of
materials’ elastic properties. Numerical non-destructive
approaches are further distinguished between forward and
inverse approaches. In the first case, the Finite Element
Method (FEM) is prevalent [8] although recent research
advancements focused on the potential of the Rayleigh
method to estimate elastic constants for different bound-
ary conditions [9].

On the other hand, inverse processes mainly involve
the minimization of an objective function which is nor-
mally defined in terms of the difference between exper-
imental and computed eigenfrequencies [10, 11]. In this
regard, a recent example presented in [12] consisted of
measuring the eigenfrequencies of the plate and using the
theory of free orthotropic plates to determine the elastic
constants. Previously, the measurement of three out of
four independent elastic constants was proposed for plates
with free edges [13]. Possibilistic identification has also
been applied in conjunction with FEM to obtain a range of
possible parameter values of a complete instrument [14].
The existing methods for material identification involve
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specific boundary conditions, and the determination of
several eigenfrequencies by computation, measurement or
both. The aim of the presented study is to introduce an al-
ternative and accessible methodology allowing retrieval of
the rigidity constants of orthotropic materials by adopting
a simple experimental measurement setup and by taking
advantage of the least-square problem optimization. As
opposed to other methods in the literature, such as [10],
the problem is here formulated linearly in the rigidity con-
stants, allowing for their direct estimation via a matrix in-
version. Furthermore, the method can be applied to plates
subjected to any combination of boundary conditions, thus
facilitating the experimental setup. Here, a benchmark
study is numerically conducted to validate the experimen-
tal methodology. Error and convergence analyses are per-
formed, showing the ability of the proposed method to re-
trieve the correct rigidity constants within reference error
bounds.

2. METHODOLOGY

An accurate estimation of wood elastic constant is a dif-
ficult task. Complications arise in some cases due to the
complex geometry of the specimen under study, such as
for violin plates [11], or due to a complex material struc-
ture, such as for composite plates [10]. However, if a thin,
homogeneous rectangular plate of the specimen is avail-
able, it is possible to extract the thin-plate rigidity con-
stants with relative ease. This work presents one such
methodology, aimed at integrating various other methods
found in literature [9, 13].

The core principle of the proposed method lies in the
semi-analytical form of the orthotropic thin-plate eigen-
frequencies. In measurement or simulation, these are usu-
ally sorted in ascending order, via the integer m ∈ N =
{1, 2, ...}. The mth eigenfrequency is thus [12]:

ωm =

√
π4

ρL4
x

(Dxαm
x + σ4Dyαm

y + σ2Dxyαm
xy). (1)

Above, the three rigidity constants (to be estimated) are
denoted by Dx, Dy, Dxy . These are defined as:

Dx =
Exh

3

12(1− νxyνyx)
, (2a)

Dy =
Eyh

3

12(1− νxyνyx)
, (2b)

Dxy = νyxDx + νxyDy +
Gxyh

3

3
, (2c)

where Ex, Ey are the Young’s moduli, νxy , νyx are the
Poisson’s ratios, Gxy is the shear modulus, and h is the
thickness, assumed uniform across the domain. Further-
more, in (1), ρ denotes the surface density, Lx is the side
length in the longitudinal x direction (assumed here to be
along the grain), σ := Lx/Ly is the aspect ratio, and Ly is
the side length in the radial y direction (across the grain).

Leaving aside the geometric constants and the density,
which may be measured trivially, the rigidity constants de-
pend on five unknown parameters (two Young’s moduli,
the shear modulus and two Poisson’s ratios). These may
be reduced to four via symmetry of the compliance matrix,
giving e.g. νyx = νxyEy/Ex [15]. The proposed method
allows measuring three such constants, via (2). Given the
small variation of Poisson’s ratios across specimens [5],
one may fix νxy according to tabulated values, and there-
fore extract Ex, Ey and Gxy . Alternatively, an indepen-
dent measurement of any one of the four unknown elastic
constants allows fixing the other three (one such measure-
ment will be briefly discussed later, in Section 3.3).

For rectangular geometries, it is customary to asso-
ciate a pair of modal numbers (µm

x , µm
y ) ∈ N2 to each

mode, related to the number of nodal lines in the x and y
directions. A key feature of (1) is that the α coefficients
depend exclusively on the boundary conditions and on the
modal numbers. This results immediately from a dimen-
sional analysis of (1), where such coefficients have the in-
terpretation of scaled (i.e. non-dimensional) wavenum-
bers. One may express such dependency as:

αm
x := αx(µ

m
x , µm

y |B), (3)

where B denotes a set of boundary conditions. Simi-
lar definitions hold for αm

y , αm
xy . As an example, under

simply-supported boundary conditions, a time-harmonic
solution to the orthotropic plate equation is obtained as
[16]:

u(x, y, t) = û sin
µm
x πx

Lx
sin

µm
y πy

Ly
ejωt, (4)

and hence:

αm
x = (µm

x )4, αm
y = (µm

y )4, αm
xy = 2(µm

x )2(µm
y )2.

The α coefficients for other boundary conditions are not
readily available, though they may be computed numeri-
cally, as will be illustrated in Section 2.2.

2.1 Problem Formulation

Let P := {Lx, Ly, ρ, h,Dx, Dy, Dxy|B} denote a set of
geometrical and material parameters of an experimental
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plate. All the parameters are assumed known except for
the rigidity constants. The experimental plate is subjected
to a set of boundary conditions B, for which the α coeffi-
cients are known either analytically or numerically. After
squaring both sides and rearranging terms, one may ex-
press a vector version of (1) as:

p = Ad, (5)

where

(p)m := ρ(ωm)2/π4, (6a)

(A)m,: := [αm
x , σ4αm

y , σ2αm
xy]/L

4
x, (6b)

d := [Dx, Dy, Dxy]
⊺. (6c)

Here, m ∈ [1,M ], and thus p is M × 1, and A is
M × 3. Assume as well that a set of modal frequen-
cies ω̂m, is obtained experimentally, so to yield a vector
(p̂)m := ρ(ω̂m)2/π4. Then, the vector d̂ of unknown
rigidity constants, approximating d in (5), can be obtained
by minimising:

ε(d̂|p̂) := 1

2
∥Ad̂− p̂∥22, (7)

where ∥ ◦ ∥2 denotes the Euclidian norm. This is a linear-
in-parameters equation, solved by the least-squares for-
mula. Thus:

d̂ = (A⊺A)−1(A⊺p̂). (8)

This is, in essence, the core of the presented method.
While simple, it will be shown to yield accurate results.

2.2 Numerical calculation of the α coefficients

As mentioned previously, the α coefficients are generally
not known. These, however, can be computed numerically
using a least-square approximation. To that end, assume
to work with a number Ntrain of “training” plates, with
plate parameters Pn := {Ln

x , L
n
y , ρ, h,Dx, Dy, Dxy|B},

n ∈ [1, Ntrain]. Note that the sets Pn differ only in the
side lengths Ln

x , Ln
y and associated aspect ratios σn, but

share the same values of all the other parameters, and have
the same boundary conditions. Then, for plate n, one
may label the frequencies according to the correspond-
ing modal numbers (µx, µy), that is: ωn

(1,1), ωn
(1,2), ...,

ωn
(µx,µy)

. For a given pair on indices (µx, µy), one may
then write a vector version of (1) as:

q = Da, (9)

where

(q)n := ρ(ωn
(µx,µy)

)2/π4, (10a)

(D)n,: := [Dx, (σ
n)4Dy, (σ

n)2Dxy]/(L
n
x)

4, (10b)
a := [αx(µx, µy), αy(µx, µy), αxy(µx, µy)]

⊺. (10c)

Here, n ∈ [1, N ], and thus q is N × 1, and D is N × 3.
Assume now to extract a vector (q̂)n := ρ(ω̂n

(µx,µy)
)2/π4

from e.g. finite-element simulation of the Ntest plates
with parameters Pn. Then, one minimises the error:

ε(â|q̂) := 1

2
∥Dâ− q̂∥22, (11)

which is solved by:

â = (D⊺D)−1(D⊺q̂). (12)

This vector returns an approximation to a in (9). This
operation can be repeated to compute the α coefficients
needed to build the matrix A in (6b), according to the
specified boundary conditions of the experimental plate.

3. NUMERICAL EXAMPLES

The methodology described in Section 2 is tested in a
number of validation experiments. The experiments are
here conducted numerically, so to assess the ability of the
proposed method to retrieve the correct elastic constants.
This is a necessary step before moving on to the exper-
imental case. Two “experimental” plates with a known
set of parameters are created numerically, and the eigen-
frequencies of each plate are used to estimate the rigidity
constants via (8). These are then compared with the input
constants. The ”experimental” plate parameters are sum-
marised in Table 1.

Type ρ (kg/m2) Ex (MPa) Ey (MPa) Gxy (MPa) νxy σ

Fir 0.225 127 · 102 9.3 · 102 9.3 · 102 0.45 1.5
Balsa 0.100 6.3 · 102 3 · 102 3.1 · 102 0.23 0.8

Table 1. Constants for the “experimental” plates, wood prop-
erties obtained from [5]. σ denotes the aspect ratios for plates 1
and 2, respectively. The plate thickness is h = 0.5 mm.

Two different sets of boundary conditions are consid-
ered: simply supported and clamped. For the simply sup-
ported boundary condition, an analytical solution for the α
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coefficients exists in the form (4). For the clamped bound-
ary condition, the α coefficients have to be computed nu-
merically. The workflow of the proposed methodology is
summarised as follows:

1. For the experimental plate under study, recover a
set of M α coefficients. Such coefficients, depend-
ing exclusively on the boundary conditions im-
posed on the experimental plate and on the modal
numbers, may be available analytically, or they
may be computed numerically via (12).

2. Perform a modal analysis of the experimental plate
to measure the M eigenmodes corresponding to the
α coefficients above and use (8) to compute the
rigidity constants.

Note that step 1. above may be entirely avoided if tables
of α coefficients, under various combinations of boundary
conditions, are made available to the tester. The authors
intend to provide such tables in the future. It is also antic-
ipated that the measurement of M = 3 eigenmodes suf-
fices for an accurate estimation of the three rigidity con-
stants.

3.1 Simply Supported boundary conditions

In the following, a plate with simply supported edges is
considered. While the α coefficients are also known an-
alytically in this case, via (4), they will nonetheless be
computed using (12) with a set of plates, and the result
fed into (8) to extract the rigidity constants. This serves as
a useful benchmark test for the current methodology.

Type ρ (kg/m2) Ex (MPa) Ey (MPa) Gxy (MPa) νxy

Sitka sp. 0.195 116 · 102 9 · 102 7.5 · 102 0.37

Table 2. Thin-plate elastic constants for the “training” plates
in TS1 used to calculate the α coefficients in the simply-
supported case. Values are typical of Sitka spruce (Picea sitchen-
sis) obtained from [5]. The plate thickness is h = 0.5 mm.

A number Ntrain = 16 of plates is used to define
training set 1 (TS1). The side lengths Lx, Ly of such
plates are obtained as all the possible combinations of the
set {0.1, 0.53, 0.97, 1.4} m. The other elastic and geo-
metric constants for TS1 are reported in Table 2. Using
such material and geometrical parameters, the eigenfre-
quencies of all 16 plates are computed analytically via (4).
Then, the corresponding α values are computed via (12),

for (µx, µy) ∈ [0, 9].
Successively, the modal frequencies of the two “exper-
imental” plates from Table 1 are computed, using the
closed-form solution (4). The least-square procedure (8)
is run to retrieve the elastic constants. These can be now
compared to the input elastic constants of the “experimen-
tal” plates reported in Table 1. An absolute error of the
order of 10−11 for both plates is recovered between the
computed and input elastic constants.

3.2 Clamped boundary conditions

In a second test case, a plate with fully clamped edges
is considered. Contrary to the simply-supported case,
neither the eigenfrequencies nor the α coefficients are
available in closed form. Hence, they can only be re-
covered numerically. The same set of test plates TS1
defined in Section 3.1 is initially used. To check the
assumption that the α coefficients only depend on the
modal numbers, but not on the geometrical or mate-
rial properties, two more training sets are defined here
(TS2 and TS3). These present different side lengths
Lx = Ly = {0.5, 0.77, 1.03, 1.3} m and Lx = Ly =
{0.5, 0.8, 1.1, 1.4} m for TS2 and TS3, respectively, as
well as different material parameters, summarised in Ta-
ble 3.

COMSOL 6.0 is used for the calculation of the eigen-
frequencies of the training plates from each of the three
TSs. Note that Table 3 reports the thick-plate constants as
well as the thin-plate ones, as COMSOL requires the spec-
ification of all these. However, since the plate are simu-
lated with a very small thickness (h = 0.5 mm), it can be
assumed that the thick-plate constants will have a negli-
gible influence on the computation of the α coefficients.
The point of selecting such a small h is to minimise the
thick-plate effects during benchmarking.

The predefined extremely fine mesh in COMSOL was
used at this stage to guarantee reliable results. A quick
check on the convergence of the eigenfrequencies was
conducted with respect to mesh refinement for the first
modes with indices (µx, µy) ∈ [0, 2]. To this end, a plate
from TS1 with an aspect ratio σ = 1 is taken into account.
As an illustrative example, Figure 1 reports the conver-
gence study on a square plate with side lengths of 1.4 m x
1.4 m.

As reported in Figure 1, by employing the highest
number of elements given by the extremely fine mesh, the
relative change in eigenfrequencies is reached up to 0.001
Hz (i.e. eigenfrequencies converge up to two decimal
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TS1 and TS3

ρ (kg/m2) Ex (MPa) Ey (MPa) Gxy (MPa) νxy

0.195 116 · 102 9 · 102 7.5 · 102 0.37

Ez (MPa) Gyz (MPa) Gxz (MPa) νyz νxz

5 · 102 0.39 · 102 7.2 · 102 0.43 0.47

TS2

ρ(kg/m2) Ex (MPa) Ey (MPa) Gxy (MPa) νxy

0.225 127 · 102 9.3 · 102 9.3 · 102 0.45

Ez (MPa) Gyz (MPa) Gxz (MPa) νyz νxz

4.8 · 102 9.3 · 102 7.5 · 102 0.60 0.50

Table 3. Thin and thick plate elastic constants for the “train-
ing” plates (used in the calculation of the α coefficients of a
fully clamped plate). Values are typical of Sitka spruce (Picea
sitchensis) and Fir wood (Pseudotsuga menziesii), from [5]. The
three Poisson’s ratios are fixed by the symmetry of the com-
pliance matrix, i.e. νyx = νxyEy/Ex, νzy = νyzEz/Ey ,
νzx = νxzEz/Ex [15]. The plates’ thickness is h = 0.5 mm
for all plates.

places) for the lowest-order modes. On the other hand,
the change at higher-order modes increases up to 0.01 Hz
(i.e. eigenfrequencies converge up to one decimal place).
Thus, a maximum error equal to 0.01 Hz is assumed in the
eigenfrequency calculation.

The calculation of the α coefficients is now performed
as per (12), using all three training sets. The results are
displayed in Figure 2 where the average values for such
coefficients are reported, together with the deviation. The
deviation is seen to increase for higher modal numbers,
as the error in the calculation of the corresponding modal
frequencies is higher.

The α coefficients from the three training sets and
from an additional set obtained by averaging are now used
to obtain various estimates of the rigidity constants, via
(8). It is interesting to check how the error on the com-
puted constants changes according to the size of A in (8).
This is done in Figure 3, where subsets of the available
α coefficients, denoted Gαn, n={1, 2, 3}, are used for the
calculation of the rigidity constants. Here, Gαn contains
the first 3n coefficients, out of the nine available. It can
be seen that for all the evaluated groups of constants Gαn,
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Figure 1. Relative differences in eigenfrequency for a fully
clamped orthotropic plate. Predefined-only meshes ranging from
coarser to extremely fine were used in COMSOL to conduct this
study.
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Figure 2. Average α coefficients and deviations, under fully
clamped boundary conditions. ’x’ marker: αx, ’□’ marker: αy ,
’o’ marker: αxy .

errors are the smallest for Gα1. Furthermore, the error
depends on the test plate, and on the training set used to
compute the α coefficients. In particular, the largest er-
rors are found when computing the α coefficients by using
TS1. Instead, for TS2 and TS3, the errors are of a similar
order. The dependence of the error on the size of A is to
be attributed to the error on the estimation of the eigenfre-
quencies themselves, and to the propagation of such error
via the least-square procedure. Further investigation is un-
derway in this sense. Results from Gα1 are summarised
in Table 4, highlighting the accuracy achievable with the
proposed methodology.

3.3 Independent measurement of Ex

With the proposed methodology, it is possible to obtain
three out of the four thin plate elastic constants. An inde-
pendent measurement of any one of the elastic constants
is thus necessary to estimate all four uniquely. One such
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Figure 3. Error% for rigidity constants Dx (vertical lines), Dy

(crossing lines) and Dxy (horizontal lines) obtained by employ-
ing the α values from each TS and the α coefficients averaged
over the three TSs, under fully clamped boundary conditions.
Rigidity constant results for Gα1, Gα2 and Gα3 are estimated by
using the “experimental” eigenfrequencies and the related modal
shapes with indices (µx, µy) up to (0,2), (1,2) and (2,2), respec-
tively.

experiment is briefly described here. Consider a bar with
free edges, where the x axis is stretched along the bar. It is
known that the mth longitudinal modal frequency satisfies:

ωm =
√
Ex/ϱ γm, (13)

where ϱ is the volume density, and γm := mπ/Lx. Fig-
ure 4 reports the frequency response of a metal bar, hit
with an impulse hammer at one end and measured with
an accelerometer placed at the opposite end. The peaks
corresponding to the longitudinal bar motion are clearly
visible, and a best fit of model (13) allows to extract the
longitudinal speed of sound,

√
Ex/ϱ, and, thus, Young’s

modulus. The same experiment may be repeated on a bar

Experimental plate 1
Rigidity (×10−3) Target TS1 TS2 TS3 AVG.

Dx 134 133 134 134 134

Dy 9.83 9.99 9.82 9.82 9.88

Dxy 47.6 46.1 47.7 47.5 47.1

Experimental plate 2
Rigidity (×10−3) Target TS1 TS2 TS3 AVG.

Dx 6.73 6.58 6.71 6.70 6.66

Dy 3.21 3.28 3.17 3.17 3.21

Dxy 14.4 13.5 14.1 14.1 13.9

Table 4. Results of the proposed methodology. The table in-
cludes the target and the computed rigidity constants for the two
“experimental” plates considered, under clamped boundary con-
ditions, using group Gα1. Values are scaled by 10−3.

cut from the same wood specimen of the orthotropic plate
under study.

4. DISCUSSION

The numerical examples in Section 3 demonstrate the fea-
sibility of the proposed methodology for obtaining the
rigidity constants under different boundary conditions.
The results shown suggest that only three modes of the
investigated experimental plate are required to achieve
a fairly accurate estimate of the material’s rigidity con-
stants. This means that the estimation of the constants can
be done with a simple measurement setup giving the first
three mode frequencies, their corresponding nodal lines
and a least-square procedure. As opposed to other estab-
lished methods in the literature, the proposed methodol-
ogy is not bound to a restricted set of boundary condi-
tions, nor is it reliant on specific mode shapes to work.
The rigidity constants here can be estimated by knowl-
edge of any three modal frequencies and corresponding α
coefficients.
Nonetheless, several sources of uncertainty regarding the
methodology need to be further analysed. First, the choice
of the dimensions of the plates used for the estimation of
the α coefficients appeared to have an impact on the accu-
racy of the final estimated elastic constants. Specifically,
results achieved by considering TS1 which was character-
ized by narrower rectangular-shaped geometries than TS2
and TS3, lead to a less accurate final estimation of the elas-
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Figure 4. Modal analysis of a longitudinal bar. The bar’s
length Lx is 0.45 m. Top: frequency response function from an
accelerometric measurement. Bottom: best fit, using model (13)
and the measured frequencies from the frequency response. The
speed of sound is here calculated as

√
Ex/ϱ = 5704 m·s−1.

tic properties of the ”experimental” plates. Similarly, as
α coefficients associated with higher-order mode shapes
are divergent, a thorough analysis of the convergence of
the coefficients is needed. These issues may be tack-
led by analysing the error propagation in the least-square
optimisation, and by using variants of such methodol-
ogy [17]. Additionally, further investigations supported
by FEM simulations will be conducted in order to assess
the variation in the alpha coefficient relative to changes in
thickness. Such a tolerance analysis will help to account
for typical standard deviations observed when using stan-
dard mechanical equipment (e.g. sanding devices).

Although this paper solely considers numerical data,
experimental modal analysis (EMA) measurements are
currently being conducted by the authors in order to test
the proposed methodology with real-life case scenarios.
An example is found in Figure 5 which shows a measure-
ment setup used to extract the experimental data through
impulse response (IR) measurements. In this case, an ex-
citer is used to excite a clamped rectangular tonewood for
a guitar plate by injecting an exponential sine sweep (ESS)
into the system. The resulting audio data is recorded
by a sound-pressure microphone. After post-processing
the recorded data, an IR can be collected and analyzed
[18,19]. In such measurements, the effect of the thickness
of actual instruments’ soundboards (≈ 3-4 mm) on the
methodology will also be studied. Finally, note that while
simply-supported and clamped boundary conditions were
considered here, one may apply the proposed method to
any set B of suitable boundary conditions, after an appro-
priate estimation of the α coefficients. These may in fact

Figure 5. EMA measurement setup for a rectangular gui-
tar tonewood. The exciter is the sound source while a sound-
pressure microphone acts as the recording transducer. The
tonewood sample is fixed at all four edges in order to simulate
clamped boundary conditions.

be collected and tabulated and made readily available to
the tester.

5. CONCLUSIONS

This paper introduced an alternative solution to estimate
orthotropic elastic constants of simple rectangular geome-
tries under different boundary conditions through a least-
square optimisation. The developed procedure was first
tested for simply-supported plates for which an analytical
solution to the motion equation is known. Results confirm
the accuracy of the process and further investigations are
carried out to compute the elastic constants of rectangular
wooden plates with clamped boundary conditions. In such
cases, different considerations are observed:

• depending on the geometries used in the TSs to
compute the α coefficients, different errors were
observed in the estimation of the elastic constants.

• variations in the α coefficients increased with
higher-order modal shapes, leading to a less pre-
cise estimation of α values.

• accurate estimates of the rigidity constants (with
absolute errors below 5%) can be achieved with
just three known modal shapes and the correspond-
ing eigenfrequencies of the experimental plate.
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The variability in the estimation of the rigidity constants
has to be attributed to the propagation of the error in the
least-square procedure. This may be adjusted in various
ways, for instance via regularisation [17]. A study of op-
timal conditions for optimisation is therefore envisaged.
Finally, the application of this methodology to laboratory
tests is currently underway. Since this method allows the
extraction of the rigidity constants under any combination
of boundary conditions, multiple estimates may be per-
formed on the same test bench, improving the reliability
of the final results.
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