Assessment: Error Estimates for Variational Regularisation with Fenchel-Young Fidelities

Consider the variational regularisation problem of finding an approximate solution u_{α}^{δ} to the inverse problem Ku = f from noisy data f^{δ} by solving the following minimisation problem

$$u_{\alpha}^{\delta} \in \operatorname*{arg\,min}_{u \in \mathcal{U}} \left\{ H_{\Phi}^{f^{\delta}}(Ku) + \alpha J(u) \right\},$$

where \mathcal{U} and \mathcal{V} are Hilbert spaces, $K : \mathcal{U} \to \mathcal{V}$ is a linear and bounded operator, $J : \mathcal{U} \to \mathbb{R} \cup \{+\infty\}$ is a proper, convex, and lower semi-continuous functional, and $\alpha > 0$ is the regularisation parameter.

The data fidelity term $H_{\Phi}^{f^{\delta}}: \mathcal{V} \to \mathbb{R} \cup \{+\infty\}$ is given by the Fenchel-Young fidelity,

$$H^{f^{\delta}}_{\Phi}(v) = \Phi(v) + \Phi^*(f^{\delta}) - \langle v, f^{\delta} \rangle$$

where $\Phi : \mathcal{V} \to \mathbb{R} \cup \{+\infty\}$ is a proper, convex, lower semi-continuous functional, and Φ^* is its convex conjugate.

Your task is to derive an error estimate for the Bregman distance $D_J^{K^*v^{\dagger}}(u_{\alpha}^{\delta}, u^{\dagger})$ between the regularised solution u_{α}^{δ} and a desired "true" solution u^{\dagger} .

Assumptions

- 1. Let $u^{\dagger} \in \mathcal{U}$ be a solution corresponding to exact data $f \in \mathcal{V}$, i.e., $Ku^{\dagger} = f$.
- 2. Assume a source condition holds for u^{\dagger} : there exists an element $v^{\dagger} \in \mathcal{V}$ such that

$$K^* v^{\dagger} \in \partial J(u^{\dagger})$$

where $\partial J(u^{\dagger})$ denotes the subdifferential of J at u^{\dagger} .

3. Assume the noise in the data is bounded in the sense of the data fidelity term, i.e.

$$H^{f^{\delta}}_{\Phi}(f) \le \delta^2$$

for some noise level $\delta > 0$.

Guidance

- 1. Start from the optimality of u_{α}^{δ} for the minimisation problem.
- 2. Introduce the Bregman distance with respect to the functional J to obtain an initial inequality.
- 3. Add and subtract $H_{\Phi}^{f^{\delta}}$ to (and from) your right-hand-side.
- 4. Apply the source condition and the noise model assumption $(H_{\Phi}^{f^{\delta}}(f) \leq \delta^2)$.

- 5. Expand the remaining fidelity terms $(H_{\Phi}^{f^{\delta}})$ using their definition and collect terms into logical groups.
- 6. Apply the Fenchel-Young **inequality**, $\langle a, b \rangle \leq \Phi(a) + \Phi^*(b)$, to simplify the expression.
- 7. Based on your final estimate, briefly discuss the conditions on the parameter choice rule $\alpha(\delta)$ that would ensure convergence.