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SIMULATION OF THE SNARE-MEMBRANE COLLISION IN MODAL
FORM USING THE SCALAR AUXILIARY VARIABLE (SAV) METHOD

Michele Ducceschi∗ Matthew Hamilton Riccardo Russo
Department of Industrial Engineering, University of Bologna, Italy

ABSTRACT

Collisions play an essential role in the sound production
of many musical instruments, such as in the snare drum.
Here, collisions occur between the stick and the batter
head and between the snares and the bottom head. The
latter involve interactions between fully distributed ob-
jects and are the subject of this work. From a simula-
tion standpoint, simple explicit or semi-implicit schemes
are prone to unstable numerical behaviour and an appro-
priate energy-conserving framework is required for sta-
ble simulation designs. Usually, this is accomplished via
fully-implicit designs that are known to conserve energy
but that require iterative solvers such as Newton-Raphson.
Other than representing a computational bottleneck, itera-
tive schemes present a variable operational cost per time-
step and, furthermore, are serial in nature. This work will
explore the possibility of simulating the snare-membrane
collision using explicit designs obtained via a quadrati-
sation of the nonlinear potential energy. A modal func-
tion basis will be employed for the spatial discretisation,
allowing for fine-tuning damping ratios and natural fre-
quencies.

Keywords: snare drum, collision modelling, energy
methods, physical modelling, Scalar Auxiliary Variable
(SAV)

1. INTRODUCTION

A snare drum is a percussion instrument of cylindrical ge-
ometry, composed of a top membrane (the batter) and a

*Corresponding author: michele.ducceschi@unibo.it.
Copyright: ©2023 Michele Ducceschi et. al. This is an open-
access article distributed under the terms of the Creative Com-
mons Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

bottom membrane along with a rattle of thin wires (the
snares). Air is enclosed between the membranes and a
rigid rim, serving as the resonant cavity across which vi-
brations are transmitted between the two membranes. The
wires serve as rattling elements colliding against the bot-
tom membrane, causing the typical sharp tone of the snare
drum. In this work the modelling and simulation of the
snare-membrane interaction is discussed. Physics-based
simulation of the snare drum has been the subject of vari-
ous works by Bilbao and associates [1, 2]. Compared to
the works of Bilbao, the equations here will be solved
in the modal domain, yielding a rather convenient frame-
work in which the decay times and the resonant frequen-
cies may be finely tuned.

The collision may be realised at the modelling level
by employing a one-sided power law yielding a non-zero
force when the objects are in contact. This model, used
in several previous works (see. e.g. [3–5]) reproduces the
most prevalent perceptual features of collisions. Further-
more, it may be derived from a nonlinear potential as a
function of the collision deformation. Conveniently, en-
ergy conservation yields a natural framework to bound the
growth of the solutions over time, resulting in a form of
stability [6].

At the simulation level, simple numerical designs dis-
play unpredictable and unstable numerical behaviour due
to the strongly nonlinear character of the collision dynam-
ics. Much effort has been dedicated to the realisation of
energy-stable schemes mimicking the conservation prop-
erty of the continuous system and ensuring the stability
of the time-stepping routine. An application of one such
method, the Scalar Auxiliary Variable (SAV) approach
[7], is illustrated in this work. For the SAV, the nonlin-
ear energy is first quadratised by means of an auxiliary
state function. The resulting numerical schemes are then
updated explicitly in time [8]. Due to their remarkable ef-
ficiency, the schemes are particularly attractive from the
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standpoint of real-time simulation and are currently see-
ing a growing body of applications in physics-based sound
synthesis [9–11].

2. CONTINUOUS MODELS

In this section, the case of the collision of a wire against a
membrane is discussed. This serves as the basic building
block of the full snare drum, to be addressed later. The
system is here written as:

ϱ ∂2t u(z, t) = T ∂2zu(z, t) + f(η), (1a)

ρ ∂2tw(x, t) = P ∆w(x, t)− β(x)f(η). (1b)

Here, u,w represent the physical displacements of the
wire and the membrane, respectively. Both systems are
defined for t ≥ 0. The wire is spatially distributed along
F : {z | z ∈ [−L/2, L/2]}, whereas the membrane occu-
pies a circular domain G : {x := (r cos θ, r sin θ) | 0 ≤
r ≤ R, 0 ≤ θ ≤ 2π}. It is assumed that F ⊂ G, see
Figure 1. The symbol ∂nm denotes the nth partial deriva-
tive with respect to m; ∆ is the two-dimensional Laplace
operator. Constants appear as: ϱ, the linear density of the
wire; ρ, the surface density of the membrane; T the ten-
sion applied to the string’s ends; P the tension per unit
length applied to the membrane’s edge.

The interaction collision force density f (in N · m−1)
is defined as:

f =
dϕ

dη
:=

d

dη

(
B[η]α+1

+

α+ 1

)
, [η]+ :=

η + |η|
2

, (2)

where α ≥ 1 is a nonlinear exponent, andB ≥ 0 is a stiff-
ness constant. Above, [η]+ is the positive part of η (iden-
tically zero for η ≤ 0), identifying a one-sided interaction
between the colliding wire and membrane. Conveniently,
η is identified as the inter-object collision deformation:

η :=

∫
G
β(x)w(x, t)dx− u(z, t). (3)

The distribution β, appearing in the definition of η as well
as in (1b), is a kind of projector of G onto F , given as:∫

G
β(x)f(x)dx :=

∫
F
f(z)dz =

∫ L/2

−L/2

f(z)dz, (4)

thus effectively yielding η = w(z, t)− u(z, t).

(r cos θ, r sin θ)

R

F : {z | z ∈ [−L/2, L/2]}

z0 z1 zMzj.... .... .... ....

yF

G : {x := (r cos θ, r sin θ) |0 ≤ r ≤ R, 0 ≤ θ ≤ 2π}

Figure 1. Domains of definition of the wire and
membrane. The wire is represented as an orange line.
It is assumed that F ⊂ G. The discrete grid, used in
the calculation of the nonlinear integral (12) is also
illustrated.

2.1 Energy conservation

System (1) is conservative. While losses are necessary
for realistic sound synthesis, it is convenient to derive an
energy-conservation property in the lossless case. Do-
ing so will serve as the basis to prove the stability of the
proposed time-stepping scheme. By adding losses in the
modal domain, one can effortlessly set a fine frequency-
dependent damping profile at no additional cost, as will
be discussed in Section 6. Energy conservation is derived
by multiplying (1a) by ∂tu and integrating over F , and
by multiplying (1b) by ∂tw and integrating over G. After
integration by parts, and by means of definitions (2), (3),
(4), one obtains the following energy balance:

dH

dt
:=

d(Hu +Hw +Hη)

dt
= 0, (5)
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where the energy components for the wire, membrane and
collision are given as:

Hu =

∫
F

(
ϱ

2
(∂tu)

2 +
T

2
(∂zu)

2

)
dz, (6a)

Hw =

∫
G

(
ρ

2
(∂tw)

2 +
P

2
|∇w|2

)
dx, (6b)

Hη =

∫
F
ϕdz. (6c)

The energy balance above holds under a suitable set of
boundary conditions, which are assumed to be of Dirichlet
type for both the wire and the membrane:

u(z, t)|z=±L/2 = w(x, t)|r=R = 0, ∀t ≥ 0. (7)

3. MODAL EQUATIONS

The energy components above are now computed using
the modes, which give a set of time-dependent relations
depending exclusively on the modal coordinates. To that
end, consider the following expansion for the wire and
membrane displacements:

u = U⊺(z)a(t), w = W⊺(θ, r)b(t), (8)

where a, b are the modal coordinates, functions of time
only. The upper bounds in the summations (8) are given
as Nu, Nw, respectively and are fixed by Nyquist require-
ments, as will be shown in Section 4. Here, the normalised
modal shapes are given as [12]:

Up :=

√
2

L
sin

pπ(z + L/2)

L
, (9a)

Wp := Apθ,pr

{
cos(pθθ)
sin(pθθ)

}
Jpθ

(
µpθ,pr

r

R

)
. (9b)

where p, pr ∈ N, and pθ ∈ N ∪ {0}. Above, Apθ,pr is a
convenient normalisation constant, given as:

Apθ,pr :=

√
c(pθ)

R2πJ2
pθ+1

(µpθ,pr )
,

where c = 1 if pθ = 0, and 2 otherwise. The double
index in the expression in Wp reflects the fact that, for the
pth membrane mode, two modal indices pr, pθ (radial and
angular) are necessary to specify the mode. Note as well
that, in the expression for Wp above, modal degenerancy
is encoded as a double trigonometric function within the

curly brackets. Furthermore, µpθ,pr represents the prth
zero of the Bessel function of the first kind Jpθ . Inserting
the modal expansions in (6a) and (6b) using dx = rdrdθ,
the integrals may be computed directly, yielding:

Hu =
ϱ

2
ȧ⊺ ȧ+

1

2
a⊺ Aa, (10a)

Hw =
ρ

2
ḃ⊺ ḃ+

1

2
b⊺ Bb. (10b)

Note that the dot notation is used for indicating total time
derivatives in the modal domain, replacing partial differ-
entiation in the time domain. Above, A, B are positive,
diagonal matrices containing the eigenvalues of the wire
and the membrane, respectively, in ascending order. These
are defined as:

[A]p,p := T
(pπ
L

)2
, [B]p,p := P

(µpθ,pr

R

)2
. (11)

A discretisation of (6c) is also required. As a result of
the nonlinear character of ϕ, the integral cannot be com-
puted directly. Instead, the integral is evaluated on a grid
of points, as:

Hη ≈ L

M

M∑
j=0

ϕ(ηj), (12)

for a number of grid intervalsM to be specified later. Fur-
thermore:

ηj := w(zj , t)− u(zj , t), zj :=
jL

M
, (13)

see also Figure 1.

3.1 Energy quadratisation

In view of the SAV approach shown below, it is useful to
“quadratise” the nonlinear energy, such that

ψ :=
√

2Hη =

√√√√2L

M

M∑
j=0

ϕ(ηj). (14)

The total energy in the modal domain is thus given by:

H = Hu +Hw +
ψ2

2
, (15)

where Hu and Hw have the forms (10a), (10b) respec-
tively. Note that the total energy is a function of the modal
coordinates a,b only, and includes only quadratic terms.
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The modal equations can therefore be derived by differen-
tiating appropriately the expression of the energy accord-
ing to a,b. Thus:

ϱ ä = −Aa+ ψ∇aψ, (16a)

ρ b̈ = −Bb+ ψ∇bψ. (16b)

The time variation of the auxiliary variable is:

ψ̇ = (∇aψ)
⊺ ȧ+ (∇bψ)

⊺ ḃ. (17)

3.2 Hamiltonian formulation

System (16), along with the rate of change of ψ, can be
written compactly as an augmented Hamiltonian system:

q̇ = M−1p, (18a)
ṗ = −Kq− ψg, (18b)

ψ̇ = g⊺M−1p, (18c)

for the generalised coordinates q := [a⊺,b⊺]⊺ and mo-
menta p. The mass and stiffness matrices are given as:

M =

[
ϱ INu

0
0 ρ INw

]
, K =

[
A 0
0 B

]
, (19)

with IN being the N ×N identity matrix. Note that both
matrices are fully diagonal. Furthermore:

g := [(∇aψ)
⊺, (∇bψ)

⊺]⊺. (20)

Note that system (18) is linear in p, q, ψ, if g is assumed
known at all times. Here, g contains all the nonlinearities.
This is a key feature of the current formulation, allowing
to design the fast time-stepping formulation given below.
Before proceeding, it is worth writing the form of the en-
ergy in this formulation:

H =
1

2
p⊺M−1p+

1

2
q⊺Kq+

ψ2

2
. (21)

This expression is the same as (15), though given in terms
of the Hamiltonian coordinates and momenta, ψ being it-
self a function of q, via (14). System (18) is a compact
representation of the equations of motion (1), and lends
itself to an energy-stable and efficient time-stepping rou-
tine, which will be presented shortly. Output is extracted
by first calculating q (and, thus, a and b). Then, the phys-
ical displacement of the wire and of the membrane are
reconstructed at the desired locations via (8).

4. TIME DISCRETISATION

Time is now discretised along a time grid, with constant
time step k, via the time series qn, pn− 1

2 , ψn− 1
2 . These

are evaluated at the times tn := kn, tn− 1
2
:= k(n − 1

2 ),
where n ∈ N is the time index, and are to be consid-
ered approximations to the continuous solutions q(tn),
p(tn− 1

2
), ψ(tn− 1

2
). A discretisation of (18) follows as:

qn+1 = qn + kM−1pn+
1
2 , (22a)

pn+
1
2 = pn− 1

2 − k
2g

n

(
ψn+

1
2 + ψn− 1

2

)
, (22b)

ψn+
1
2 = ψn− 1

2 + 1
2 (g

n)
⊺ (

qn+1 − qn−1
)
. (22c)

Note that the nonlinearities, encoded in the vector g, are
computed at previous time steps, and can therefore be ex-
plicitly evaluated at all times. After a few algebraic ma-
nipulations, the update takes the form

Qnqn+1 = yn , (23)

where

Qn = I+ γn(κn)⊺,

yn = 2qn − 2kγnψn− 1
2 − (I− γn(κn)⊺)qn−1 .

The vectors γn and κn are defined in terms of gn by
γn = k

2M
−1gn and κn = k

2g
n. Thus, given qn, qn−1

and ψn− 1
2 , both Qn and yn are known. Once qn+1 is

computed, ψ is updated immediately via (22c). The sys-
tem matrix Q is dense, but invertible in O(Nu+Nw) oper-
ations using the Sherman-Morrison formula [13], yielding
compute times on par with those of simpler, yet unstable
designs such as Störmer-Verlet; see [8]. Furthermore, a
form of the discrete energy is conserved as:

H = 1
2

(
pn+

1
2

)⊺

M−1pn+
1
2+

+ 1
2 (q

n+1)⊺Kqn + 1
2

(
ψn+

1
2

)2

, (24)

clearly discretising (21). As opposed to the continuous-
time energy, though, a condition here arises for the non-
negativity of the energy overall. Following [8], this is
given as:

k ≤ 2

λmax

(
M− 1

2KM−T
2

) . (25)
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in terms of the largest system eigenvalue λmax. This is
easily related to the eigenfrequencies, and hence to the
eigenvalues of the wire and the membrane, given in (11),
fixing the upper limits Nu, Nw of the system’s modes.
When the energy overall is non-negative, stability ensues,
and thus (25) may be regarded as a sufficient condition for
stability.

The form of gn is analytic, as per (20). One only
needs to evaluate the continuous-time gradients at the time
t = tn. In component form, the analytic expressions of
the gradients are given by:

(∇aψ)p :=
LB

ψM

M∑
j=0

[ηj ]
α
+(−Up(zj)), (26a)

(∇bψ)p :=
LB

ψM

M∑
j=0

[ηj ]
α
+(Wp(zj)). (26b)

Note that these expressions should be set to zero when
ηj ≤ 0 ∀j. Finally, a question arises as how to select M ,
the number of grid intervals of the domain F . One option
is to divide F using the Courant–Friedrichs–Lewy (CFL)
condition for the wave equation [6], such that, for a given
time step k, one has

M ≈
√
ϱ

T

L

k
. (27)

The exact value ofM may be found by rounding the above
to the nearest integer.

5. NUMERICAL EXAMPLES

The extremely compact form of (22), combined with
its remarkable efficiency and provable stability, has led
to the real-time simulation of systems that were out-of-
reach with previous simulation designs, including the von
Kármán plate equations [11], the geometrically exact non-
linear piano string [9], and networks with thousands of
nonlinearly coupled degrees of freedom [10].

As an illustrative example, consider Figure 2 where
the wire is released from its first mode of vibration. Dur-
ing collision, energy is exchanged between the wire and
the membrane, and wavefronts appear on the surface of
the membrane. Note that the whole dynamics is here
solved explicitly, via (22), yet the resulting simulation is
stable in spite of the strong nonlinearity introduced by the
collision potential. A check of the numerical energy con-
servation is given in Figure (3), where the energy com-
ponents as well as the energy error are plotted, showing
conservation of energy to a very small value.

Figure 2. Snapshots of the wire-membrane interac-
tion. Here, the membrane has a radius R = 0.15 m,
ρ = 0.2 kg · m−2, P = 2000 N · m−1. The wire has
L = 0.2 m, ϱ = 1.6 · 10−3 kg · m−1, T = 30 N, and
yF = 5 cm (for the definition of yF , see Figure 1).
The wire is sitting 1 mm above the membrane in its
rest position. The collision parameters are selected
as B = 1010, α = 1.1. The system is initialised
in the wire’s first mode, with an amplitude of 2 mm.
Here, k = 1/(44100 · 5).
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Figure 3. Energy plots for the wire and membrane
of Figure 2. (a). Energy components (blue: kinetic;
red: linear potential; magenta: collision; black: to-
tal). (b). Energy error.

6. EXTENSIONS

Model (1) is too crude for realistic synthesis. Ideally, a
full-scale model should include the two membranes, the
air cavity coupling them, a whole set of snares rather than
just a single wire as here, an input force and of course
losses. These points are now addressed.

The inclusion of a set of snares is a trivial extension of
what was already presented here, and will not be discussed
further.

The inclusion of an input force may be done in two
ways: one is by adding a simple wideband signal in a
feedforward manner (as done in countless previous works
in sound synthesis [6]), and including tunable amplitude
and duration parameters; a second strategy is to model the
collision of the stick and the batter head using a collision
model analogous to the one employed here, for increased
accuracy and control.

The inclusion of a second membrane and the air cav-
ity could follow the development in [1] using finite dif-
ferences. In the modal domain, a complication arises as
the modes of the coupled membrane and air cavity are
not easily available in closed-form. An approach con-
sists of discretising in space the continuous equation using
finite differences, producing a basis of modal functions
via a generalised eigenvalue problem, as done in previous
works [14]. Arguably, the modes and related frequencies
would be affected by an error due to the numerical approx-

imation, casting doubts on the use of the modal approach
in this case. However, note that the eigenvalue problem
could be solved offline using a very fine mesh, attenuating
the effects of the numerical error. Only the modes satisfy-
ing the Nyquist requirements, as per (25), should be kept.

The modal domain is particularly attractive in that the
resonant frequencies as well as the modal decay times can
be finely tuned. Arbitrarily replacing the numerical eigen-
values with custom values following perceptual consider-
ations, or calibrated on measured responses would greatly
benefit the resulting synthesis. The same argument can be
made for the losses, responsible for a great deal of per-
ceptually meaningful features. The modal equation may
be further reduced by means of Reduced Order Models
(ROMs) [15], again building upon perceptual and physi-
cal considerations, considerably speeding up the synthesis
process.

7. CONCLUSIONS

This work presented a model for the nonlinear interaction
of a thin wire and a membrane by means of a one-sided
collision potential. An energy-consistent modal frame-
work was developed, allowing to write the resulting time-
dependent equation in a form amenable to an augmented
Hamiltonian system for which a fast, energy-stable simu-
lation routine exists as an application of the recent Scalar
Auxiliary Variable (SAV) method. The theoretical frame-
work was compounded by a numerical illustration, show-
ing the ability of the proposed method to solve the sys-
tem’s dynamics in a stable manner. Conditions for nu-
merical stability were given as a function of the system’s
eigenvalues. Extensions of the proposed model, necessary
for realistic synthesis, were discussed and are left as future
work.
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