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ABSTRACT

In this work, a number of numerical schemes are presented in the
context of virtual-analog simulation. The schemes are linearly-
implicit in character, and hence directly solvable without iterative
methods. Schemes of increasing order of accuracy are constructed,
and convergence and stability conditions are proven formally. The
schemes are able to handle stiff problems very efficiently, because
of their fast update, and can be run at higher sample rates to reduce
aliasing. The cases of the diode clipper and ring modulator are
investigated in detail, including several numerical examples.

1. INTRODUCTION

The design of effective numerical integrators for audio rendering
requires a balance between accuracy and efficiency, alongside the
overriding constraint of stable operation. In virtual-analog simu-
lation of electronic circuits, established designs, such as the trape-
zoid or the midpoint methods [1, 2] are preeminent. These meth-
ods have the virtue of simplicity and robustness: in particular, they
have the interpretation of a bilinear transform under linear condi-
tions, in the frequency domain [3].

The trapezoid method underlies Wave Digital Filters (WDF)
[4] guaranteeing passivity in the discrete case for linear systems.
Wave-based methods have been extended to include many nonlin-
ear systems, see e.g. [5, 6, 7, 8], as well as general linear multistep
integrators with variable step size [9].

Kirchhoff-domain methods include Port-Hamiltonian Systems
(PHS) [10, 11]. These are a generalisation of Hamiltonian systems
including energy storage components, dissipative components, and
connection ports. They have the property of preserving passivity in
the discrete setting, when discretisation is performed via the quo-
tient method [12], which is a type of implicit numerical method.
State-space models are also prominent [13, 14, 15].

For nonlinear systems, most passivity-preserving numerical
integrators require the solution of a system of algebraic nonlinear
equations at each time step. This is usually accomplished itera-
tively, via suitable algorithms such as Newton-Raphson. While
the implementation of algebraic root-finders poses little difficulty
in theory, the questions of existence and uniqueness of the update,
as well as that of tolerance thresholds present problems of their
own which do require some care [16]. For example, while these
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methods are formally second-order accurate, the convergence rate
could be impacted by too low a tolerance threshold. For the same
reason, numerical instability can occur.

The question of accuracy may be approached in terms of order-
accuracy; higher-order accurate schemes have faster convergence
rates. Standard convergence rates hold in the low-frequency limit,
but for the purpose of rendering high-quality audio, one is usu-
ally interested in wideband numerical behaviour. First-order accu-
rate schemes were shown to be less prone to spurious oscillations
than the trapezoid rule, for high input voltages in the diode clipper
[17]. Control over numerical bandwidth expansion (aliasing) is
also of prime importance for audio applications, and higher-order
schemes may not have better behaviour in this respect.

In this work, the possibility of exploiting non-iterative schemes
for state-space models is explored. A number of schemes is pre-
sented, such that the update can be computed explicitly, without
iterative methods, though requiring the solution of a linear system.
Methods of this kind are said to be linearly- (or semi-) implicit
[18, 19]. A family of schemes of increasing order of accuracy is
constructed. A scheme, formally first-order accurate, is presented.
The scheme is unconditionally stable, non-iterative, and capable
of reducing aliased frequencies in amplitude. A number of nu-
merical tests, using both Matlab and C++ implementations, show
that the non-iterative schemes compare favourably to trapezoid and
midpoint, in that they can run at higher rates with reduced alias-
ing, including input/output resampling, whilst using roughly the
same amount of CPU resources. Such methods have the additional
advantage of sidestepping the machinery of iterative methods (in-
cluding design choices such as the maximum number of iterations
and tolerance).

The article is structured as follows. In Section 2, non-iterative
schemes are introduced, and formal proofs of accuracy, stability
and convergence are given. The properties of the trapezoid and
midpoint methods are also outlined, and stability conditions given
for cases of interest in virtual-analog. Section 3 presents the case
of the diode clipper, described by a single stiff differential equa-
tion, and in Section 4 the more involved case of the ring modulator
is presented. Numerical examples are presented throughout.

2. PRELIMINARIES

Consider first a basic scalar test problem of the form

dx

dt
= −f(x) x(0) = x0 (1)

This equation is zero-input and nonlinear but autonomous (so that
the dependence of the nonlinear function f on time is through its
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argument x(t) only, and not on any externally supplied control sig-
nal). It describes the time evolution of a time-dependent quantity
x (such as e.g. voltage in a virtual analog application), and is ini-
tialised with x(0) = x0. Existence and uniqueness of the solution
to (1) are guaranteed under the assumption of Lipschitz continuity
for f [1]. Furthermore, the function f is further assumed to satisfy
the following conditions:

sign(x) = sign(f(x)) (2a)
for ϵ small, there exists M : |f(x)/x| < M, for |x| < ϵ (2b)

f ′(x) = df/dx ≥ 0 (2c)

The first condition is referred to as sector-boundedness, here to
sector [0,∞], the usual condition for passivity; the second condi-
tion enforces boundedness of f/x at the origin; the third condition
(typical for virtual-analog systems) expresses monotonicity of f .

2.1. Finite Difference Schemes

Equation (1) will be integrated numerically using a time-stepping
method with constant time step k (in seconds, with associated sam-
ple rate fs = 1/k). Here, the notation for the time step is borrowed
from [1], as opposed to the h notation presented in other textbooks
such as [2]. Since k will never be used to denote an index, this
should not generate confusion. The continuous function x(t) is
approximated by a time series xn at times tn = kn for integer n.
The error En at time step n is defined as

En ≜ xn − x(tn) ̸= 0 (3)

Definitions of time difference and averaging operators are given
here as

δ+x
n =

xn+1 − xn

k
, µ+x

n =
xn+1 + xn

2
(4)

Similar definitions hold when the operators are applied to the func-
tion f , rather than on x itself, so that

µ+f
n =

fn+1 + fn

2
where fn ≜ f(xn) (5)

2.1.1. Trapezoid method

A standard integrator is obtained by applying trapezoidal integra-
tion of (1) on the interval tn ≤ t ≤ tn+1, yielding

δ+x
n = −µ+f

n (6)

This is a one-step method, belonging to the more general family
of implicit Adams-Moulton methods, i.e. a class of linear multi-
step methods [1]. Detailed analysis of accuracy, convergence and
stability of scheme (6) are given in many textbooks on numerical
integration, see e.g. [1, 2], and are briefly recalled here. In par-
ticular, the method is second-order accurate, i.e. |En| = O(k2).
Since the global error is bounded, the method is, in general, zero-
stable (see e.g. [1] for a definition of zero-stability), and therefore
convergent for sufficiently small k. Because f here also satisfies
conditions (2a) and (2b), scheme (6) is in fact unconditionally sta-
ble. To see this, one expands out the operators in (6) to get

xn+1 = xn − k

2

(
fn+1 + fn) (7)

Now, define α = (k/2)(f/x). From the above, one has(
1 + αn+1)xn+1 = (1− αn)xn (8)

Given x̄n = xn (1 + αn), one gets

x̄n+1 =
1− αn

1 + αn
x̄n (9)

But, because f is sector-bounded to [0,∞], one has α ≥ 0, and
hence |x̄n+1| ≤ |x̄n|, and the solution decays monotonically in x̄.
Because |x| < |x̄|, the solution remains bounded in |x|.

Due to its stability properties and simple design, the trapezoid
method is a popular choice for nonlinear systems such as those en-
countered in state-space models, see e.g. [13]. The main drawback
is its fully implicit character, requiring the solution of a nonlinear
algebraic equation at each time step (in this case (7)). In general,
a root-finding algorithm such as Newton-Raphson will be neces-
sary. This results in various well-known practical difficulties, in-
cluding the problem of choosing an appropriate threshold in the
root-finding algorithm, a maximum number of iterations to pre-
clude stalling, as well as the undesirable characteristic of variable
operational cost at each time step, due to variations in the number
of iterations required [16].

2.1.2. Midpoint method

Another popular integrator is given by the midpoint method,

δ+x
n = −f(µ+x

n) (10)

Like the trapezoid method, this scheme is second-order accurate,
i.e. |En| = O(k2). In general, this method is zero-stable, but
owing to the sector-boundedness property (2a), it is in fact uncon-
ditionally stable. This is proven easily by multiplying both sides
of (10) by µ+x

n, to get

δ+(x
n)2/2 = −f(µ+x

n)µ+x
n ≤ 0 (11)

The midpoint rule also requires the solution of a nonlinear alge-
braic equation at each time-step. Under linear conditions, both the
trapezoid rule and midpoint rule have the interpretation of a bilin-
ear transformation in the frequency domain.

2.1.3. Non-iterative schemes

Since (2b) ensures boundedness of f near the origin, it is natural to
attempt to evaluate the nonlinear function at the time step n, whilst
maintaing a semi-implicit realisation via multiplication by the fac-
tor µ+x

n/xn. Thus, consider the following family of schemes,
approximating (1):

(
1 + σn

p

)
δ+x

n = −fn

xn
µ+x

n (12)

Here, σn
p = σn

p (k) is a coefficient depending on the current time-
step n, as well as on an order p. The coefficient σp may be chosen
so that scheme (12) satisfies increasing orders of accuracy. This
technique has strong links to the modified equation methods, such
as the ones presented in [20]. Using Taylor series arguments, one
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can work out expressions for σn
p as (see also Appendix A):

σ1 = akf ′ (13a)

σ2 =
k

2

(
f ′ − f

x

)
(13b)

σ3 = σ2 +
k2

12

(
(f ′)2 − 2ff ′′) (13c)

σ4 = σ3 +
k3

24
f2f ′′′ (13d)

In (13a), a ≥ 0 is a free parameter. In these schemes, the nonlinear
functions are evaluated at previous time-steps, hence the update
may be computed simply as

xn+1 =
1− βn

p

1 + βn
p

xn, with βn
p =

k

2

(fn/xn)

1 + σn
p

(14)

Methods of this kind are sometimes referred to as semi-implicit
or linearly-implicit methods [18, 19], in that the implicit update is
linear in xn+1. In the vector case, such as in the ring modulator
below, this translates to the solution of a linear system per update.

Using standard arguments, such as those presented in Appendix
A, one may demonstrate that |En| = O(kp). Hence, the schemes
are pth-order accurate, zero-stable and convergent in the limit k →
0. See Figure 1 for a demonstration of order of accuracy for these
schemes in the case of a cubic nonlinearity. Stronger forms of sta-
bility, allowing for stable computations with a given value of k,
rather than just in the limit k → 0, can be given. Stability con-
ditions follow immediately from a cursory examination of (14): if
βp ≥ 0 (i.e. when 1 + σp > 0), then the numerical solution is
monotonically non-increasing at all time steps. By virtue of con-
ditions (2), one has σ1 ≥ 0 and therefore the first-order accurate
scheme is unconditionally stable. If f ′ ≥ f/x, then σ2 ≥ 0 and
therefore the second-order accurate scheme is also unconditionally
stable in this case. Similar sufficient conditions can be checked for
the higher-order schemes, and this can be done on a case-by-case
basis.

Figure 1: Global error |En| using a cubic nonlinearity, as a
function of sample rate. Here f(x) = x3, and x(t) =(
2t+ x−2

0

)−1/2 sign(x0). Here, x0 = 1.3, and the error is com-
puted at t = 0.2 s. For the trapezoid and midpoint rules, Newton-
Raphson is used for the update, with a tolerance threshold set at
10−15.

2.2. Sources

In the examples below, (1) will be modified to include a time-
dependent source term as follows

dx

dt
= −f(x) + u(t) (15)

In the discrete setting, in order to preserve the order of accuracy to
at least second-order, one may approximate the source term as

u(tn) → µ+u
n (16)

A stability analysis including the source term may be carried out,
though it is not shown here for brevity.

3. CASE STUDY: DIODE CLIPPER

Outside of its relevance in the context of virtual-analog simula-
tion, the diode clipper is particularly interesting from a numerical
standpoint. Explicit numerical designs (such as e.g. Forward Eu-
ler, or the Runge-Kutta RK4 scheme) are known to fail here, un-
less the time step is chosen to very small values compared to the
timescales of the computed solution [19]. The differential equa-
tion is stiff in this case, as the exponentially-unbounded nonlinear-
ity accounts for a fast variation in the transients of the computed
solution. For these reasons, the diode clipper is used extensively
as a test case for numerical designs. Yeh et. al. [19] tested sev-
eral classic numerical integrators; Werner et. al. [7] presented a
WDF realisation; Falaize and Hélie [10] presented a PHS discreti-
sation; Fontana and Bozzo [16] investigated the system in terms of
basins of attraction for Newton-Raphson; Holters [21] presented
an antiderivative-antialiasing scheme; Parker et. al. [15] turned to
neural networks.

Following e.g. [19], a model, comprising input, is given in the
form (15), where

f(x) =
x

RC
+

2Is
C

sinh

(
x

vt

)
, u(t) =

v(t)

RC
. (17)

Here, v(t) and x(t) represent, respectively, the input and output
voltages. Constants are given as: resistance R = 103 Ω, capac-
itance C = 3.3 · 10−8 F, saturation current Is = 2.52 · 10−9 A
and thermal voltage vt = 2.6 ·10−2 V. Here, f(x) clearly satisfies
conditions (2). Furthermore, in this case f ′ ≥ f/x, and hence the
second-order non-iterative scheme is also unconditionally stable.

3.1. Numerical Experiments

As a first experiment, consider Figure 2. The schemes are run
using an input of the form of a sinusoid of increasing amplitude.
The waveforms present in all cases comparable errors. Yeh et al.
[19] observed that low-order methods are sufficient for the purpose
of rendering audio signals, and this observation is confirmed here.

The bandwidth expansion due to the stiffening nonlinearity is
visible in Figure 3. The figure presents the output spectrograms
to an input linear sine sweep with constant peak amplitude. One
observes that lower-order schemes perform somewhat better in
this respect, with some evident aliasing taking place for the third
and fourth-order accurate schemes. It is known that anti-aliasing
can be achieved with the use of antiderivatives of the nonlinear-
ity [22, 23, 21]. Here, higher-order schemes work in the opposite
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Figure 2: Diode clipper. Response to an input sinusoid. Here, the
input is v(t) = v0 sin(1000πt), with v0 as indicated in each panel.
Simulations are run at 4X audio rate, and the error is computed as
the difference between each simulation, and a 100X oversampled
solution. Trapezoid integration is solved using Newton-Raphson
with tolerance threshold 10−15. Colour scheme: trapezoid (solid
black), p = 1, a = 1 (blue, dash-dotted), p = 3 (solid grey),
p = 4 (dashed magenta). Resampling to audio rate is achieved by
means of a 12th order Butterworth filter, with normalized cutoff
frequency 0.8π.

sense, through the use of higher derivatives of the nonlinear func-
tion, leading presumably to the increased effects of aliasing with
order. Furthermore, higher order schemes have a higher frequency
bandwidth and the lack of information of sampled discrete time-
stepping yields aliasing of the high-frequency spectrum (indeed,
sampling the exact solution x(t) would also lead to aliasing.)

Sound examples are available at [24], and Matlab sample code,
illustrating the use of the non-iterative scheme p = 1 in the diode
clipper case, is given in Appendix B.

The performance of the schemes depends on a number of fac-
tors. For the iterative schemes, one needs to decide on an appro-
priate tolerance threshold to exit the iterative loop. Generally, one
wishes to compute a solution with sufficient accuracy, while avoid-
ing an excessive number of iterations. Because the stiffening of the
system due to the nonlinearity will result in a higher number of it-
erations, one must be careful when setting an upper bound on the
number of iterations. On the other hand, the non-iterative schemes
work at a fixed, predictable cost per time step.

For the new designs presented here, a higher oversampling
factor is generally required, under stiff conditions, to reduce alias-
ing. However, given the simplicity of the update, it may still be
cheaper to use the oversampled non-iterative schemes, including
resampling, than the iterative schemes at audio rate, particularly
for systems requiring linear system solves at each iteration, such
as the ring modulator below. Leaving aside the cost of resampling,
one may argue that the non-iterative schemes p = 1, p = 2 re-
quire roughly the same number of operations per time-step as the
iterative schemes need per iteration—that is, two nonlinear func-
tion calls, and a similar amount of multiplies and divides. It is
appropriate, then, to run the non-iterative schemes at higher rates,

Figure 3: Diode clipper. Response spectrograms for a linear sine
sweep, v(t) = sin(γ0t

2). Trapezoid and midpoint are run us-
ing Newton-Raphson with tolerance threshold 10−15, at 2X audio
rate. The non-iterative schemes are run at 4X audio rate. Sound
examples available at [24].

and to compare the performances of these against the trapezoid
and midpoint methods. Considering now Figure 4, it is seen that
the iterative schemes require an average of about 5 or 6 iterations
at audio rate. It was decided then to run the non-iterative schemes
at an oversampling factor of 4.

The role of the free parameter a in (13a) may be better un-
derstood by inspection of Figure 5: choosing a higher value will
result in lower aliasing overall, as well as higher low-pass filter-
ing. In general, one wishes to work at higher rates here, in order
to avoid too steep a roll-off at frequencies of interest in the high
range, though one may compensate by equalising the output ac-
cordingly.

4. CASE STUDY: RING MODULATOR

The purpose of this section is to test the non-iterative schemes in
the case of a system of nonlinear equations. A mathematical model
of the system was given in [25]. Similarly to the diode clipper, the
ring modulator was treated in several works, see e.g. [26, 27, 9,

DAFx.4



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

Figure 4: Diode clipper. Iterations of Newton-Raphson. Response
to input sine, v(t) = 4 sin(1000πt). The trapezoid and midpoint
methods are run at an audio rate, using Newton-Raphson with tol-
erance threshold 10−15.

Figure 5: Diode clipper. Response to linear sine sweep, v(t) =
sin(γ0t

2), illustrating the role of the free parameter a in (13a).
Simulations are run at 4X audio rate. Resampling to audio rate is
achieved by means of a 12th order Butterworth filter, with cutoff
frequency 0.8π. Colour scheme: trapezoid (black), midpoint (red),
p = 1, a = 2.0 (grey), p = 1, a = 4.0 (blue).

16]. The system may be written compactly as

dx

dt
= −Bx−Df(w) +Hmvm(t) (18)

where

B =

[
C−1R −C−1T
L−1T⊺ 0

]
, D =

[
C−1A 0

0 0

]
, (19)

Here, x = [q⊺, i⊺]⊺. The vector q = [q1, q2, q3]
⊺ contains state

voltages, and the vector i = [i1, i2]
⊺ contains state currents. The

output is y = q2. In (18), the linear part has been separated out
from the nonlinearity, for ease of notation, but one should eas-
ily recognise that (18) is the vector equivalent of (15), with input
um = Hmvm(t). The matrices are composed of constant coeffi-
cients from the circuit resistors, capacitors and inductors, and are
as: C = diag([C0, C0, Cp]); R = diag([1/RM , 1/RA, 1/RI ]);
Hm = [1/C0RM , 0, 0, 0, 0]⊺, L = diag([L0, L0]). Moreover,

A =
1

2

 1 −1 1 −1
−1 1 1 −1
−2 −2 2 2

 , T =

1 0
0 1
0 0

 (20)

The vector f = [f(w1), f(w2), f(w3), f(w4), 0]
⊺ includes the

nonlinear current-voltage relationships depending on the voltages
w = [w1, w2, w3, w4, 0]

⊺, defined as

w = Sx+Hcvc(t) (21)

where

S =

[
A⊺ 0
0 0

]
, Hc = [−1,−1, 1, 1, 0]⊺ (22)

Finally, vc(t), vm(t) are the carrier and modulator input voltages.
Here, the nonlinear current-voltage relationships are given by the
Shockley diode equation, i.e.

f(w) = Is
(
ew/vt − 1

)
(23)

which clearly satisfies conditions (2). It is remarked that the vec-
tor f containing the nonlinearities is here composed of four scalar
nonlinearities depending on a single scalar input, and hence con-
ditions (2) may be checked easily componentwise.

Constants are given as: Is = 40.63 ·10−9 A, vt = 5.63 ·10−2

V, C0 = Cp = 10−8 F, L0 = 0.8 H, Ra = 600 Ω, Ri = 50 Ω,
Rm = 80 Ω.

4.1. Finite Difference Schemes

The numerical schemes used here are an extension to the vector
case of the schemes presented above. In the zero-input case, the
trapezoid and midpoint methods are obtained as, respectively,

δ+x
n = −Bµ+x

n −Dµ+f
n (24a)

δ+x
n = −Bµ+x

n −Df(µ+w
n) (24b)

Only the first and second-order non-iterative methods will be con-
sidered here. They read(

1+ σn
p

)
δ+x

n = −Bµ+x
n −DFwµ+w

n (25)

where

σ1 = ak
(
DF′S+B

)
, σ2 =

k

2
D
(
F′ − Fw

)
S (26a)

Fw = diag
(

f

w

)
, F′ = diag

(
df

dw

)
(26b)

The first-order non-iterative method is unconditionally stable (for
a ≥ 0), because the eigenvalues of the matrix σ1 are non-negative.
For σ2, a condition on k arises formally (not shown here for brevity),
though practically it is met using reference time steps. Hence, both
schemes can be treated as absolutely stable.

For all schemes, the modulator and carrier source terms can be
approximated as, respectively, Hmµ+v

n
m, Hcµ+v

n
c .

Though these schemes have been written compactly as 5 × 5
systems, it is convenient to reduce the size of the update by ex-
pressing the currents in terms of the voltages. For all schemes this
is accomplished as

in+1 = in − kL−1T⊺µ+q
n (27)

One can then work with the voltages q alone, thus reducing the
size of the implicit update to 3× 3.

4.2. Numerical Experiments

The responses to sine sweeps are visibile in Figures 6 and 7. Note
that the non-iterative schemes are here run at higher rates, since the
comparison here is drawn according to compute times: all simula-
tions take roughly the same time to run in C++, as detailed below
and seen in Figure 8. Clearly, the non-iterative schemes present
much lower aliasing than trapezoid and midpoint.
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Figure 6: Ring Modulator. Response spectra to linear sine sweep,
vm(t) = sin(γ0t

2). The carrier input is vc = 0.2 sin(1000πt).
Sample rate as indicated in brackets. Sound examples available at
[24].

Figure 7: Ring Modulator. Response spectra to linear sine sweep,
vm(t) = sin(γ0t

2). The carrier input is vc = 0.2 sin(2000πt).
Sample rate as indicated in brackets. Sound examples available at
[24].

Figure 8: Ring Modulator. C++ compute times for one second of
output. Here, the carrier is vc(t) = max (vc) sin(2000πt). The
modulator input is vm = sin(2000πt). Colour scheme: trapezoid
at audio rate (red), trapezoid at 2X audio rate (black), p = 2 at
4X audio rate (green). Linear systems are solved using Gaussian
elimination, and resampling time is included. For trapezoid at 2X,
14 ms are attributed to resampling, while for p = 2, 22 ms are
attributed to resampling.

Most importantly, the run times of the non-iterative schemes
are insensitive to stiffness, as visible in Figure 8. As pointed out
previously, whilst both trapezoid and midpoint will require more
iterations per time step as the input carrier amplitude is increased,
the non-iterative schemes will always operate at the same cost.
This is a particularly important aspect in view of any real-time
application requiring a precise allocation of CPU resources.

Here, real-world C++ performance of two versions of the ring
modulator system are compared, i.e. the trapezoid method and
p = 2. The first uses the Newton-Raphson iterative method and
runs at an audio rate of 44.1kHz. The second runs at four times the
rate, 176.4kHz. This requires both up-sampling of the input signal
and down-sampling of the output, which is included in the testing.
The CPU time was measured to run each system for 1 second of
audio rate output, so 44100 time-steps for the iterative version and
176400 time-steps for the non-iterative.

A brief description of the algorithms in terms of their com-
putations at each time-step is given here. The calculations are pre-
dominately algebraic, with the exception of calls to the exponential
function. It is a vector system with a state size of three elements, so
the calculations consist of additions and multiplications on small
vectors and matrices. There is also a linear system solve on a 3×3
matrix, which is performed using a simple Gaussian elimination.
For the iterative version, the steps are:

1. Update the current state using six vector multiplications and
additions, and a matrix by vector multiplication.

2. Perform Newton-Raphson iterations of:

(a) Set up a 3 × 3 matrix M using a matrix by vector
multiplication, and two matrix by matrix multiplica-
tions.

(b) Linear system solve on M.
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(c) A further matrix by vector multiplication, and three
calls to the exponential function std::exp().

(d) Find the maximum absolute value of a vector, and
check the tolerance level.

3. Update the voltage vector, and read the output.

The non-iterative version uses similar calculations, but in a single
pass:

1. Update the current state using six vector multiplications and
additions, and a matrix by vector multiplication.

2. Three calls to the exponential function std::exp().

3. Set up the 3 × 3 matrix M as above but using two extra
matrix additions and matrix by vector multiplications.

4. Linear system solve on M.

5. Update the voltage vector, and read the output.

There is also the up-sampling and down-sampling at either end
of the algorithm. For this testing a 12thorder IIR low-pass filter
was used. The C++ codes were compiled using Clang with -O3
optimisation level, and it was noted that the compiler was not able
to auto-vectorize any elements of the code. The executables were
run on a Mac mini M1, giving the timings plotted in Figure 8.
For the non-iterative version, 22ms of the computation time was
attributed to the re-sampling code. This testing shows that the non-
iterative scheme can be run at 4X the sample rate of the iterative
version for the same level of computational cost, achieving a large
reduction in aliasing artefacts.

5. CONCLUSIONS

In this work, non-iterative schemes of increasing order of accu-
racy were offered, and their performance compared to standard
integrators such as the trapezoid and midpoint methods. These
schemes, linearly implicit in character, require the solution of a
single linear system per update, in contrast to trapezoid and mid-
point for which Newton-Raphson is generally required. It was
shown that, whilst the convergence properties of the schemes fol-
low the expected trends, higher-order schemes are somewhat less
suited for the purpose of rendering wideband audio. Furthermore,
for higher-order schemes stability conditions can only be checked
on a case-by-case basis. On the other hand, a particular form of the
non-iterative schemes was given here: whilst formally first-order
accurate, this scheme is always unconditionally stable and thus it
preserves the passivity of the continuous system. A free parameter
can be adjusted in the scheme to control the amount of low-pass
filtering induced by the scheme, thus reducing aliased artefact very
efficiently. Whilst this scheme must usually be run at higher rates,
compared to trapezoid and midpoint, it is generally as efficient,
even when the cost of resampling of the input/output is included.
Furthermore, this scheme has the advantage of always running at
the same cost, thus avoiding design choices such as the maximum
number of iterations and tolerance. Extensions to the multivariate
vector case (i.e. where the nonlinearity is composed of multivari-
ate nonlinear functions), as well as further investigations on the
role of the free parameter a, will be the subject of future work.
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A. PROOF OF ORDER-ACCURACY

Consider the solution x(t) to (1). The location truncation error τn

is obtained by applying scheme (12) to x(t), i.e.(
1 + σn

p

)
δ+x+

f

x
µ+x = τn

p (28)

Taylor-expanding about tn = kn, for small k, yields

τp =

(
p−1∑
m=0

km

(m+ 1)!

dm

dtm

)(
dx

dt
+ f

)
+O(kp) (29)

It will now be shown, using a standard proof (see e.g. [1]), that
the global error En for the non-iterative scheme (12), as defined
in (3) respects the same order of accuracy as the local truncation
error τn, as given in (29). To do so, one subtracts (28) from (12),
to get

En+1 = En−(k+O(k2)) (f(xn)− f(x(tn)))+(k+O(k2))τn
p

Then, one takes absolute values on both sides, and using the trian-
gle inequality on the right-hand side, one gets

|En+1| ≤ |En|+ k |f(xn)− f(x(tn))|+ k|τn
p | (30)

Because f is Lipschitz-continuous, one has

|f(x)− f(y)| ≤ L|x− y| (31)

Here, L ≥ 0 is the Lipschitz constant, and x, y ∈ dom(f). Owing
to Lipschitz-continuity of f , one gets

|En+1| ≤ |En|(1 + kL) + k|τn
p | (32)

By induction, one may show from here that

|En| ≤ (1 + kL)n|E0|+ k

n∑
r=1

(1 + kL)n−r|τr−1
p | (33)

(note that, in the above, some apexes are indices whilst some others
are exponents!). Furthermore, one has

(1 + kL)n−r ≤ e(n−r)kL ≤ enkL = eLtn (34)

Assuming now that E0 = 0 (because the method is self-starting,
so no error is made in the initial step), one may finally bound the
error as

|En| ≤ tne
Ltn

(
maxr∈[0,n−1]|τr

p |
)
= O(kp) (35)

This proves that the global error is bounded in k, so that scheme
(12) is at least zero-stable, and therefore convergent for a small
enough k.

B. MATLAB SAMPLE CODE

%+++++++++++++++++++++++++++++++++++
% Diode Clipper
% p = 1 non-it scheme
%+++++++++++++++++++++++++++++++++++

clear all
close all

%+++++++++++++++++++++++++++++++++++
% custom parameters
base_fs = 44100; %-- base fs
T = 0.01 ; %-- time
OFNIT = 1 ; %-- oversampling
Is = 2.52e-9 ; %-- sat curr
vt = 26e-3 ; %-- th volt
C = 33e-9 ; %-- cap
R = 1e3 ; %-- res
AmpV = 1; %-- input amp
sinF = 200 ; %-- input freq
a = 2.0 ; %-- free param.
%+++++++++++++++++++++++++++++++++++
% derived parameters
fs = base_fs*OFNIT ;
k = 1 / fs ;
Ts = floor(T*fs) ;
tv = (0:Ts-1).’/fs ;
vi = AmpV*sin(sinF*2*pi*tv) ;
c1 = 1/R/C;
c2 = 2*Is/C;
c3 = c2/vt;
c4 = 1/vt ;
%+++++++++++++++++++++++++++++++++++
% init
outNIT = zeros(Ts,1) ;
x = 0.00 ;
%+++++++++++++++++++++++++++++++++++
% main loop
for n = 2 : Ts

vin = c1*vi(n) ;
xvt = c4*x ;
sh = sinh(xvt) ;
ch = sqrt(1 + sh * sh) ;
f = x*c1 + c2*sh ;
fx = c1 + c2*sh/x ;
if abs(x) < 1e-13

fx = c1 + c3 ;
end
fp = c3*ch + c1;
sigma = q*k*fp ;
x = ((1+sigma)*x-0.5*k*f+k*vin)/(1+sigma+0.5*k*fx) ;
outNIT(n-1) = x ;

end
%+++++++++++++++++++++++++++++++++++
% plot
plot(tv,outNIT);
grid on;
xlabel(’t (s)’) ; ylabel(’x (V)’)
%+++++++++++++++++++++++++++++++++++
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