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Meet the instructors (Luca’s) & program
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- Digital images  
- Modelling noise 
- Quality measures (MSE, PSNR, SSIM) 
- Image denoising as a toy ‘inverse’ problem 
- Bayesian formulation 
- MAP estimators 
- Regularisation  
- Bits of optimisation: GD, proximal operator

Luca Calatroni 
Part I (14:30-15:45)

Luca Ratti 
Part II (16:00-17:15)

- Image denoising as a regression problem 
- Supervised/unsupervised learning 
- Neural networks 
- Bias-variance tradeoff 
- Over-parametrisation 
- NNs for imaging: CNN, U-NET 
- Training a NN: backpropagation, batches, 

optimisers.. 
- NumPy/Matplotlib/Pytorch (tomorrow)
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Digital images are discrete representations of the continuous world we live in.

Sampling: allows to represent a continuous image 
into a finite (pixel) grid.

Quantisation: assigns a grey-level describing 
average brightness at each pixel.
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Digital images

3

Digital images are discrete representations of the continuous world we live in.

Sampling: allows to represent a continuous image 
into a finite (pixel) grid.

Quantisation: assigns a grey-level describing 
average brightness at each pixel.

n1

n2

Ω = {1,…, n1} × {1,…, n2} image domain

X : Ω → {0,…,255} X = (xi, j) ∈ {0,…,255}n1×n2

Upon vectorisation of the 2D image , consider a vector , with X x ∈ ℝn n = n1n2 .

normalisation, 
adjustments..

X ∈ [0,1]n1×n2 X ∈ ℝn1×n2



Grayscale/RGB images
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Natural scenes are not grayscale. Color is a combination of Red-Green-Blue channels.

The higher the intensity in the individual 
channel, the more represented is the color.

xi, j = (ri, j, gi, j, bi, j) ∈ ℝ3

Hence, for RGB images: 

x ∈ ℝn×3

- Other color spaces are possible (CMYK, HSV..) 
- Often, color channels are processed separately. 

or ℝ3n
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Natural scenes are not grayscale. Color is a combination of Red-Green-Blue channels.

The higher the intensity in the individual 
channel, the more represented is the color.

xi, j = (ri, j, gi, j, bi, j) ∈ ℝ3

Hence, for RGB images: 

x ∈ ℝn×3

- Other color spaces are possible (CMYK, HSV..) 
- Often, color channels are processed separately. 

Assume  is grayscale (extension is trivial)x

or ℝ3n
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Modelling degradation processes

5

Images are matrices/vectors. How to model acquisition processes?

x ∈ ℝn y ∈ ℝm

(observed)(unknown)

y = Ax
linear input ( )-output ( ) relationx y

A ∈ ℝm×n

- Convolution: Ax ↔ h * X,  is a kernelh

- Fourier transform + Masking: 

A ⋅ = Mℱ( ⋅ )

- Masking: 

A = M ∈ {0,1}m×n



Modelling noise
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y = Noise(Ax)

Acquisitions are never perfect. Interferences, errors, faults may happen.

 codifies instrumental errors.  Noise : ℝm → ℝm

In the following: . How to model noise?  A = I ∈ ℝn×n
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y = Noise(Ax)

Acquisitions are never perfect. Interferences, errors, faults may happen.

 codifies instrumental errors.  Noise : ℝm → ℝm

In the following: . How to model noise?  A = I ∈ ℝn×n

Gaussian noise: 

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2I)

Mostly used due to CLT.  
Models signal-independent electronic noise

Impulsive noise: 

Noise(x) = (1 − s) ⊙ x + s ⊙ c
ci = ℬ(1/2), si = ℬ(p), p ∈ [0,1]

Used to describe faulty detectors  
and/or long time exposures under bad lighting.

Poisson noise:
Noise(x) = Pois(x+β), x ∈ ℝn

≥0, β ∈ ℝn
>0

Used in low-photon imaging. 
Astronomical, microscopy imaging.

Bertero, Boccacci, ‘98
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How to assess image quality between two images using pixel information?

MSE(y, x) =
1
n

n

∑
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1
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where  is the highest possible value (e.g.,  MAX 255 or 1)

SNR(y, x) = 10 log10 ( ∥x∥2
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Quality metrics: MSE, SNR, PSNR

7

How to assess image quality between two images using pixel information?

MSE(y, x) =
1
n

n

∑
i=1

|yi − xi |
2 =

1
n1

1
n2

n1

∑
i1=1

n2

∑
i2=1

|yi1,i2
− xi1,i2

|2

PSNR(y, x) = 10 log10 ( MAX2

MSE(y, x) )
where  is the highest possible value (e.g.,  MAX 255 or 1)

Is it a good quality metric for natural images?!
Sensitive to pixel variations

SNR(y, x) = 10 log10 ( ∥x∥2

∥x − y∥2 ) noise ε



Quality metrics: SSIM
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SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
∈ [0,1]

- Based on image statistics: mean, variance, covariance  
+ constant  stabilising the division.C1, C2

- Typically performed on small image patches + averaging

Wang, Bovik, Sheikh, Simoncelli, ‘04
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SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
∈ [0,1]

- Based on image statistics: mean, variance, covariance  
+ constant  stabilising the division.C1, C2

- Typically performed on small image patches + averaging RANGE IDEAL GOOD

MSE

SNR

PSNR

SSIM

[0,MAX2] 0

[0, + ∞)

1

(−∞, + ∞) +∞

[0,1]

+∞

> 0.9

> 30

> 30

< 100
(for images in [0,255])

All such metrics are supervised. 
They depend on ground-truth .x

Wang, Bovik, Sheikh, Simoncelli, ‘04



Image denoising as a ‘toy’ inverse problem
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Given , find  such that:y ∈ ℝn x ∈ ℝn

y = x + ε, ε ∼ 𝒩(0, σ2I)
- “Inverse problem” (operator to invert is ) 
- Still challenging: the noise realisation is unknown 
- If noise is high (  is big), image content can be lost

A = I

σ

x ∈ [0,1]3n

σ = 0.002 σ = 0.05 σ = 0.3

MSE

PSNR/SSIM

How to model this problem in  
mathematical terms?
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Prior: prior assumptions on the unknown quantity x
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Idea: model also  and  as realisation of random variables  + conditional laws.x y 𝒳 ∼ π𝒳, 𝒴 ∼ π𝒴

π𝒳|𝒴(x |y)

π𝒴|𝒳(y |x)

π𝒴(y)

π𝒳(x)

Posterior distribution: what we would like to maximise.

Likelihood: function describing the probability of observing the data given a choice of x

Evidence term: normally neglected, does not depend on x

Prior: prior assumptions on the unknown quantity x

Bayes’ Theorem

π𝒳|𝒴(x |y) =
π𝒴|𝒳(y |x)π𝒳(x)

π𝒴(y)

Under Gaussian noise assumption:

π𝒴|𝒳(y |x) = πE(ε = y − x)



Bayesian formulation: priors, score functions
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x* ∈ argmaxx π𝒳|𝒴(x |y) = argmaxx

π𝒴|𝒳(y |x)π𝒳(x)
π𝒴(y)

= argmaxx π𝒴|𝒳(y |x)π𝒳(x)

By taking the negative logarithm:

x* ∈ argminx − ln (π𝒳|𝒴(x |y)) = argminx − ln (π𝒴|𝒳(y |x)π𝒳(x)) = argminx − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))
max. log-likelihood prior
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x* ∈ argmaxx π𝒳|𝒴(x |y) = argmaxx

π𝒴|𝒳(y |x)π𝒳(x)
π𝒴(y)

= argmaxx π𝒴|𝒳(y |x)π𝒳(x)

By taking the negative logarithm:

x* ∈ argminx − ln (π𝒳|𝒴(x |y)) = argminx − ln (π𝒴|𝒳(y |x)π𝒳(x)) = argminx − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))
max. log-likelihood prior

Example: π𝒴|𝒳(y |x) = πE(y − x), π𝒳(x) = 𝒩(μx, Σx)

x* ∈ argminx − ln
n

∏
i=1

1

2πσ2
ε

exp (−
|yi − xi |

2

2σ2
ε ) − ln ( 1

(2π)n/2|Σx|1/2
exp (−

1
2

(x − μx)⊤Σx
−1(x − μx)))

—-> towards optimisation problem!

= argminx
1

2σ2
ε

∥y − x∥2 +
1
2

∥x − μx∥2
Σ−1

x
+ neglecting constants



From a statistical to a variational perspective: optimisation

12

argminx J(x) := − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up  
with convex optimisation problems for a functional J : ℝn → ℝ≥0 ∪ {+∞}
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Bayesian model Optimisation 
approach

Noise 
information Likelihood Data-term

A-priori 
information Prior Regularisation

Parameters Hyperparameters Regularisation 
parameters

From a statistical to a variational perspective: optimisation

12

argminx J(x) := − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up  
with convex optimisation problems for a functional J : ℝn → ℝ≥0 ∪ {+∞}

We are going to see a very simple algorithm for minimising  based on gradients. Note:J

∇J(x*) = − ∇ln (π𝒴|𝒳(y |x*)) − ∇ln (π𝒳(x*)) = 0

 when looking for MAP estimators.

How to choose good noise and image models?
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observation related to noise assumptions?

+ constants



Data terms

13

y = Noise(x) π𝒴|𝒳(y |x)
−ln

D(y, x)

Gaussian noise: 

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2
ε I) D(y, x) = D(y − x) =

1
2σ2

ε
∥y − x∥2

2

Tailored distance function with 
observation related to noise assumptions?

+ constants



Data terms

13

y = Noise(x) π𝒴|𝒳(y |x)
−ln

D(y, x)

Gaussian noise: 

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2
ε I) D(y, x) = D(y − x) =

1
2σ2

ε
∥y − x∥2

2

Poisson noise:
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y = Noise(x) π𝒴|𝒳(y |x)
−ln

D(y, x)

Gaussian noise: 

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2
ε I) D(y, x) = D(y − x) =

1
2σ2

ε
∥y − x∥2

2

Poisson noise:

Noise(x) = Pois(x+β), x ∈ ℝn
≥0, β ∈ ℝn

>0 D(y, x) = D(y, x + β) = KL(y, x + β) =
n

∑
i=1

xi + βi − yi ln (xi + βi)

Tailored distance function with 
observation related to noise assumptions?

Impulsive noise: 

Noise(x) = (1 − s) ⊙ x + s ⊙ c
ci = ℬ(1/2), si = ℬ(p), p ∈ [0,1]

D(y, x) = D(y − x) =
1
τε

∥y − x∥1

noise “sparsity” (the residual is 0 only in few pixels)
≈ x + ε, ε ∼ ℒ(0, τεI)

+ constants
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π𝒳(x) = ℒ(0, τI) R(x) =
1
τ
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π𝒳(x) = π𝒬(q) = ℒ(0, τI) R(x) =
1
τ
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π𝒳(x) = π𝒬(q) = 𝒩(0, σ2
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π𝒳(x) −ln
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codify a-priori information

Regularity around the mean:

π𝒳(x) = 𝒩(μx, Σx) R(x) =
1
2

∥x − μx∥2
Σx

−1

qi = ∥(∇x)i∥2

Sparsity: 

π𝒳(x) = ℒ(0, τI) R(x) =
1
τ

∥x∥1

Piece-wise constancy:

π𝒳(x) = π𝒬(q) = ℒ(0, τI) R(x) =
1
τ
TV(x) =

1
τ

∥∇x∥2,1

Smoothness:

π𝒳(x) = π𝒬(q) = 𝒩(0, σ2
qI) R(x) =

1
2σ2

q
∥∇x∥2

2

Tikhonov

Sparse reg./ 
Compressed sensing

Tikhonov/ 
Sobolev

Total Variation

+ constants



The regularisation parameter
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π𝒴|𝒳(y |x) = πE(y − x), π𝒳(x) = 𝒩(0, σ2
xI)Example:

argminx
1

2σ2
ε

∥y − x∥2 +
1

2σ2
x

∥x∥2
2 = argminx ∥y − x∥2 +

σ2
ε

σ2
x

∥x∥2 = argminx ∥y − x∥2 +λ∥x∥2

Ratio between noise level (can be estimated) and image statistical features (hard to estimate).



The regularisation parameter
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π𝒴|𝒳(y |x) = πE(y − x), π𝒳(x) = 𝒩(0, σ2
xI)Example:

argminx
1

2σ2
ε

∥y − x∥2 +
1

2σ2
x

∥x∥2
2 = argminx ∥y − x∥2 +

σ2
ε

σ2
x

∥x∥2 = argminx ∥y − x∥2 +λ∥x∥2

Ratio between noise level (can be estimated) and image statistical features (hard to estimate).

More in general, the regularisation parameter  weights data fit against regularisation.λ > 0

argminx D(y, x)+λR(x)

- Small : low regularisation, trust in the data, noise overfitλ
- High : high regularisation, need to regularise the data, artefacts induced by λ R

λ → + ∞



Examples
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y = Noise(x)

Gaussian noise + piece-wise constant image: reference model for many applications.

Poisson noise + sparse signal: used in microscopy/astronomical imaging

Gaussian noise + Tikhonov-type regularisation: often used when  for applicationsA ≠ I

argminx
1
2

∥y − x∥2
2 + λTV(x)

argminx≥0 KL(y, x + β) + λ∥x∥1

argminx
1
2

∥y − x∥2
2 +

λ
2

∥Lx∥2
2 L ∈ ℝd×n



Solving the problem: nods on optimisation
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argminx J(x) := D(y, x) + λR(x) variational formulation of the image denoising problem

J : ℝn → ℝ≥0 ∪ {+∞}

 is -smooth, i.e. has -Lipschitz (Gâteaux) gradient:J L L

∃L > 0 : ∥∇J(x1) − ∇J(x2)∥2 ≤ L∥x1 − x2∥2

is proper

dom(J ) = {x : J(x) < + ∞} ≠ ∅

 is convex:J

( ∀x1, x2 ∈ ℝn), ( ∀α ∈ [0,1]) : J(αx1 + (1 − α)x2) ≤ αJ(x1) + (1 − α)J(x2)
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argminx J(x) := D(y, x) + λR(x) variational formulation of the image denoising problem

J : ℝn → ℝ≥0 ∪ {+∞}

 is -smooth, i.e. has -Lipschitz (Gâteaux) gradient:J L L

∃L > 0 : ∥∇J(x1) − ∇J(x2)∥2 ≤ L∥x1 − x2∥2

is proper

dom(J ) = {x : J(x) < + ∞} ≠ ∅

 is convex:J

( ∀x1, x2 ∈ ℝn), ( ∀α ∈ [0,1]) : J(αx1 + (1 − α)x2) ≤ αJ(x1) + (1 − α)J(x2)

⟺
J(x1) ≤ J(x2) + ⟨∇J(x2), x2 − x1⟩ +

L
2

∥x2 − x1∥2
2

under 
convexity



Solving the problem: nods on optimisation
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argminx J(x) := D(y, x) + λR(x)  is proper, convex, -smooth and coercive.J L

Theorem
There exists a minimiser for . All local minimisers are global minimisers.  
For all , there holds .

J
x* ∈ Argminx J(x) ∇J(x*) = 0

lim
∥x∥→+∞

J(x) = + ∞
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argminx J(x) := D(y, x) + λR(x)  is proper, convex, -smooth and coercive.J L

Theorem
There exists a minimiser for . All local minimisers are global minimisers.  
For all , there holds .

J
x* ∈ Argminx J(x) ∇J(x*) = 0

lim
∥x∥→+∞

J(x) = + ∞

Algorithm (gradient descent): for , : x0 ∈ dom(J ), τ ∈ (0,
2
L ) k ≥ 0

xk+1 = xk − τ∇J(xk)

Theorem
There holds  and for the function values:   . xk → x* J(xk) − J(x*) ≤

∥x0 − x*∥2

2τk



Example on Tikhonov regularisation
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argminx J(x) :=
1
2

∥y − x∥2
2 + λ∥Lx∥2

2, L ∈ ℝd×n

Remark: the problem is quadratic, it can be solved by looking at the optimality condition:

(x* − y) + λLTLx* = 0 ⇒ (I + λLTL)x* = y

and solving the linear system, e.g., using DFT. Also, faster iterative methods exploiting further 
regularity (strong convexity,   can be employed.C2)

L ∈ {I, ∇, ∇2}

Hansen, Nagy, O’leary, ’06, Nesterov, ’83

Examples:
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argminx J(x) :=
1
2

∥y − x∥2
2 + λ∥Lx∥2

2, L ∈ ℝd×n

Remark: the problem is quadratic, it can be solved by looking at the optimality condition:

(x* − y) + λLTLx* = 0 ⇒ (I + λLTL)x* = y

and solving the linear system, e.g., using DFT. Also, faster iterative methods exploiting further 
regularity (strong convexity,   can be employed.C2)

∇J(x) = (x − y) + λLTLx, L = 1 + λ∥LTL∥*, x0 ∈ ℝn, τ ∈ (0,2/L)

xk+1 = xk − τ ((xk − y) + λLTLxk)
while not converging

end

L ∈ {I, ∇, ∇2}

Hansen, Nagy, O’leary, ’06, Nesterov, ’83

Examples:



Image denoisers and proximal operators

20

For general (possibly non-smooth) regularisation functionals  , note that:R : ℝn → ℝ≥0 ∪ {+∞}

argminx
1
2

∥y − x∥2 + λR(x) = proxλR(y)

where  is single-valued if  is convex and multi-valued (multiple minimisers) 
otherwise. 

proxλR : ℝn ⇉ ℝn R
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For general (possibly non-smooth) regularisation functionals  , note that:R : ℝn → ℝ≥0 ∪ {+∞}

argminx
1
2

∥y − x∥2 + λR(x) = proxλR(y)

where  is single-valued if  is convex and multi-valued (multiple minimisers) 
otherwise. 

proxλR : ℝn ⇉ ℝn R

Examples:

 is convex and closed. R(x) = ιC(x), C
 R(x) = ∥x∥1

 R(x) = TV(x)

Non-smooth regularisation functionals 
 not defined.∇R

proxιC
(y) = PC(y)

proxλ∥⋅∥1
(y) = ST(y; λ)

proxλ TV(⋅)(y)?
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For general (possibly non-smooth) regularisation functionals  , note that:R : ℝn → ℝ≥0 ∪ {+∞}

argminx
1
2

∥y − x∥2 + λR(x) = proxλR(y)

where  is single-valued if  is convex and multi-valued (multiple minimisers) 
otherwise. 

proxλR : ℝn ⇉ ℝn R

Proximal operators are widely used as implicit variants of gradients for non-smooth optimisation:

xk+1 = proxτλR (xk − τ∇x D(y, Axk)) Gradient-descent on data term + denoising

This observation stands at the very basis of Plug & Play approaches where proxτλR 𝒟ς

Kamilov, Bouman, Buzzard, Wuhlberg, ‘23

Examples:

 is convex and closed. R(x) = ιC(x), C
 R(x) = ∥x∥1

 R(x) = TV(x)

Non-smooth regularisation functionals 
 not defined.∇R

proxιC
(y) = PC(y)

proxλ∥⋅∥1
(y) = ST(y; λ)

proxλ TV(⋅)(y)?
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