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- Image denoising as a regression problem

- Supervised/unsupervised learning

- Neural networks

- Bias-variance tradeoff

- Over-parametrisation

- NNs for imaging: CNN, U-NET

- Training a NN: backpropagation, batches,
optimisers..

- NumPy/Matplotlib/Pytorch (tomorrow)

- Digital images

- Modelling noise

- Quality measures (MSE, PSNR, SSIM)

- Image denoising as a toy ‘inverse’ problem
- Bayesian formulation

- MAP estimators

- Regularisation

- Bits of optimisation: GD, proximal operator
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Digital images

Digital images are discrete representations of the continuous world we live in.

Analog Image Digital Sampling Pixel Quantization

249 z«|m|mlzoelzss|n7 251[285
248[245]210] 93 | 81 [120] 97 [193]2s4
260 | 170[133] 84 [137]+20[104[ 145 283
241|116[118]107[134]138] 96 | 92 | 163
277 |142|121|s13)124] 15| s07] 71 | 179
234

241

Sampling: allows to represent a continuous image
into a finite (pixel) grid.

106| 84 [125| 97 | 108[125] 106|204
202|102{132] 75 | 73 |141[246]262
263 |262(244[ 238 178{ 199 242[250] 245
255

Quantisation: assigns a grey-level describing
average brightness at each pixel.

UniGe | MaLGa



Digital images

Digital images are discrete representations of the continuous world we live in.

Analog Image Digital Sampling Pixel Quantization
248|244 240[230(209]233]227[261 285 - . . . .
oo il o fostes §ampllpg. alloyvs to represent a continuous image
o s e R into a finite (pixel) grid.
241|116[118]107[134]138] 96 | 92 | 163 n
277 |142|121|s13)124] 15| s07] 71 | 179 2
::;‘:"’:2 e ot Quantisation: assigns a grey-level describing
102132 1 . .
263 |262(244[ 238 178{ 199 242[250] 245 ave rage b“ghtn ess at each p|Xe|..

Q={l,..,n}x{l,...,n,} — image domain
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Digital images

Digital images are discrete representations of the continuous world we live in.

Analog Image Digital Sampling Pixel Quantization
248|244 240[230(209]233]227[261 285 u . . . .
oo il o fostes §ampllpg. alloyvs to represent a continuous image
2s0[170[133] 84 [s37]20] 04[] 253 into a finite (pixel) grid.
241|116[118]107[134]138] 96 | 92 | 163 n
277 |142|121|s13)124] 15| s07] 71 | 179 2
::::"’;2 e ot Quantisation: assigns a grey-level describing
02 l 1 . .
PP P PP P P e e e e average brightness at each pixel.

255 Q={l,..,n}x{l,...,n,} — image domain

o X:Q-{0,..25} X=(x) e {0,.,255}""
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Digital images

Digital images are discrete representations of the continuous world we live in.

Analog Image Digital Sampling Pixel Quantization L
248|244 240[230(209]233]227[261 285 . . . .
e §ampllpg. alloyvs to represent a continuous image
2s0[170[133] 84 [s37]20] 04[] 253 into a finite (pixel) grid.
241|116[118]107[134]138] 96 | 92 | 163 n
277 [142{121[s13[s24[s15[s07| 71 [s79 2
b L B ol Quantisation: assigns a grey-level describing
241[202|102|132] 75 | 73 | 141 m|zsz . .
PP P PP P P e e e e average brightness at each pixel.

255 Q={l,..,n}x{l,...,n,} — image domain

128— X:Q—> {O,,,,,255} X = (xi,j) = {0,...’255}n1xn2n0m0n X € [0,1]7 X € RM"*"
adjustments..’
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Digital images

Digital images are discrete representations of the continuous world we live in.

Analog Image Digital Sampling Pixel Quantization
248|244 240[230(209]233]227[261 285 - . . . .
e §ampllpg. alloyvs to represent a continuous image
250 norsalsc 137 1zolso4 145(263 into a finite (p|xe [) g”d.
241 |11E[118|07 1341138 96 | 92 [163 n
277 [142{121[s13[s24[s15[s07| 71 [s79 2
b L B ol Quantisation: assigns a grey-level describing
241[202]102] 132 75 | 73 |141|246f2s2 ) )
PP P PP P P e e e e average brightness at each pixel.

255 Q={l,..,n}x{l,...,n,} — image domain

128— X:Q—> {O,,,,,255} X = (xi,j) = {0,...’255}n1xn2n0m0n X € [0,1]7 X € RM"*"
adjustments..’

Upon vectorisation of the 2D image X, consider a vector X € R", withn = nn, .
UniGe ‘ MalkGa



Grayscale/RGB images

Natural scenes are not grayscale. Color is a combination of Red-Green-Blue channels.

Red The higher the intensity in the individual

channel, the more represented is the color.
— 3
Xij= ()85 0i) €ER

Green Hence, for RGB images:

x € R™3 or R

- Other color spaces are possible (CMYK, HSV..)

Blue
- Often, color channels are processed separately.

UniGe | MaLGa



Grayscale/RGB images

Natural scenes are not grayscale. Color is a combination of Red-Green-Blue channels.

The higher the intensity in the individual
channel, the more represented is the color.

— 3
%ij=Uip8ipbi) €R

Hence, for RGB images:

x € R™3 or R

- Other color spaces are possible (CMYK, HSV..)
- Often, color channels are processed separately.

[ Assume X is grayscale (extension is trivial) ]

UniGe | MaLGa



Modelling degradation processes

Images are matrices/vectors. How to model acquisition processes?

A = Rm)(n

linear input (x)-output (y) relation




Modelling degradation processes

Images are matrices/vectors. How to model acquisition processes?

- Convolution: Ax < 2*X his a kernel
|

A € R™n

linear input (x)-output (y) relation

y = AX
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Modelling degradation processes

Images are matrices/vectors. How to model acquisition processes?

- Convolution: Ax < 2*X his a kernel

- Masking:

,. A =M e {0,1}"™"

M?J

A € R™n

linear input (x)-output (y) relation

y = AX
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Modelling degradation processes

Images are matrices/vectors. How to model acquisition processes?

- Convolution: Ax < 2*X his a kernel

& @
e

A =M e {0,1}"™"

- Fourier transform + Masking:

A € R™n

linear input (x)-output (y) relation

y = Ax A-=MZF(-)

UniGe | MaLGa



Modelling noise

Acquisitions are never perfect. Interferences, errors, faults may happen.

Noise : R — R codifies instrumental errors.

In the following: A = I € R™". How to model noise?
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Modelling noise

Acquisitions are never perfect. Interferences, errors, faults may happen.

Noise : R — R codifies instrumental errors.

In the following: A = I € R™". How to model noise?

Gaussian noise:
Noise(x) =x+¢, €~ 4(0,0°])

Mostly used due to CLT.
Models signal-independent electronic noise

UniGe | MakGa



Modelling noise

Acquisitions are never perfect. Interferences, errors, faults may happen.

Noise : R — R codifies instrumental errors.

In the following: A = I € R™". How to model noise?

Mostly used due to CLT.
Models signal-independent electronic noise

Gaussian noise:

Noise(x) =x+¢, €~ 4(0,0°])

Used in low-photon imaging.
Astronomical, microscopy imaging.

Poisson noise:
Noise(x) = Pois(x+f), x€RY, f € R’
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Modelling noise

Acquisitions are never perfect. Interferences, errors, faults may happen.

Noise : R — R codifies instrumental errors.

y = Noise(Ax)
In the following: A = I € R™". How to model noise?

Mostly used due to CLT.

Gaussian noise:
Models signal-independent electronic noise

Noise(x) =x+¢, €~ 4(0,0°])

Used in low-photon imaging.

Poisson noise:
§ Astronomical, microscopy imaging.

Noise(x) = Pois(x+f), x€RY, f € R’

Impulsive noise:

Noise(x)=(1—-5)Ox+s0Oc
¢;=B(1/2), s; = B(p),p € [0,1]

Used to describe faulty detectors
and/or long time exposures under bad lighting.

UniGe ‘ MalkGa



Quality metrics: MSE, SNR, PSNR

How to assess image quality between two images using pixel information?
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Quality metrics: MSE, SNR, PSNR

How to assess image quality between two images using pixel information?



Quality metrics: MSE, SNR, PSNR

How to assess image quality between two images using pixel information?




Quality metrics: MSE, SNR, PSNR

How to assess image quality between two images using pixel information?

SR < I
(Y9 X) - 1010g10 ”X _ y”2

MAX*
PSNR(y, x) = 101log,, ( MSEQy X))



Quality metrics: MSE, SNR, PSNR

How to assess image quality between two images using pixel information?

n, N

1 & 1 1
MSE(y,x) = — Z, |y — x; 1% = ——Z Z | Vi i, = Xy )
n P ny np

1| .
SNR(y,x) = 10log, (m noise €
R

’
’

Original PSNR=26.547 PSNR=26.547 PSNR=26.547

MAX?
PSNR(y, x) = 101log,, ( MSE(y X)) ‘ ‘

where MAX is the highest possible value (e.g., 255 or 1)
Sensitive to pixel variations

Is it a good quality metric for natural images?!

UniGe | MakGa



Quality metrics: SSIM

Qugp, + C)) (20, + Cy)
SSIM(x,y) = by 7 210 T 2 € [0,1]
(ug + ug + C)(of + 07 + Cy)

Original PSNR=26.547 PSNR=26.547 PSNR=26.547
- Based on image statistics: mean, variance, covariance | S5IM=1 SSIM=0.988  SSIM=0.840  SSIM=0.694

+ constant Cy, G, stabilising the division.

- Typically performed on small image patches + averaging

UniGe | MalGa  \\ang, Bovik, Sheikh, Simoncelli, ‘04



Quality metrics: SSIM

Qppty + €20, + Cy)
SSIM(x, y) = — Xy T RO T o )
(17 + ug + C)(of + o} + Cy)

Original PSNR=26.547 PSNR=26.547 PSNR=26.547
- Based on image statistics: mean, variance, covariance | S5IM=1 SSIM=0.988  SSIM=0.840  SSIM=0.694

+ constant Cy, G, stabilising the division.

- Typically performed on small image patches + averaging -m IDEAL m

. . —00, + + > 30
All such metrics are supervised. €----- m oot e) ”
They depend on ground-truth X. m [0, + 00) o > 30
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Image denoising as a ‘toy’ inverse problem

Giveny € R”, find x € R" such that:

- “Inverse problem” (operator to invertis A = 1)
— - Still challenging: the noise realisation is unknown
- If noise is high (o is big), image content can be lost

x € [0,1]"

How to model this problem in
mathematical terms?

o = 0.002 c=0.3

MSE
PSNR/SSIM

UniGe ‘ MakGa



Bayesian formulation

Idea: model also X and y as realisation of random variables X ~ g, % ~ 7o, + conditional laws.
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Bayesian formulation

Idea: model also X and y as realisation of random variables X ~ g, % ~ 7o, + conditional laws.

ﬂ"%'l ?(X

y)

oy (Y

x)

779,(Y)

7T (X)

Posterior distribution: what we would like to maximise.

Likelihood: function describing the probability of observing the data given a choice of X

Evidence term: normally neglected, does not depend on X

Prior: prior assumptions on the unknown quantity X



Bayesian formulation

Idea: model also X and y as realisation of random variables X ~ g, % ~ 7o, + conditional laws.

o9/ (X|Y)  Posterior distribution: what we would like to maximise.

o9 (Y [X)  Likelihood: function describing the probability of observing the data given a choice of X

7To,(y) Evidence term: normally neglected, does not depend on X

o (X) Prior: prior assumptions on the unknown quantity X

Under Gaussian noise assumption:
7o (¥ | X)7gr(X)
79/(y)

Bayes’ Theorem



Bayesian formulation: priors, score functions

oy (¥ | X) 79 (X)
79/(y)

x* € argmax_ zo4/(X|y) = argmax = argmax_ 7z, o (y | X)7o(X)
x "TNY X x 'YX VA

By taking the negative logarithm:

x* € argmin_ — In (%?my)) = argmin_ —In <ﬂ%%(y|x)ﬂ%(x)> = argmin_ —In (n%g(yu)) —In (75(x))
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Bayesian formulation: priors, score functions

Ty (¥ [ X)7g (X)

X* € argmax, zqq9(X|y) = argmax, )
4

By taking the negative logarithm:

g Example: ”fz/u"(y |X) = (Y — X),  7g(X) = N (py, Zy)

_ noo ly, — x| 1 1
x* € argmin. —In exp | ———— —In exp | ——(x—pu)TE. (x -

i=1 4/ 27c2

1 1
ly — xII* + Sl — Hell3

= argmin
X Gg

—-> towards optimisation problem!
N J

UniGe ‘ MalkGa




From a statistical to a variational perspective: optimisation

argmin_ J(x) := —In (n%%(yb()) —In (n&n(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up
with convex optimisation problems for a functional / : R" - R,y U {+00}

UniGe | MaLGa



From a statistical to a variational perspective: optimisation

argmin_ J(x) := —In (n%g[(yb()) —In (n&n(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up
with convex optimisation problems for a functional / : R" - R,y U {+00}

We are going to see a very simple algorithm for minimising J based on gradients. Note:

VJ(x*) = - VIn <7T?|5[(y | X*)) — Vin (Jrg[(x*)) =0

when looking for MAP estimators.
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From a statistical to a variational perspective: optimisation

argmin_ J(x) := —In (n%%(yb()) —In (n&n(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up
with convex optimisation problems for a functional / : R" - R,y U {+00}

We are going to see a very simple algorithm for minimising J based on gradients. Note:

Bayesian model Optimisation
approach

Likelihood Data-term

VJ(x*) = - VIn (ﬂ%&n(y | X*)) — Vin (n&n(x*)) =0

when looking for MAP estimators.

Noise
information

A-priori

information Prior Regularisation

Regularisation

Parameters Hyperparameters
parameters
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From a statistical to a variational perspective: optimisation

argmin_ J(x) := —In (n%%(yb()) —In (n&n(x))

Whenever likelihood + prior functionals belong to a log-concave exponential family we end up
with convex optimisation problems for a functional / : R" - R,y U {+00}

We are going to see a very simple algorithm for minimising J based on gradients. Note:

Bayesian model Optimisation
approach

Likelihood Data-term

VJ(x*) = - VIn (ﬂ%&n(y | X*)) — Vin (n&n(x*)) =0

when looking for MAP estimators.

Noise
information

How to choose good noise and image models?

A-priori

information Prior Regularisation

Regularisation

Parameters Hyperparameters
parameters

UniGe | MaLGa



Data terms

------ > Ty(yIX)  meee-ep D(y, x)

P Constants  railored distance function with

observation related to noise assumptions?
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Data terms

------ > Ty(yIX)  meee-ep D(y, x)

+ constants

Tailored distance function with
observation related to noise assumptions?

Gaussian noise:

. 1
Noise(x) =x+e, &~ N(0,671) --------- >  D(y,X) =D(y —X) = >
68‘

lly — xII3
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Data terms

------ > Ty(yIX)  meee-ep D(y, x)

+ constants

Tailored distance function with

observation related to noise assumptions?
Gaussian noise:

1
Noise(x) =x+e, &~ N(0,671) --------- > D(y,x)=D(y-x =——ly-xl;
68
Poisson noise:
Noise(x) = Pois(x+f), xe Ry, feRL, ---ooun-- » D(y,x)=D(y,x+p) = KL(y,x + ) = in + 4=y (x, + )

i=1
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Data terms

------ > Ty(yIX)  meee-ep D(y, x)

P Constants  railored distance function with

observation related to noise assumptions?

Gaussian noise:

1
Noise(x) =x+e, &~ N(0,671) --------- >  D(y,X) =D(y —X) = > ly — x|I3
08
Poisson noise:
Noise(x) = Pois(x+f), xe Ry, feRL, ---ooun-- » D(y,x)=D(y,x+p) = KL(y,x + ) = in+ﬁi —y;In (x,+ )

i=1
Impulsive noise:

Noise(x)=(1—-s)Ox+sO¢c ___.._... > D(y,x)=D(y—X)=i||y—X||1
T

c;=B(/2), s;= B(p),p € [0,1] e . . _
noise “sparsity” (the residual is 0 only in few pixels)
~x+e, €~Z0,71

UniGe | MaLGa



Regularisation terms Tg(X) =----- > R(X)

codify a-priori information
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Regularisation terms Tg(X) =----- > R(X)

) codify a-priori information
Regularity around the mean:

g (X) = N (pg, Zy) ===~ > R(X)=—IIX //tXII2
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Regularisation terms Tg(X) =----- > R(X)

) codify a-priori information
Regularity around the mean:

g (X) = N (pg, Zy) ===~ > R(X)=—IIX //txll2

Sparsity:
1
g (x) =Z£0,72I)  ------ »  R(x)=—||x]|,
T
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Regularisation terms Tg(X) =----- > R(X)

) codify a-priori information
Regularity around the mean:

JZ'!%(X) — ﬂ/(/’txa Zx) """ > R(X) — _”X :l’lx”2
Sparsity:
1
g (x) =Z£0,72I)  ------ »  R(x)=—||x]|,
T
q; = I(Vx),ll,

UniGe | MaLGa



Regularisation terms Tg(X) =----- > R(X)

) codify a-priori information
Regularity around the mean:

g (X) = N (hyo L) == === - > R(x) = —IIX //txll2
Sparsity:
rX) = SO -eeee- > RO =Ixll
Smoothness:

ne(X) = mg(q) = A0, Uél)

q; = [[(VX),ll,
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Regularisation terms Tg(X) =----- > R(X)

) codify a-priori information
Regularity around the mean:

g (X) = N (hyo L) == === - > R(x) = —IIX //txll2
Sparsity:
rX) = SO -eeee- > RO =Ixll
Smoothness:

ne(X) = mg(q) = A0, Uél)

Piece-wise constancy:

no(X) = mg(q) = Z£(0,71)

q; = [[(VX),ll,
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Regularisation terms Tg(X) =----- > R(X)

) codify a-priori information
Regularity around the mean:

Ty (X) = N(py, 2y) === >  R(X) = —”X //lx”2 Tikhonov
Sparsity:
1 Sparse reg./
re(x) = Z0,7)  ------ >  R(x)= ;”X”l Compressed sensing
Smoothness:
Tikhonov/
no(X) = mg(q) = N (0, Uél) Sobolev

Piece-wise constancy:

no(X) = mg(q) = Z£(0,71)

q; = [[(VX),ll,

Total Variation
UniGe | MaLGa




The reqgularisation parameter

-

N

Example: 7o (¥ |X) = 75(y — X), 7g(x) = #(0,5.1)

2

1 1 i O )
ly — x|I* + —||x|I3 = argmin_ ||y — x||* +—";||X|I2 =argmin_ [ly — x||* +4||x]|?

argmin
¥ 208 ox

Ox

Ratio between noise level (can be estimated) and image statistical features (hard to estimate).

UniGe | MaLGa




The regularisation parameter

4 5 ™
Example: 7y, (¥ |X) = m(y — X), 79(x) = N(0,0.])

2

1 1 i O )
— ly — x||* + — Ix]|3 = argmin_ [ly — x||? +—€2||XII2 =argmin_ [ly — x||* +4||x]|?
& X

argmin_

Oy

Ratio between noise level (can be estimated) and image statistical features (hard to estimate).
- J

More in general, the regularisation parameter A > 0 weights data fit against regularisation.

argmin_ D(y, X)+AR(x)

- Small A: low regularisation, trust in the data, noise overfit
- High A: high regularisation, need to regularise the data, artefacts induced by R

UniGe | MaLGa



Examples

Gaussian noise + piece-wise constant image: reference model for many applications.
1 5
argmin_ Elly —X|[5 + ATV(X)
Poisson noise + sparse signal: used in microscopy/astronomical imaging

argmin__, KL(y,x + f) + A|xl

Gaussian noise + Tikhonov-type regularisation: often used when A # I for applications

1 A
argmin_ 5||y —x||3 +5||Lx||§ L € R®"

UniGe | MaLkGa



Solving the problem: nods on optimisation

(argminX J(x) := D(y,x) + /IR(X)] variational formulation of the image denoising problem

J:R" > R,qU{+0c0} isproper
dom()={x:JX) <+ o0} #Z

J is L-smooth, i.e. has L-Lipschitz (Gateaux) gradient:

AL >0: ||VJX) - VIX)I|, L L||x; —X,|,

J is convex:

(Vx;,x, € R"), (Vae[0,1]): Jax;+ (1 -a)X,)) < aJx)+ {1 —-a)(Xx,)



Solving the problem: nods on optimisation

(argminX J(x) := D(y,x) + /IR(X)] variational formulation of the image denoising problem

J:R" > R,qU{+0c0} isproper
dom()={x:JX) <+ o0} #Z

J is L-smooth, i.e. has L-Lipschitz (Gateaux) gradient:

AL >0: ||VJX) - VIX)I|, L L||x; —X,|,

J is convex:

(Vx;,x, € R"), (Vae[0,1]): Jax;+ (1 -a)X,)) < aJx)+ {1 —-a)(Xx,)



Solving the problem: nods on optimisation

4 :
argmin_ J(x) := D(y,x) + /IR(X)] J is proper, convex, L-smooth and coercive.
fTheorem A
There exists a minimiser for J. All local minimisers are global minimisers.
For all x* € Argmin_ J(x), there holds VJ(x*) = 0.
. J
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Solving the problem: nods on optimisation

a
argmin_ J(x) := D(y,x) + /IR(X)] J is proper, convex, L-smooth and coercive.
fTheorem h
There exists a minimiser for J. All local minimisers are global minimisers.
For all x* € Argmin_ J(x), there holds VJ(x*) = 0.
\_ J
: : 2
Algorithm (gradient descent): for x, € dom(J), 7 € O,z k> 0:
Xk-l—l — Xk — TV](Xk)
Theorem Ix, — x*||2
There holds X, — Xx* and for the function values: J(Xx;) — J(x*) < 02 .
T

UniGe ‘ MalkGa



Example on Tikhonov reqularisation

. 1
argmin_ J(x) := 5||y — x|+ |Lx|l3, L eR™n

(" Remark: the problem is quadratic, it can be solved by looking at the optimality condition:
x*—y)+AL'Lx*=0 = I+AL'L)x*=y

and solving the linear system, e.g., using DFT. Also, faster iterative methods exploiting further
regularity (strong convexity, Cz) can be employed.

N

UniGe | MaLGa



Example on Tikhonov reqularisation

. 1
argmin_ J(x) := 5||y — x|+ |Lx|l3, L eR™n

(" Remark: the problem is quadratic, it can be solved by looking at the optimality condition:
x*—y)+AL'Lx*=0 = I+AL'L)x*=y

and solving the linear system, e.g., using DFT. Also, faster iterative methods exploiting further
regularity (strong convexity, Cz) can be employed.

N

S g 2 - B St

fvix)=(x—y)+ALLx, L=1+|L"L|. x,€R" 7€ (02/L) }

{

' while not converging
X, =X, —7((x,—y)+AL'Lx
k+1 k kY k

£ end

UniGe | MaLGa



Image denoisers and proximal operators
For general (possibly non-smooth) regularisation functionals R : R" - R, U {+00}, note that:
argmin_ %Hy —x||? 4+ AR(Xx) = Prox, .(y)

where prox; . : R"™ = R"is single-valued if R is convex and multi-valued (multiple minimisers)
otherwise.



Image denoisers and proximal operators
For general (possibly non-smooth) regularisation functionals R : R" - R, U {+00}, note that:
argmin_ %lly —x||? 4+ AR(Xx) = Prox, .(y)

where prox; . : R"™ = R"is single-valued if R is convex and multi-valued (multiple minimisers)
otherwise.

Examples:

R(X) = 1,(x), C'is convex and closed.
R(x) = [|x]|,
R(x) = TV(X)

Non-smooth regularisation functionals
V R not defined.



Image denoisers and proximal operators
For general (possibly non-smooth) regularisation functionals R : R" - R, U {+00}, note that:
argmin_ %Hy —x||? 4+ AR(Xx) = Prox, .(y)

where prox; . : R"™ = R"is single-valued if R is convex and multi-valued (multiple minimisers)
otherwise.

Examples:

R(X) = 1,(x), C'is convex and closed.
R(x) = |[x]|,

R(x) = TV(X)

Non-smooth regularisation functionals
V R not defined.

Proximal operators are widely used as implicit variants of gradients for non-smooth optimisation:

X4 = PrOX ,p (X — 7V D(y, AXy)) Gradient-descent on data term + denoising

-

This observation stands at the very basis of Plug & Play approaches where prox.,, —> QZG
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