
Pre-course: imaging and learning, part I
(images, noise, Bayesian/variational formulation, optimisation)

Co-funded by the European Union (ERC, MALIN, 10117133). Views and opinions expressed are however those of the author only and do not necessarily reflect those of the European Union or
the European Research Council Executive Agency. Neither the EU nor the granting authority can be held responsible for them.

Luca Calatroni
MaLGa Center, Department of Computer Science, University of Genoa, Italy

Mathematics & Machine Learning for image analysis
ERASMUS+ International PhD Summer School

Bologna, June 3-11 2025

Meet the instructors (Luca’s) & program

2

- Digital images
- Modelling noise
- Quality measures (MSE, PSNR, SSIM)
- Image denoising as a toy ‘inverse’ problem
- Bayesian formulation
- MAP estimators
- Regularisation
- Bits of optimisation: GD, proximal operator

Luca Calatroni
Part I (14:30-15:45)

Luca Ratti
Part II (16:00-17:15)

- Image denoising as a regression problem
- Supervised/unsupervised learning
- Neural networks
- Bias-variance tradeoff
- Over-parametrisation
- NNs for imaging: CNN, U-NET
- Training a NN: backpropagation, batches,

optimisers..
- NumPy/Matplotlib/Pytorch (tomorrow)

Digital images

3

Digital images are discrete representations of the continuous world we live in.

Sampling: allows to represent a continuous image
into a finite (pixel) grid.

Quantisation: assigns a grey-level describing
average brightness at each pixel.

Digital images

3

Digital images are discrete representations of the continuous world we live in.

Sampling: allows to represent a continuous image
into a finite (pixel) grid.

Quantisation: assigns a grey-level describing
average brightness at each pixel.

n1

n2

Ω = {1,…, n1} × {1,…, n2} image domain

Digital images

3

Digital images are discrete representations of the continuous world we live in.

Sampling: allows to represent a continuous image
into a finite (pixel) grid.

Quantisation: assigns a grey-level describing
average brightness at each pixel.

n1

n2

Ω = {1,…, n1} × {1,…, n2} image domain

X : Ω → {0,…,255} X = (xi, j) ∈ {0,…,255}n1×n2

Digital images

3

Digital images are discrete representations of the continuous world we live in.

Sampling: allows to represent a continuous image
into a finite (pixel) grid.

Quantisation: assigns a grey-level describing
average brightness at each pixel.

n1

n2

Ω = {1,…, n1} × {1,…, n2} image domain

X : Ω → {0,…,255} X = (xi, j) ∈ {0,…,255}n1×n2

normalisation,
adjustments..

X ∈ [0,1]n1×n2 X ∈ ℝn1×n2

Digital images

3

Digital images are discrete representations of the continuous world we live in.

Sampling: allows to represent a continuous image
into a finite (pixel) grid.

Quantisation: assigns a grey-level describing
average brightness at each pixel.

n1

n2

Ω = {1,…, n1} × {1,…, n2} image domain

X : Ω → {0,…,255} X = (xi, j) ∈ {0,…,255}n1×n2

Upon vectorisation of the 2D image , consider a vector , with X x ∈ ℝn n = n1n2 .

normalisation,
adjustments..

X ∈ [0,1]n1×n2 X ∈ ℝn1×n2

Grayscale/RGB images

4

Natural scenes are not grayscale. Color is a combination of Red-Green-Blue channels.

The higher the intensity in the individual
channel, the more represented is the color.

xi, j = (ri, j, gi, j, bi, j) ∈ ℝ3

Hence, for RGB images:

x ∈ ℝn×3

- Other color spaces are possible (CMYK, HSV..)
- Often, color channels are processed separately.

or ℝ3n

Grayscale/RGB images

4

Natural scenes are not grayscale. Color is a combination of Red-Green-Blue channels.

The higher the intensity in the individual
channel, the more represented is the color.

xi, j = (ri, j, gi, j, bi, j) ∈ ℝ3

Hence, for RGB images:

x ∈ ℝn×3

- Other color spaces are possible (CMYK, HSV..)
- Often, color channels are processed separately.

Assume is grayscale (extension is trivial)x

or ℝ3n

Modelling degradation processes

5

Images are matrices/vectors. How to model acquisition processes?

x ∈ ℝn y ∈ ℝm

(observed)(unknown)

y = Ax
linear input ()-output () relationx y

A ∈ ℝm×n

Modelling degradation processes

5

Images are matrices/vectors. How to model acquisition processes?

x ∈ ℝn y ∈ ℝm

(observed)(unknown)

y = Ax
linear input ()-output () relationx y

A ∈ ℝm×n

- Convolution: Ax ↔ h * X, is a kernelh

Modelling degradation processes

5

Images are matrices/vectors. How to model acquisition processes?

x ∈ ℝn y ∈ ℝm

(observed)(unknown)

y = Ax
linear input ()-output () relationx y

A ∈ ℝm×n

- Convolution: Ax ↔ h * X, is a kernelh

- Masking:

A = M ∈ {0,1}m×n

Modelling degradation processes

5

Images are matrices/vectors. How to model acquisition processes?

x ∈ ℝn y ∈ ℝm

(observed)(unknown)

y = Ax
linear input ()-output () relationx y

A ∈ ℝm×n

- Convolution: Ax ↔ h * X, is a kernelh

- Fourier transform + Masking:

A ⋅ = Mℱ(⋅)

- Masking:

A = M ∈ {0,1}m×n

Modelling noise

6

y = Noise(Ax)

Acquisitions are never perfect. Interferences, errors, faults may happen.

 codifies instrumental errors. Noise : ℝm → ℝm

In the following: . How to model noise? A = I ∈ ℝn×n

Modelling noise

6

y = Noise(Ax)

Acquisitions are never perfect. Interferences, errors, faults may happen.

 codifies instrumental errors. Noise : ℝm → ℝm

In the following: . How to model noise? A = I ∈ ℝn×n

Gaussian noise:

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2I)

Mostly used due to CLT.
Models signal-independent electronic noise

Modelling noise

6

y = Noise(Ax)

Acquisitions are never perfect. Interferences, errors, faults may happen.

 codifies instrumental errors. Noise : ℝm → ℝm

In the following: . How to model noise? A = I ∈ ℝn×n

Gaussian noise:

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2I)

Mostly used due to CLT.
Models signal-independent electronic noise

Poisson noise:
Noise(x) = Pois(x+β), x ∈ ℝn

≥0, β ∈ ℝn
>0

Used in low-photon imaging.
Astronomical, microscopy imaging.

Bertero, Boccacci, ‘98

Modelling noise

6

y = Noise(Ax)

Acquisitions are never perfect. Interferences, errors, faults may happen.

 codifies instrumental errors. Noise : ℝm → ℝm

In the following: . How to model noise? A = I ∈ ℝn×n

Gaussian noise:

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2I)

Mostly used due to CLT.
Models signal-independent electronic noise

Impulsive noise:

Noise(x) = (1 − s) ⊙ x + s ⊙ c
ci = ℬ(1/2), si = ℬ(p), p ∈ [0,1]

Used to describe faulty detectors
and/or long time exposures under bad lighting.

Poisson noise:
Noise(x) = Pois(x+β), x ∈ ℝn

≥0, β ∈ ℝn
>0

Used in low-photon imaging.
Astronomical, microscopy imaging.

Bertero, Boccacci, ‘98

Quality metrics: MSE, SNR, PSNR

7

How to assess image quality between two images using pixel information?

Quality metrics: MSE, SNR, PSNR

7

How to assess image quality between two images using pixel information?

MSE(y, x) =
1
n

n

∑
i=1

|yi − xi |
2 =

1
n1

1
n2

n1

∑
i1=1

n2

∑
i2=1

|yi1,i2
− xi1,i2

|2

Quality metrics: MSE, SNR, PSNR

7

How to assess image quality between two images using pixel information?

MSE(y, x) =
1
n

n

∑
i=1

|yi − xi |
2 =

1
n1

1
n2

n1

∑
i1=1

n2

∑
i2=1

|yi1,i2
− xi1,i2

|2

SNR(y, x) = 10 log10 (∥x∥2

∥x − y∥2) noise ε

Quality metrics: MSE, SNR, PSNR

7

How to assess image quality between two images using pixel information?

MSE(y, x) =
1
n

n

∑
i=1

|yi − xi |
2 =

1
n1

1
n2

n1

∑
i1=1

n2

∑
i2=1

|yi1,i2
− xi1,i2

|2

PSNR(y, x) = 10 log10 (MAX2

MSE(y, x))
where is the highest possible value (e.g., MAX 255 or 1)

SNR(y, x) = 10 log10 (∥x∥2

∥x − y∥2) noise ε

Quality metrics: MSE, SNR, PSNR

7

How to assess image quality between two images using pixel information?

MSE(y, x) =
1
n

n

∑
i=1

|yi − xi |
2 =

1
n1

1
n2

n1

∑
i1=1

n2

∑
i2=1

|yi1,i2
− xi1,i2

|2

PSNR(y, x) = 10 log10 (MAX2

MSE(y, x))
where is the highest possible value (e.g., MAX 255 or 1)

Is it a good quality metric for natural images?!
Sensitive to pixel variations

SNR(y, x) = 10 log10 (∥x∥2

∥x − y∥2) noise ε

Quality metrics: SSIM

8

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
∈ [0,1]

- Based on image statistics: mean, variance, covariance
+ constant stabilising the division.C1, C2

- Typically performed on small image patches + averaging

Wang, Bovik, Sheikh, Simoncelli, ‘04

Quality metrics: SSIM

8

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
∈ [0,1]

- Based on image statistics: mean, variance, covariance
+ constant stabilising the division.C1, C2

- Typically performed on small image patches + averaging RANGE IDEAL GOOD

MSE

SNR

PSNR

SSIM

[0,MAX2] 0

[0, + ∞)

1

(−∞, + ∞) +∞

[0,1]

+∞

> 0.9

> 30

> 30

< 100
(for images in [0,255])

All such metrics are supervised.
They depend on ground-truth .x

Wang, Bovik, Sheikh, Simoncelli, ‘04

Image denoising as a ‘toy’ inverse problem

9

Given , find such that:y ∈ ℝn x ∈ ℝn

y = x + ε, ε ∼ 𝒩(0, σ2I)
- “Inverse problem” (operator to invert is)
- Still challenging: the noise realisation is unknown
- If noise is high (is big), image content can be lost

A = I

σ

x ∈ [0,1]3n

σ = 0.002 σ = 0.05 σ = 0.3

MSE

PSNR/SSIM

How to model this problem in
mathematical terms?

Bayesian formulation

10

Idea: model also and as realisation of random variables + conditional laws.x y 𝒳 ∼ π𝒳, 𝒴 ∼ π𝒴

Bayesian formulation

10

Idea: model also and as realisation of random variables + conditional laws.x y 𝒳 ∼ π𝒳, 𝒴 ∼ π𝒴

π𝒳|𝒴(x |y)

π𝒴|𝒳(y |x)

π𝒴(y)

π𝒳(x)

Posterior distribution: what we would like to maximise.

Likelihood: function describing the probability of observing the data given a choice of x

Evidence term: normally neglected, does not depend on x

Prior: prior assumptions on the unknown quantity x

Bayesian formulation

10

Idea: model also and as realisation of random variables + conditional laws.x y 𝒳 ∼ π𝒳, 𝒴 ∼ π𝒴

π𝒳|𝒴(x |y)

π𝒴|𝒳(y |x)

π𝒴(y)

π𝒳(x)

Posterior distribution: what we would like to maximise.

Likelihood: function describing the probability of observing the data given a choice of x

Evidence term: normally neglected, does not depend on x

Prior: prior assumptions on the unknown quantity x

Bayes’ Theorem

π𝒳|𝒴(x |y) =
π𝒴|𝒳(y |x)π𝒳(x)

π𝒴(y)

Under Gaussian noise assumption:

π𝒴|𝒳(y |x) = πE(ε = y − x)

Bayesian formulation: priors, score functions

11

x* ∈ argmaxx π𝒳|𝒴(x |y) = argmaxx

π𝒴|𝒳(y |x)π𝒳(x)
π𝒴(y)

= argmaxx π𝒴|𝒳(y |x)π𝒳(x)

By taking the negative logarithm:

x* ∈ argminx − ln (π𝒳|𝒴(x |y)) = argminx − ln (π𝒴|𝒳(y |x)π𝒳(x)) = argminx − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))
max. log-likelihood prior

Bayesian formulation: priors, score functions

11

x* ∈ argmaxx π𝒳|𝒴(x |y) = argmaxx

π𝒴|𝒳(y |x)π𝒳(x)
π𝒴(y)

= argmaxx π𝒴|𝒳(y |x)π𝒳(x)

By taking the negative logarithm:

x* ∈ argminx − ln (π𝒳|𝒴(x |y)) = argminx − ln (π𝒴|𝒳(y |x)π𝒳(x)) = argminx − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))
max. log-likelihood prior

Example: π𝒴|𝒳(y |x) = πE(y − x), π𝒳(x) = 𝒩(μx, Σx)

x* ∈ argminx − ln
n

∏
i=1

1

2πσ2
ε

exp (−
|yi − xi |

2

2σ2
ε) − ln (1

(2π)n/2|Σx|1/2
exp (−

1
2

(x − μx)⊤Σx
−1(x − μx)))

—-> towards optimisation problem!

= argminx
1

2σ2
ε

∥y − x∥2 +
1
2

∥x − μx∥2
Σ−1

x
+ neglecting constants

From a statistical to a variational perspective: optimisation

12

argminx J(x) := − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up
with convex optimisation problems for a functional J : ℝn → ℝ≥0 ∪ {+∞}

From a statistical to a variational perspective: optimisation

12

argminx J(x) := − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up
with convex optimisation problems for a functional J : ℝn → ℝ≥0 ∪ {+∞}

We are going to see a very simple algorithm for minimising based on gradients. Note:J

∇J(x*) = − ∇ln (π𝒴|𝒳(y |x*)) − ∇ln (π𝒳(x*)) = 0

 when looking for MAP estimators.

Bayesian model Optimisation
approach

Noise
information Likelihood Data-term

A-priori
information Prior Regularisation

Parameters Hyperparameters Regularisation
parameters

From a statistical to a variational perspective: optimisation

12

argminx J(x) := − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up
with convex optimisation problems for a functional J : ℝn → ℝ≥0 ∪ {+∞}

We are going to see a very simple algorithm for minimising based on gradients. Note:J

∇J(x*) = − ∇ln (π𝒴|𝒳(y |x*)) − ∇ln (π𝒳(x*)) = 0

 when looking for MAP estimators.

Bayesian model Optimisation
approach

Noise
information Likelihood Data-term

A-priori
information Prior Regularisation

Parameters Hyperparameters Regularisation
parameters

From a statistical to a variational perspective: optimisation

12

argminx J(x) := − ln (π𝒴|𝒳(y |x)) − ln (π𝒳(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up
with convex optimisation problems for a functional J : ℝn → ℝ≥0 ∪ {+∞}

We are going to see a very simple algorithm for minimising based on gradients. Note:J

∇J(x*) = − ∇ln (π𝒴|𝒳(y |x*)) − ∇ln (π𝒳(x*)) = 0

 when looking for MAP estimators.

How to choose good noise and image models?

Data terms

13

y = Noise(x) π𝒴|𝒳(y |x)
−ln

D(y, x)
Tailored distance function with
observation related to noise assumptions?

+ constants

Data terms

13

y = Noise(x) π𝒴|𝒳(y |x)
−ln

D(y, x)

Gaussian noise:

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2
ε I) D(y, x) = D(y − x) =

1
2σ2

ε
∥y − x∥2

2

Tailored distance function with
observation related to noise assumptions?

+ constants

Data terms

13

y = Noise(x) π𝒴|𝒳(y |x)
−ln

D(y, x)

Gaussian noise:

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2
ε I) D(y, x) = D(y − x) =

1
2σ2

ε
∥y − x∥2

2

Poisson noise:

Noise(x) = Pois(x+β), x ∈ ℝn
≥0, β ∈ ℝn

>0 D(y, x) = D(y, x + β) = KL(y, x + β) =
n

∑
i=1

xi + βi − yi ln (xi + βi)

Tailored distance function with
observation related to noise assumptions?

+ constants

Data terms

13

y = Noise(x) π𝒴|𝒳(y |x)
−ln

D(y, x)

Gaussian noise:

Noise(x) = x + ε, ε ∼ 𝒩(0, σ2
ε I) D(y, x) = D(y − x) =

1
2σ2

ε
∥y − x∥2

2

Poisson noise:

Noise(x) = Pois(x+β), x ∈ ℝn
≥0, β ∈ ℝn

>0 D(y, x) = D(y, x + β) = KL(y, x + β) =
n

∑
i=1

xi + βi − yi ln (xi + βi)

Tailored distance function with
observation related to noise assumptions?

Impulsive noise:

Noise(x) = (1 − s) ⊙ x + s ⊙ c
ci = ℬ(1/2), si = ℬ(p), p ∈ [0,1]

D(y, x) = D(y − x) =
1
τε

∥y − x∥1

noise “sparsity” (the residual is 0 only in few pixels)
≈ x + ε, ε ∼ ℒ(0, τεI)

+ constants

Regularisation terms

14

π𝒳(x) −ln
R(x)
codify a-priori information+ constants

Regularisation terms

14

π𝒳(x) −ln
R(x)
codify a-priori information

Regularity around the mean:

π𝒳(x) = 𝒩(μx, Σx) R(x) =
1
2

∥x − μx∥2
Σx

−1

+ constants

Regularisation terms

14

π𝒳(x) −ln
R(x)
codify a-priori information

Regularity around the mean:

π𝒳(x) = 𝒩(μx, Σx) R(x) =
1
2

∥x − μx∥2
Σx

−1

Sparsity:

π𝒳(x) = ℒ(0, τI) R(x) =
1
τ

∥x∥1

+ constants

Regularisation terms

14

π𝒳(x) −ln
R(x)
codify a-priori information

Regularity around the mean:

π𝒳(x) = 𝒩(μx, Σx) R(x) =
1
2

∥x − μx∥2
Σx

−1

qi = ∥(∇x)i∥2

Sparsity:

π𝒳(x) = ℒ(0, τI) R(x) =
1
τ

∥x∥1

+ constants

Regularisation terms

14

π𝒳(x) −ln
R(x)
codify a-priori information

Regularity around the mean:

π𝒳(x) = 𝒩(μx, Σx) R(x) =
1
2

∥x − μx∥2
Σx

−1

qi = ∥(∇x)i∥2

Sparsity:

π𝒳(x) = ℒ(0, τI) R(x) =
1
τ

∥x∥1

Smoothness:

π𝒳(x) = π𝒬(q) = 𝒩(0, σ2
qI) R(x) =

1
2σ2

q
∥∇x∥2

2

+ constants

Regularisation terms

14

π𝒳(x) −ln
R(x)
codify a-priori information

Regularity around the mean:

π𝒳(x) = 𝒩(μx, Σx) R(x) =
1
2

∥x − μx∥2
Σx

−1

qi = ∥(∇x)i∥2

Sparsity:

π𝒳(x) = ℒ(0, τI) R(x) =
1
τ

∥x∥1

Piece-wise constancy:

π𝒳(x) = π𝒬(q) = ℒ(0, τI) R(x) =
1
τ
TV(x) =

1
τ

∥∇x∥2,1

Smoothness:

π𝒳(x) = π𝒬(q) = 𝒩(0, σ2
qI) R(x) =

1
2σ2

q
∥∇x∥2

2

+ constants

Regularisation terms

14

π𝒳(x) −ln
R(x)
codify a-priori information

Regularity around the mean:

π𝒳(x) = 𝒩(μx, Σx) R(x) =
1
2

∥x − μx∥2
Σx

−1

qi = ∥(∇x)i∥2

Sparsity:

π𝒳(x) = ℒ(0, τI) R(x) =
1
τ

∥x∥1

Piece-wise constancy:

π𝒳(x) = π𝒬(q) = ℒ(0, τI) R(x) =
1
τ
TV(x) =

1
τ

∥∇x∥2,1

Smoothness:

π𝒳(x) = π𝒬(q) = 𝒩(0, σ2
qI) R(x) =

1
2σ2

q
∥∇x∥2

2

Tikhonov

Sparse reg./
Compressed sensing

Tikhonov/
Sobolev

Total Variation

+ constants

The regularisation parameter

15

π𝒴|𝒳(y |x) = πE(y − x), π𝒳(x) = 𝒩(0, σ2
xI)Example:

argminx
1

2σ2
ε

∥y − x∥2 +
1

2σ2
x

∥x∥2
2 = argminx ∥y − x∥2 +

σ2
ε

σ2
x

∥x∥2 = argminx ∥y − x∥2 +λ∥x∥2

Ratio between noise level (can be estimated) and image statistical features (hard to estimate).

The regularisation parameter

15

π𝒴|𝒳(y |x) = πE(y − x), π𝒳(x) = 𝒩(0, σ2
xI)Example:

argminx
1

2σ2
ε

∥y − x∥2 +
1

2σ2
x

∥x∥2
2 = argminx ∥y − x∥2 +

σ2
ε

σ2
x

∥x∥2 = argminx ∥y − x∥2 +λ∥x∥2

Ratio between noise level (can be estimated) and image statistical features (hard to estimate).

More in general, the regularisation parameter weights data fit against regularisation.λ > 0

argminx D(y, x)+λR(x)

- Small : low regularisation, trust in the data, noise overfitλ
- High : high regularisation, need to regularise the data, artefacts induced by λ R

λ → + ∞

Examples

16

y = Noise(x)

Gaussian noise + piece-wise constant image: reference model for many applications.

Poisson noise + sparse signal: used in microscopy/astronomical imaging

Gaussian noise + Tikhonov-type regularisation: often used when for applicationsA ≠ I

argminx
1
2

∥y − x∥2
2 + λTV(x)

argminx≥0 KL(y, x + β) + λ∥x∥1

argminx
1
2

∥y − x∥2
2 +

λ
2

∥Lx∥2
2 L ∈ ℝd×n

Solving the problem: nods on optimisation

17

argminx J(x) := D(y, x) + λR(x) variational formulation of the image denoising problem

J : ℝn → ℝ≥0 ∪ {+∞}

 is -smooth, i.e. has -Lipschitz (Gâteaux) gradient:J L L

∃L > 0 : ∥∇J(x1) − ∇J(x2)∥2 ≤ L∥x1 − x2∥2

is proper

dom(J) = {x : J(x) < + ∞} ≠ ∅

 is convex:J

(∀x1, x2 ∈ ℝn), (∀α ∈ [0,1]) : J(αx1 + (1 − α)x2) ≤ αJ(x1) + (1 − α)J(x2)

Solving the problem: nods on optimisation

17

argminx J(x) := D(y, x) + λR(x) variational formulation of the image denoising problem

J : ℝn → ℝ≥0 ∪ {+∞}

 is -smooth, i.e. has -Lipschitz (Gâteaux) gradient:J L L

∃L > 0 : ∥∇J(x1) − ∇J(x2)∥2 ≤ L∥x1 − x2∥2

is proper

dom(J) = {x : J(x) < + ∞} ≠ ∅

 is convex:J

(∀x1, x2 ∈ ℝn), (∀α ∈ [0,1]) : J(αx1 + (1 − α)x2) ≤ αJ(x1) + (1 − α)J(x2)

⟺
J(x1) ≤ J(x2) + ⟨∇J(x2), x2 − x1⟩ +

L
2

∥x2 − x1∥2
2

under
convexity

Solving the problem: nods on optimisation

18

argminx J(x) := D(y, x) + λR(x) is proper, convex, -smooth and coercive.J L

Theorem
There exists a minimiser for . All local minimisers are global minimisers.
For all , there holds .

J
x* ∈ Argminx J(x) ∇J(x*) = 0

lim
∥x∥→+∞

J(x) = + ∞

Solving the problem: nods on optimisation

18

argminx J(x) := D(y, x) + λR(x) is proper, convex, -smooth and coercive.J L

Theorem
There exists a minimiser for . All local minimisers are global minimisers.
For all , there holds .

J
x* ∈ Argminx J(x) ∇J(x*) = 0

lim
∥x∥→+∞

J(x) = + ∞

Algorithm (gradient descent): for , : x0 ∈ dom(J), τ ∈ (0,
2
L) k ≥ 0

xk+1 = xk − τ∇J(xk)

Theorem
There holds and for the function values: . xk → x* J(xk) − J(x*) ≤

∥x0 − x*∥2

2τk

Example on Tikhonov regularisation

19

argminx J(x) :=
1
2

∥y − x∥2
2 + λ∥Lx∥2

2, L ∈ ℝd×n

Remark: the problem is quadratic, it can be solved by looking at the optimality condition:

(x* − y) + λLTLx* = 0 ⇒ (I + λLTL)x* = y

and solving the linear system, e.g., using DFT. Also, faster iterative methods exploiting further
regularity (strong convexity, can be employed.C2)

L ∈ {I, ∇, ∇2}

Hansen, Nagy, O’leary, ’06, Nesterov, ’83

Examples:

Example on Tikhonov regularisation

19

argminx J(x) :=
1
2

∥y − x∥2
2 + λ∥Lx∥2

2, L ∈ ℝd×n

Remark: the problem is quadratic, it can be solved by looking at the optimality condition:

(x* − y) + λLTLx* = 0 ⇒ (I + λLTL)x* = y

and solving the linear system, e.g., using DFT. Also, faster iterative methods exploiting further
regularity (strong convexity, can be employed.C2)

∇J(x) = (x − y) + λLTLx, L = 1 + λ∥LTL∥*, x0 ∈ ℝn, τ ∈ (0,2/L)

xk+1 = xk − τ ((xk − y) + λLTLxk)
while not converging

end

L ∈ {I, ∇, ∇2}

Hansen, Nagy, O’leary, ’06, Nesterov, ’83

Examples:

Image denoisers and proximal operators

20

For general (possibly non-smooth) regularisation functionals , note that:R : ℝn → ℝ≥0 ∪ {+∞}

argminx
1
2

∥y − x∥2 + λR(x) = proxλR(y)

where is single-valued if is convex and multi-valued (multiple minimisers)
otherwise.

proxλR : ℝn ⇉ ℝn R

Image denoisers and proximal operators

20

For general (possibly non-smooth) regularisation functionals , note that:R : ℝn → ℝ≥0 ∪ {+∞}

argminx
1
2

∥y − x∥2 + λR(x) = proxλR(y)

where is single-valued if is convex and multi-valued (multiple minimisers)
otherwise.

proxλR : ℝn ⇉ ℝn R

Examples:

 is convex and closed. R(x) = ιC(x), C
 R(x) = ∥x∥1

 R(x) = TV(x)

Non-smooth regularisation functionals
 not defined.∇R

proxιC
(y) = PC(y)

proxλ∥⋅∥1
(y) = ST(y; λ)

proxλ TV(⋅)(y)?

Image denoisers and proximal operators

20

For general (possibly non-smooth) regularisation functionals , note that:R : ℝn → ℝ≥0 ∪ {+∞}

argminx
1
2

∥y − x∥2 + λR(x) = proxλR(y)

where is single-valued if is convex and multi-valued (multiple minimisers)
otherwise.

proxλR : ℝn ⇉ ℝn R

Proximal operators are widely used as implicit variants of gradients for non-smooth optimisation:

xk+1 = proxτλR (xk − τ∇x D(y, Axk)) Gradient-descent on data term + denoising

This observation stands at the very basis of Plug & Play approaches where proxτλR 𝒟ς

Kamilov, Bouman, Buzzard, Wuhlberg, ‘23

Examples:

 is convex and closed. R(x) = ιC(x), C
 R(x) = ∥x∥1

 R(x) = TV(x)

Non-smooth regularisation functionals
 not defined.∇R

proxιC
(y) = PC(y)

proxλ∥⋅∥1
(y) = ST(y; λ)

proxλ TV(⋅)(y)?

References

21

A. Beck, First-order methods in optimization, Volume 25, MOS-SIAM series on Optimization, 2017.

A. Chambolle, T. Pock, An introduction to continuous optimization for imaging, Acta Numerica, 2016

M. Pragliola, L. Calatroni, A. Lanza, F. Sgallari, On and beyond Total Variation in imaging: the role of space
variance, SIAM Review, 65 (3), (2023).

Tony F. Chan, J. Shen, Image Processing and Analysis: variational, PDE, wavelet and stochastic methods,
SIAM, 2005.

S. Arridge, P. Maas, O. Öktem, C.B. Schönlieb, Solving inverse problems using data-driven models,
Acta Numerica, 2019

J. Kaipio, E. Somersalo, Statistical and computational inverse problems, Springer, 2005.

luca.calatroni@unige.it

Thanks for your attention!

mailto:luca.calatroni@unige.it

