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1 INTRODUCTION

The numerical simulation of acoustic instruments and devices is a growing subject of research.! Applications
range from model-aided instrument making,>™ to virtual instrument and effect design,®° to virtual reality ap-
plications.'®!! A faithful reproduction of the underlying system may be realised via signal-based analysis and
resynthesis,!? starting usually from a recorded sample. Model-based synthesis,®!*> on the other hand, allows to
reproduce the dynamics of common objects such as strings, bars and plates by setting a few physically meaningful
parameters feeding a mathematical model. The latter allows far greater flexibility in terms of control and design,
but often lacks the realism of the former. This work investigates the possibility of tuning a physical model using
experimental data. The system considered here is a cantilever metal plate struck with a hammer. The physical
model is derived from a modal decomposition of the Kirchhoff plate equation.'* A preliminary estimate of the un-
known plate’s rigidity constant is carried out first, via the measurement of the first eigenfrequency. Then, the finite
difference scheme is used to solve the eigenvalue problem over a fine grid with the computed rigidity constant,
and the modal shapes are then stored along with the modal frequencies. Experimental data are collected from a
laboratory experiment, and a comparison of the experimental frequencies against the model’s eigenfrequencies is
carried out. The modal equations obtained from the difference scheme are then adjusted to compensate for the
errors in the eigenfrequencies. Experimental decay times are also implemented in the scheme. Tuned numerical
impulse responses at three different combinations of input and output locations are then computed and compared
to the experimental responses, showing a high degree of accuracy.

The paper is organised as follows. Section 2 presents the thin plate equation, as well as the finite difference
scheme used to obtain the numerical eigenbasis of a cantilever plate. Section 3 details the experimental setup to
obtain the plate’s frequencies and decay times. Finally, in Section 4 the output spectra of the finite difference
scheme are compared against the experimental ones.

2 MODELS

The Kirchhoff equation provides a model for the dynamics of a thin plate. In the presence of losses and sources,
this is:

0%u(x,t) ou(x,t)

ot? ot

In the above, u : R? x R — R is the displacement of the plate, a function of the Cartesian coordinates x = (z,y) €
V :=[0,L;] x [0, L,] as well as time ¢ > 0. Constants appear as: p, the volume density of the plate; L, L,, L,
the dimensions of the plate along =,y and z, with L, < L,, L,; o, a loss factor; D, the rigidity of the plate,
defined as:

oL, = —DAAu(x,t) — 2pL.0 +0(x —xp) f(1). M

EL?

Di=—=
12(1 - 12)’

2

where E is Young’s modulus, and v is Poisson’s ratio. Furthermore, AA is the biharmonic operator, and f(¢) is
an external input acting pointwise at X ;.
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Figure 1: Left: representation of the biharmonic coefficients at the internal grid point (I, m) (all coefficients are
scaled by h—*). Right: the creation of the state vector u(t) by stacking consecutive strips of grid points.

The model is completed by a set of suitable boundary conditions, given here for the cantilever case; that is, a
free plate with one clamped edge. Thus:

u=0,u=0 at{y=0,z¢€l0,L,]}, (3a)
A3u A3u 0%u 0%u

where 7, 7 denote the perpendicular and tangential directions to the boundary, respectively.

2.1 Spatial Discretisation

A solution to (1) will be sought in the modal domain. The modes are not available in closed-form for the cantilever
case, and will thus be obtained by solving a numerical eigenvalue problem. To that end, consider a finite difference
approximation of the displacement: the continuous function u(x, t) is approximated by a grid function u; ,, (¢), at
the grid locations (lh, mh), where 0 < [ < N,, 0 < m < N, and where h is the grid spacing. Thus, the problem
is discretised on a (N, + 1) x (N, + 1) grid of points.

It is convenient to stack strips of points, so that the u; ,,,(¢) becomes the column vector u(t) of length (N, +
1)(Ny + 1). Thus, the continuous biharmonic operator AA is approximated by a matrix B of dimensions (N, +
1)(Ny + 1) x (Ng + 1)(N, + 1), see Figure 1 for a pictorial representation. The delta function in (1) becomes
itself a vector via Lagrange interpolation, denoted here J, see Bilbao.® The semi-discrete Kirchhoff equation, thus,
becomes:

pL.u=—-DBu—2pL.cu+ J(x5)f(1). 4)

One has:
B:=QAQ !, (5)

where Q is the matrix of numerical eigenvectors, and A is a positive diagonal matrix of eigenvalues.
Hence, left-multiplying the above by Q! /pL. yields:

. . 1
U=-9%°U-2CU + TQ—lJf(t), (6)
pL-
where U := Q™ !u is here a vector of modal coordinates, [2],, := p%[\/ A, = w, is a diagonal matrix

of eigenfrequencies, and C is a diagonal matrix of loss coefficients, [C], , := o}, replacing the global damping
coefficient o in (1). These are related to the more common decay times 7(°9) by:

op = 3log(10) (7156(’))71 . 7)
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Here, 7(69) denotes the 60 dB decay time. The modal system above is completely diagonal, as expected for a linear
problem. In this work, the damping ratios o, and the resonant frequencies w,, will be obtained experimentally, and
the output of the modal system (6) will be computed and compared to the experimental results. Since impulse
response will be considered, one may set f(t) := 0(t — o).

Once the time evolution of the modal coordinates is computed, one may reconstruct the physical output at the
desired location x,, via:

u(x,,1) = h2JT(x,)QU(t). 8)

2.2 Time discretisation

System (6) can be integrated in time using the leapfrog scheme.® To that end, the continuous-time vector U(t) is
approximated by a vector time series U", at the time ¢,, := kn, with n € N being the time index, and k being the
time step (the multiplicative inverse of the sample rate; for audio, this is usually set as k = 1/44100). The scheme
used here is thus:

2

k
I+ kC)U = (21 - Q) U™ + (-1 + kC)U" 1 + —

L QIS ©)

where I is the identity matrix. Since C is diagonal, the scheme is fully explicit. A stability condition arises as
k < 2/max(w,), which is verified for the cases considered below.

3 MODAL ANALYSIS AND EVALUATION

The modal system (6) is expressed in terms of the geometrical and material parameters, as well as the eigenfre-
quencies wy, and damping ratios o, where 1 < p < N (N here indicates the total number of modes retained
in the simulations). The geometrical parameters L, Ly, L., as well as the density p can be measured trivially
from the experimental plate, and are listed in Figure 3. The rigidity D is unknown. This will be estimated from a
vibroacoustic measurement of the plate’s first eigenfrequency, as detailed below.

3.1 Experimental Setup

To implement the desired boundary conditions, a simple clamping structure is built in accordance with previous
research.”” To fix the plate to the base structure, two angular hinges are clamped to each other, acting as the
main clamping system. An additional steel rectangular flat bar is also used with a layer of rubber material to
help distribute the pressure along the angular elements’ entire length and along the plate’s bottom clamped side,
approximating the clamped boundary condition (3a). A miniature impact hammer is used to excite the plate, while
a single axial piezoelectric accelerometer measures the structure’s impulse response (IR), as shown in figure 2.
The cantilever plate’s dimensions and known physical properties are reported in Figure 3.

Figure 2: Left: Front view of the experimental setup. Centre: Top view of the experimental setup. Right: Miniature
impact hammer used to excite the plate.

To acquire the data, the impact hammer roves over 3 different positions across the plate surface’s area while
the accelerometer is mounted on a single surface point, as sketched in Figure 3. The collected data is then post-
processed in Matlab and the natural frequencies of the system are detected from the frequency response functions
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(FRFs) with the use of Matlab’s own peak finding routine, thus effectively measuring the w,,’s over the range of
interest, here restricted to the range 0 < w < 20007 (i.e. only frequencies up to 1 kHz were here considered).
The same routine is used to extract the half-power bandwidth of the peaks, from which an estimate of the loss
coefficients o,’s is obtained.'®

To reduce measurement uncertainty due to the low repeatability of the impact hammer force signal, 10 different
IRs were averaged over each measurement point, resulting in a total of 3 averaged IRs.'® Finally, Chladni patterns
were implemented experimentally to observe the plate nodal lines over the thin plate surface.!” To do so, a minia-
ture shaker was used to excite the cantilever plate and white sand was placed over the plate’s surface. Pure tone
signals having the same frequencies as the first six measured peaks in the analyzed FRFs were used as excitation
signals.

H3
% (3.5,6.4)
Plate parameters
A .
H2 %C(7.274.3) L, (em) L, (cm) L, (mm) p (kg - m™3)
H1 X (5.2,4.0) 10 8 0.81 8765
*(4.5,3.5)

L,

X

Figure 3: The cantilever plate, impact hammer (Hx) and accelerometer measurement positions considered in the
study. Measurements locations are reported as (x,y) coordinates on the plate surface, in cm. The plate’s known
parameters are also indicated. The rigidity D is estimated as per the method described in Section 3.2.

3.2 [Estimate of the rigidity constant from measurements

The first cantilever mode is a “flapping” mode with no dependence along z, see Figure 4. Thus, the first cantilever
plate eigenfrequency may be written as:
Dr?

2 _ 10

where « is a non-dimensional parameter, constant for all plates sharing the same aspect ratio. & may be estimated
easily from the finite difference scheme above. For that, run a few simulations with a sufficiently fine grid, changing
the material and geometrical parameters (but keeping the aspect ratio L, L' = 4/5, as per the experimental plate
in Figure 3), and compute « using (10). This indeed shows that:

a=~0.13 (11)

for all the plates considered in this test. Hence, an estimate of the rigidity constant for the experimental plate is ob-
tained immediately by inverting (10), using the value of o above and the experimentally measured eigenfrequency
f1 = 73.2 Hz. This gives:

D~48N-m = E ~ 100 GPa, (12)

in line with tabulated values for brass alloys.'8

3.3 Assessment of the results

The numerical and the experimental frequencies identified from the spatially averaged FRFs are compared in Table
1, showing a very good match with the exception of the fourth eigenfrequency, displaying a larger deviation. The
same table reports the numerical result from a FEM simulation in COMSOL, yielding eigenfrequencies very close
to the FD scheme. On average, a deviation of 2.7% is obtained by comparing the experimental and numerical
frequencies. Such value is lower than the final errors reported in similar studies comparing experimental and
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FEM data for rectangular enclosures,'® thus confirming the reliability of the thin plate model employed here.
Furthermore, the current analysis confirms the reliability of the o estimation method reported in Section 3.2. A
visual comparison of the numerical and experimental mode shapes is given in Figure 4, showing a good agreement.

o

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
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Figure 4: Numerical and experimental mode shapes. Top row: 3D view of the numerical modal shapes; middle
row: top view of the numerical mode shapes; bottom row: experimental Chladni patterns showing the nodal lines.

Eigenfrequency (Hz)
1 2 3 4 5 6 Average
FD (proposed) 72 149.7 381.6 459.5 571.5 888.9 -
FEM (COMSOL) 71.6 148.6 379.1 456.7 572.9 883.8 —
Experimental 73.2 148 376 431 559 910 —
Deviation FD-Exp. (%) 1.6 1.1 1.5 6.2 3.2 2.4 2.7

Table 1: Numerical and experimental eigenfrequencies. The finite difference scheme is run using a grid spacing
h =1073,/L,L, ~ 8.9 - 1075, yielding N, = 1118, N, = 894. The COMSOL simulation is run using the
predefined “extremely fine” mesh size.

4 SIMULATION RESULTS

Figure 5 reports the results of the simulations in the frequency range of interest up to 910 Hz. The three subplots
report the acceleration spectra of the output of the finite difference scheme, compared against the experimental
spectra, for the three input positions (H1,H2,H3) reported in Figure 3. Each subplot presents four curves: the
experimental (solid black); the FD scheme with constant loss coefficient 0 = 17.3 (dashed blue); the frequency-
adjusted FD scheme with constant loss coefficient o = 17.3 (dashed red); the frequency-adjusted FD scheme with
tuned loss coefficients o, (solid yellow). Note that here the spectra are obtained from the dynamical model of the
plate equation, as per (1), and are not the result of a “best fit” such as via the PolyMAX algorithm.?’ For all cases,
a clear improvement is obtained by adjusting the eigenvalues €2 in (6), and further improvements are obtained by
adjusting the decay times. The adjusted frequencies are as per Table 1 (Experimental), whilst the tuned decay
times are as per 7(°*) = [0.8,0.4,0.6,0.3,0.4,0.5].

The good agreement of the tuned FD scheme with the experimental curves suggests that the proposed method
could be used to improve the accuracy of model-based synthesis, though a more thorough comparison, including
synthesised sound samples, is required to assess the method further.
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Figure 5: Output acceleration spectra of the proposed finite difference scheme, and the experimental spectra.
Colour scheme: black (experimental); blue and dashed (FD scheme, constant ¢); red and dashed (frequency-
adjusted FD scheme, constant o); yellow (frequency-adjusted FD scheme, tuned o,,’s). The spectra have been
normalised so to take a maximum value of 1 across the plotted range. Top panel: H1; middle panel: H2; bottom
panel: H3.

S CONCLUSIONS

This work explored the possibility of improving the accuracy of model-based synthesis by adjusting the numerical
eigenvalues of a finite difference approximation of the Kirchhoff plate equation. For that, modal analysis was
performed on an experimental plate in order to recover the plate’s frequencies and decay times. Then, the Kirch-
hoff plate equations were discretised on a numerically-computed modal basis, and simulations were run with and
without frequency correction. Whilst the original numerical eigenfrequencies do show good agreement with the
experimental ones, a much better match is obtained by correcting the eigenfrequencies. Further improvements are
obtained by adjusting the decay times, which may be easily set mode by mode in this framework. These results
suggest that it is possible to retain the flexibility of model-based sound synthesis, whilst improving its accuracy by
carefully selecting the modal parameters. Further investigations are underway to provide a more extensive com-
parison across the whole audible spectrum.
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