

ALMA MATER STUDIORUM Università di Bologna

Hiding complexity behind the fog Transparent innovation for I4.0

Lorenzo Rosa

Ph.D. student

Department of Computer Science and Engineering University of Bologna, Italy

International Event on Industry 5.0 to Enhance Cooperation among Academia and Industry September 15th, 2023 New York, NY, USA

The promise of Industry 4.0

Industry 4.0: the huge amount of machine data can be <u>analyzed</u> to extract business insights, and to <u>support and automate</u> decision-making.

Industrial Internet of Things (IIoT) provides smaller, smarter, and pervasive <u>connected devices</u> that allow both real-time data ingestion and immediate actions on the surrounding environment.

Smart factories automate and improve industrial processes through Information Technologies (IT) for advanced integration between machinery and equipment.

Cloud-native communication enables innovative IT and networking technologies (e.g., Machine Learning) directly at the shop floor.

The IT/OT convergence: a challenging goal

Industry 4.0: the huge amount of machine data can be <u>analyzed</u> to extract business insights, and to <u>support and automate</u> decision-making.

Operational Technologies (OT) manage and control physical industrial processes with strong performance constrains. Traditionally <u>closed and rigid</u>, with a*d hoc* design, proprietary protocols, and special (expensive) hardware.

Information Technologies (IT) run software-based services, on commodity hardware, but with no performance guarantees. Traditionally <u>open and flexible</u>, general-purpose, standard protocols, integrated with cloud environments.

<u>IT/OT convergence</u> reduces operational costs, enhances flexibility, portability, maintenance and testing, improves reliability, and puts companies back in control of data ownership.

However, IT technology continuously evolves at a much faster pace than OT technologies

An increasing number of exciting possibilities... and of complexity

control plane data plane **APPLICATION** traditional networks **OPERATING** SYSTEMS accelerated networks HARDWARE

Information Technologies evolve at a high speed

New **network acceleration options** (hardware, software) significantly improve network latency and throughput compared to traditional techniques: e.g., RDMA, DPDK, XDP.

These options can enable exciting I4.0 innovation at the edge but are heterogeneous and difficult to use:

- new API: each accelerator has its own set of custom interfaces to the network
- **tailored** system design: systems should optimize their internal architecture for the specific technology

Although modern IT is crucial to foster innovation, it's difficult to train workforce to follow such high-speed evolution.

Time-Sensitive Networking (TSN)

A set of standards that make **Ethernet networks deterministic**, to support real-time industrial traffic.

TSN requires a NIC that supports:

- Hardware clock. Host must synchronize via a specific profile of the Precision Time Protocol (PTP) called generic PTP (gPTP).
- *Multi-queues*. Traffic classes associated to NIC queues.

TSN defines also **algorithms** to select the packets to be sent, and a Gate Control List to create **cyclical time-aware windows**.

ALMA MATER STUDIORUM Università di Bologna

Virtual Programmable Logic Controllers (vPLC)

PLCs command the feedback control loops of sensors and actuators under **demanding performance constraints**.

PLCs are **specialized embedded systems**, with dedicated hardware and communication stack, requires expert programmers.

Virtual PLCs fully embrace IT. It clearly separates the <u>software control</u> <u>logic</u> (programmable with general-purpose languages) from the machine-specific <u>physical interface</u>.

vPLCs dramatically improve flexibility, portability, maintainability, etc., allowing the **dynamic (re)scaling and (re)conguration** of the control infrastructure and the seamless integration with the cloud.

However, general-purpose IT might introduce unacceptable delays and unpredictability for industrial environments.

Virtual Programmable Logic Controllers (vPLC)

Two major sources of variability and performance overhead for vPLCs:

- 1. The use of lightweight **virtualization** mechanisms, such as Virtual Machines (VMs) or containers.
- 2. The adoption of **general-purpose communication** protocols and equipment.

Goal: support the <u>communication requirements</u> of vPLCs on generalpurpose hardware and standard protocols...

... while also <u>hiding the complexity</u> of our solution behind standard tools and technology familiar to the domain experts.

Our work aims to provide support **vPLC networking** through an **open solution** that **clearly separates** support for the mixed-criticality requirements of vPLCs:

- Traffic toward the **cloud**: best-effort communication through standard protocols and technologies.
- Traffic toward the machines: guaranteed communication in terms of (1) deterministic behavior and (2) minimal latency overhead.

To achieve that goal, we combine a set of **open source tools**: <u>docker</u> containers, standard protocols to ensure low network performance and variability (TSN), to ease portability (**OPC-UA**), and to enhance management and deployment (Kubernetes).

An open solution for vPLC Networking on Commodity Hardware

UNIVERSITÀ DI BOLOGNA

KuberneTSN: A new userspace TSN scheduler for deterministic overlay networks

KuberneTSN defines a **new Kubernetes networking plugin** called **tsn-cni** that builds a **userspace packet <u>scheduler</u>** to configure TSN from the application container. Implemented as a daemon (*KTSNd*), it lives in a container and *shares memory* with applications.

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

An open solution for vPLC Networking on Commodity Hardware

We propose a framework that combines a set of opensource, general-purpose technologies:

- Docker container
- Kubernetes orchestrator
- OPC-UA (TSN profile)
- <u>KuberneTSN</u> = TSN + DPDK

to support the mixed-criticality **networking requirements** of vPLCs.

Our approach <u>significantly reduces</u> the development and operationalization cost of traditional PLCs, guaranteeing both <u>flexibility</u> **and also** predictable performance, with no risk of vendor lock-in.

Performance evaluation

Goals

1. Assess the <u>network overhead</u> introduced by containerized vPLCs

2. Assess the <u>network behavior and performance</u> of our solution

Testbed. 2 machines equipped with an Intel I225 NIC, an Intel i9-10980XE 18/36 CPU, and 64GB RAM, connected through a TSN-compliant switch.

Test App. 1 pub, 1 sub, running in containers on separate hosts, exchange UDP packets with **25** μ s publishing cycle, typical of <u>hard real-time industrial applications</u>.

Metric.<u>E2E Latency</u>Reception time – Scheduled Time<u>Jitter</u>Skew from expected reception time

We **compare** the behavior of the same vPLC test application running in <u>two configurations</u>, within our framework and bare-metal, for different payload sizes, in a real industrial testbed.

UNIVERSITÀ DI BOLOGNA

Virtualization overhead: End-to-End Latency

ALMA MATER STUDIORUM Università di Bologna

Determinism: Jitter

Conclusion and future work

We propose a **framework** based on **open-source tools** to support fully virtualized PLCs (vPLCs) while also satisfying the performance constraints of real-time industrial applications

The **KuberneTSN** (KTSN) solution we developed is an opensource Kubernetes networking plugin, freely available [1].

These framework for the edge/fog computing:

- leverages <u>innovative and complex</u> IT to improve industrial operations;
- hides the complexity behind standard and well-known tools.

ALMA MATER STUDIORUM Università di Bologna

Lorenzo Rosa

Ph.D. student Department of Computer Science and Engineering University of Bologna, Italy

lorenzo.rosa@unibo.it

www.unibo.it

The Cloud Continuum

Exponential growth of **connected smart devices** in different application domains: *Industry 4.0, smart cities, healthcare, connected vehicles, etc.*

Cloud Continuum (CC): a fluid dissemination of virtualized resources that offer cloud-like features outside datacenters.

This design **eases** development and deployment, and is **cost-effective** for providers (resource sharing).

Kernel-bypassing networking with DPDK

Standard UDP/IP networking from a containerized application let packets cross multiple software layers, adding significant overhead.

Kernel-bypassing solutions are **faster** because:

- Remove data copies (<u>zero-copy</u> transfers)
- Remove user/kernel context switches
- Uses a more efficient network stack

The **<u>Data Plane Development Kit</u>** (DPDK) is a kernel-bypassing software library that:

- Requires userspace vSwitch (e.g., OVS-DPDK)
- Removes the TSN scheduler from the datapath

Standard datapath

UNIVERSITÀ DI BOLOGNA

Enabling technology: network acceleration options

New **acceleration options** (hardware, software) significantly improve network latency and throughput compared to traditional techniques: e.g., RDMA, DPDK, XDP.

These options can enable exciting I4.0 innovation at the edge but are **heterogeneous** and **difficult** to use.

Networking stack	ACCELERATION TYPE	ΑΡΙ	DEDICATED HARDWARE	control plane data plane
Traditional TCP/IP	No	Socket	NO	
XDP	In-kernel acceleration	eBPF API	NO	OS traditional networks
RDMA	Hardware offloading	Verbs	YES	KERNEL accelerated networks
DPDK	Hardware offloading		NO	fog HARDWARE

