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image denoising



Statistical learning - a supervised regression problem

On a completely different note...
[Cucker, Smale, On the mathematical foundations of learning, 2002]

A supervised regression problem
Given two random variables x on X and y on Y

find a function f : Y→ X s.t. f(y) ≈ x

▶ (ideal setting) knowing the joint distribution πy,x ∼ (y,x);
▶ (real setting) knowing a sample {(yi, xi)}Ni=1 ∼i.i.d πy,x;

1) Consider a loss function, e.g. ℓ(x′, x) = ‖x′ − x‖2X.
2) Introduce F: hypothesis space, a set of functions from Y to X.

3.id) Minimize the Expected Loss: ⇝ min
f∈F

E(x,y)∼πxy

[
ℓ(f(y),x)

]
3.re) Minimize the Empirical Risk: ⇝ min

f∈F

1
N

N∑
i=1

ℓ(f(yi), xi)
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How we usually see regression...

X = R, Y = R,
x = sin(y) + ε, y ∼ U([0, 5]), ε ∼ N(0, 0.22)
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How we usually see regression...

X = R, Y = R,
F: polynomials of degree 1
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How we usually see regression...

X = R, Y = R,
F: polynomials of degree 5
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How we usually see regression...

X = R, Y = R,
F: polynomials of degree 10
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... but denoising can be seen as a regression task!

Learned reconstruction for inverse problems:
suppose that y = Ax+ ε (forward model): f(y) ≈ x ⇝ find f ≈ A−1.

Denoising: let X = Y and A = Id, i.e.: y = x+ ε.
Why not using simply f = A−1 = Id?
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Learned reconstruction for inverse problems:
suppose that y = Ax+ ε (forward model): f(y) ≈ x ⇝ find f ≈ A−1.

Denoising: let X = Y and A = Id, i.e.: y = x+ ε.
Why not using simply f = A−1 = Id?

The simplest example:
▶ X = R2;

▶ ε ∼ N(0, 0.12 Id);
▶ x : uniformly distributed on

{0} × [−1, 1] ∪ [−1, 1]× {0};
▶ y = x+ ε.
▶ f = Id

relative error: 20.70%

Luca Ratti PhD Summer School 2025 - Pre-course part II 3/17



... but denoising can be seen as a regression task!

Learned reconstruction for inverse problems:
suppose that y = Ax+ ε (forward model): f(y) ≈ x ⇝ find f ≈ A−1.

Denoising: let X = Y and A = Id, i.e.: y = x+ ε.
Why not using simply f = A−1 = Id?

The simplest example:
▶ X = R2;

▶ ε ∼ N(0, 0.12 Id);
▶ x : uniformly distributed on

{0} × [−1, 1] ∪ [−1, 1]× {0};
▶ y = x+ ε.
▶ Variational denoiser: Tikhonov

fT(y)=argmin
x

{ 1
2‖x− y‖22 +

λ

2 ‖x‖
2
2

}
=

1
1+ λ

y

relative error: 19.21%
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... but denoising can be seen as a regression task!

Learned reconstruction for inverse problems:
suppose that y = Ax+ ε (forward model): f(y) ≈ x ⇝ find f ≈ A−1.

Denoising: let X = Y and A = Id, i.e.: y = x+ ε.
Why not using simply f = A−1 = Id?

The simplest example:
▶ X = R2;

▶ ε ∼ N(0, 0.12 Id);
▶ x : uniformly distributed on

{0} × [−1, 1] ∪ [−1, 1]× {0};
▶ y = x+ ε.
▶ Variational denoiser: Lasso

fL(y) = proxλ∥·∥1(y) = ST(y;λ)

[fL(y)]j =
{
sign(yj)(|yj| − λ) if |yj| > λ

0 if |yj| ≤ λ

relative error: 18.41%
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... but denoising can be seen as a regression task!

Learned reconstruction for inverse problems:
suppose that y = Ax+ ε (forward model): f(y) ≈ x ⇝ find f ≈ A−1.

Denoising: let X = Y and A = Id, i.e.: y = x+ ε.
Why not using simply f = A−1 = Id?

The simplest example:
▶ X = R2;

▶ ε ∼ N(0, 0.12 Id);
▶ x : uniformly distributed on

{0} × [−1, 1] ∪ [−1, 1]× {0};
▶ y = x+ ε.
▶ Learned denoiser (ideal case)
fB = . . . - Bayes denoiser
relative error: 16.56%
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Image Denoising as a regression problem

Setup:
▶ Each image is a vector x ∈ Rn, where n = height× width× channels
▶ Noisy image: y = x+ ε, Clean image: x, Noise: ε
▶ Goal: learn f : Rn → Rn such that f(y) ≈ x

Loss Function:

ℓ(f(y), x) = MSE(f(y), x) = 1
n

n∑
j=1

([f(y)]j − [x]j)2 =
1
n‖f(y)− x‖22
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Audience-driven slide

In your experience,
what are key ingredients of statistical learning?

My personal list

A. a training dataset;
B. a loss function;
C. a (parametric) hypothesis class;
D. an optimization algorithm.
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A statistical learning perspective on
image denoising

A. Training datasets



Supervised datasets and beyond

1) Supervised setting
A dataset of paired noisy and clean images {(yi, xi)}Ni=1 is available.
▶ empirical loss minimization.

2) Self-supervised setting
A dataset of clean images {(xi)}Ni=1 is available+ the noise model is known
(e.g., y = x+ ε, ε ∼ N(0, σ2I))
▶ sample {εi}Ni=1 ∼i.i.d. πε, define yi = xi + εi;
▶ empirical loss minimization.

3) Unsupervised setting - case x

A dataset of clean images {(xi)}Ni=1 is available.
▶ learn the prior distribution πx (e.g. via Tweedie’s formula);
▶ use a model-adaptive algorithm to identify the noise model.

4) Unsupervised setting - case y

A dataset of noisy images {(yi)}Ni=1 is available.
▶ ad-hoc techniques (when available).
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A statistical learning perspective on
image denoising

B. Loss function



Loss minimization and regularization

▶ Loss function, ℓ: measures the quality of a single denoised image.
Es.: ℓ(x′, x) = ‖x′ − x‖22, ℓ(x′, x) = PSNR(x’, x).

▶ Expected loss, L: measures the quality of a denoiser f, using the full
knowledge of πy,x (ideal). Es. L(f) = E(y,x)∼π(y,x)

[ℓ(f(y),x)].
▶ Empirical risk, L̂: measures the quality of a denoiser f, using a
supervised dataset. Es. L̂(f) = 1

m
∑N

i=1 ℓ(f(yi), xi).

The risk of overfitting

Minimizing L̂ among all possible f : Y→ X
is not a good idea:
▶ the result f might work poorly on new
data ym+1,ym+2, . . .

▶ the result f might be unstable (‖f‖ � 1)

Explicit regularization
One possible solution: minimize L̂(f) + R(f).
Ex. R(f)=‖f‖H, H a suitable function space (e.g. a RKHS⇝kernel methods).
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A statistical learning perspective on
image denoising

C. Parametric hypothesis classes



Implicit regularization via parametric hypothesis spaces

Idea: restricting the space F in which optimizing L̂ induces an implicit
regularization. Ex: F = polynomials of degree 10, 5, 1.

Parametric hypothesis spaces
Spaces of functions depending on (p) parameters:

F = {fθ : Y→ X, θ ∈ Θ ∼= Rp}. Examples (X = Y = R):

▶ polynomials: fθ(y) = θ1 + θ2y+ . . .+ θpyp−1;
▶ linear splines: fθ(y) = θ1 + θ2χ[θ3,+∞)(y) + . . . θp−1χ[θp,+∞)(y);
▶ Neural Networks, e.g. fθ(y) = θ1σ(θ2y) + . . .+ θp−1σ(θpy).
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A bias-variance tradeoff

A variation of a picture from [M. Belkina, D. Hsuc, S. Maa, S. Mandal,
Reconciling modern machine-learning practice and the classical
bias–variance trade-off, 2019] - part 1

Number of parameters p

Risk

Test risk

Training risk

under-fitting over-fitting
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A bias-variance tradeoff

A variation of a picture from [M. Belkina, D. Hsuc, S. Maa, S. Mandal,
Reconciling modern machine-learning practice and the classical
bias–variance trade-off, 2019] - part 2

Number of parameters p

Risk

interpolation threshold

Test risk

Training risk

under-parameterized over-parameterized
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Neural Networks: very expressive parametric functions from Rn → Rn

Neural Networks: a working expression
Given a nonlinear function σ : R → R and its element-wise version s.t.
[σ(x)]j = σ([x]j), given Wl ∈ Rnl−1×nl and bl ∈ Rnl , l = 1, . . . , L, let

fθ(x) = WL+1σ(WL · · ·σ(W1x+ b1) · · ·+ bL) + bL+1.

The learnable parameters are θ = {W1, . . . ,WL,b1, . . . ,bL}.

Examples:
▶ Multilayer Perceptron (MLP): fully connected layers (full matrices Wl),

σ = ReLU, tanh - target: vector data.
▶ Convolutional Neural Network (CNN): convolutional layers (Wlx = Kl ∗ X)
- target: image data.

Theorem (Universal Approximation):
Under reasonable assumptions on σ, any continuous function
f : [0, 1]n → Rn can be approximated arbitrarily well (in the L∞ norm) by a
NN with L = 1, provided that W1 ∈ Rn1×n and W2 ∈ Rn×n1 , and n1 is
sufficiently large. (Cybenko, 1989; Hornik, 1991)

Variants: arbitrary width, higher regularity, avoid the curse of dimensionality.
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Network architectures for images: Convolutional Neural Networks (CNNs)

Key Idea: exploit spatial locality and translational invariance using local
linear operations.

▶ Layers apply convolutions: X 7→ σ(K ∗ X+ b);
▶ Common operations: ReLU, pooling, normalization;
▶ Weight sharing between layers (parameter reduction).

Credits: Wikipedia, by Aphex34

Warning: input dimensions!
In these examples, the input of the network is not a vectorized image
x ∈ Rn but a tensor X of size: height × width × channels.
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Network architectures for images: Convolutional Neural Networks (CNNs)

Key Idea: exploit spatial locality and translational invariance using local
linear operations.

▶ Layers apply convolutions: X 7→ σ(K ∗ X+ b);
▶ Common operations: ReLU, pooling, normalization;
▶ Weight sharing between layers (parameter reduction).

Credits: [Zhang et al., 2017]

Image denoising example:
▶ DnCNN (Zhang et al., 2017): deep CNN trained to remove additive
Gaussian noise.

Warning: input dimensions!
In these examples, the input of the network is not a vectorized image
x ∈ Rn but a tensor X of size: height × width × channels.
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Network architectures for images: U-Nets

Key Idea: extract and process local features with symmetric skip
connections.

▶ An encoder branch extracts
coarse features (convolution +
downsampling)

▶ A decoder branch reconstructs
full-resolution output
(upsampling)

▶ Skip connections copy feature
maps to enhance spatial details Credits: [Ronneberger, Fischer, Brox, 15]

Image denoising example:
▶ U-Net variants are widely used in medical image denoising, see e.g.
Noise2Noise (Lehtinen et al., 2018), DRUNET (Devalla et al., 2018), ...
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Network architectures for images: Vision Transformers

Key Idea: Process images as sequences of patches with self-attention,
removing convolutional inductive bias.

▶ Image is split into fixed-size patches (e.g., 16× 16)
▶ Each patch is embedded into a vector (via linear projection)
▶ Transformer encoder applies global attention across all patches.

https://www.pinecone.io/learn/series/image-search/vision-transformers/
Image denoising example:
▶ Restormer (Zamir et al., 2022): uses self-attention over multi-resolution
image representations; can be applied to unsupervised settings.
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A statistical learning perspective on
image denoising

D. Optimization algorithms



How to train your network - part I

Training a network: the process of finding θ that minimizes L̂(θ) = L̂(fθ).

An optimizer is a numerical algorithm to do so. Key features:

1. first-order schemes: leverages derivatives of L̂ in θ;
2. stochastic optimization: it exploits random batches to reduce
computations.

Backpropagation: just an intuition
▶ Exploit the compositional expression of fθ : repeated chain rule.
▶ Use automated differentiation and zero-order methods.
▶ Efficiency: proportional to the forward pass (computing fθ)

Stochastic Gradient Descent: just an intuition
▶ Exploit that L̂(θ) =

∑N
i=1 ℓ(fθ(yi), xi): replace the full sum with the one

on a randomly subsampled batch.
▶ Combined with momentum, acceleration, and adaptive step sizes, it
provides efficient versions (Adam, AdaGrad, RMSProp)
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How to train your network - part II

Other keywords involved in the training process of a network:

Initialization:
[What?] Weights are initialized randomly (some methods: Xavier, He).
[Why?] Avoid symmetries, preserve variance across layers.

Scheduling:
[What?] Dynamically adjusts the learning rate during training.
[Why?] Crucial for stable convergence and escaping local minima.

Early Stopping:
[What?] Interrupt training when the performance no longer improves.
[Why?] It prevents overfitting and reduces unnecessary computation.

Validation set:
[What?] A separate dataset used to evaluate generalization.
[Why?] Hyperparameter tuning (parameters of the network - number of

layers, channels - or of the optimizer - learning rate, batch size).
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Learning, from the errors

Training outcome: θ̃ (⇝ fθ̃)
obtained by minimizing L̂(θ) over Θ

through a numerical method

Empirical target: θ̂ (⇝ fθ̂)
obtained by minimizing L̂(θ) over Θ

Optimal target: θ⋆(⇝ fθ⋆ )
obtained by minimizing L(θ) = L(fθ) over Θ

Bayes estimator: f⋆ = Eπ[x|y = ·]
obtained by minimizing L on all
measurable functions Y→ X

True solution: if there existed a way
to connect y⇝ x

Optimization error
(how good is my optimizer?)

Sample error
(how much does my result

depend on the training sample?)

Approximation error
(how expressive is my parametric

space of regularizers?)

Irreducible error
(if data are noisy,
I can’t reduce this!)
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Implementation aspects



Image processing in Python

The most important libraries for image processing:

▶ numpy: process tensors representing images - can handle arithmetic
operations, cropping...

▶ skimage: basic image processing operations (thresholding, blurring,...)
and metrics (MSE, PSNR, SSIM,...)

▶ matplotlib: image visualization, color adjustment,...
▶ pytorch: neural network - definition, training, testing.

A small tutorial: tomorrow!
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