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1 Representer Theorems

1.1 Inverse problems with Tikhonov regularization

Let H be a Hilbert space with inner product (-, -)%. We recall that the Riesz map
R : H — H’ is the unitary transform that maps H into its dual H' equipped
with the inner product (-,-)3/. In effect, each point f € H is mapped into
its (unique) Hilbert conjugate f* = R{f} € H’. The unitary nature of R is
expressed by the characteristic identity

VigeH: (fign=_{fg)={"9")n (1)

where f* = R{f},g* = R{g} € H'. Moreover, R* = R™! : #' — H so that the
adjoint operator R* is the Riesz map from H' — H” = H, due to the reflexivity
of Hilbert spaces. This invertibility property is summarized by f** = f for all
feH.

The goal here is to invoke the general representer theorem in order to solve
the generic linear inverse problem

M
fo= arg}réig <mz_1 [Ym — <Vmaf>|2 + >\|f||’2H> (2)

where A € R is an adjustable regularization parameter. The only hypothesis
is that the linear measurement functionals are well defined over H—that is,
vi,..., vy € H' = X—and linearly independent.

Specifically, we want you address the following points:

1. Show that the solution is unique and can be written as fo = Z%:l A Pm
where the ,, are suitable basis functions.

2. Recast the problem as a finite dimensional optimization.

*Biomedical Imaging Group, Ecole polytechnique fédérale de Lausanne (EPFL), Station
17, CH-1015, Lausanne, Switzerland (michael.unserQepfl.ch).



3. Solve 2. explicitly by showing that the optimal expansion coefficients in 1.
can be evaluated as a = (H+ A7) 'y for some suitable “system” matrix
H e RM*M,

1.2 Application of Banach conjugates

The signal space of our interest is X" = (RV, || - ||, ) with p > 1 whose predual is
X = RN, |- |le,) with %—i—% = 1. These spaces are strictly convex for p € (1,00).
1.2.1 Exercise on Compressed Sensing

Our goal is to recover an unknown signal s = (s,,) € R" from a set of corrupted
linear measurements ¥, = h! s+ ¢€,,, m = 1,..., M where €,, represents some
measurement noise. To favour sparse solutions, we formulate the problem as

s = arg min [ly — Hx||* + A[|x|]? (3)
xERN

with p close to one. Here, y € RM is the data vector, H = [h; hy --- hy/]T €
RM*N is the system matrix, and A € RY is an adjustable regularization param-
eter.

1. Prove the Holder inequality @ for p =1.
2. Prove that the duality map Jg, : (RY, || - [[s,) = (RY, || |l¢,) is given by
.

ly ‘
=20 ——3sign (yn) (4)
||)’Heq

Je,(y) =y" with [y"],

3. Use the general representer theorem to give the parametric form of the
solution for p > 1.

1.2.2 Theoretical background

Let (X, X’) be a dual pair of Banach spaces. Formally, an element of the dual
space, g € X', is a continuous linear functional on X whose action g : X — R
results in the linear mapping f — (g, fl)arxx = (g, f) (for short) with the
induced (operator-)norm of this functional being

fexvioy Ifllx

(5)

This association also goes the other way around in that, by fixing f € X, one
can specify a linear functional on X’ via the rule f : g — (g, f). This is to
say that there is a natural pairing between X and X’ encoded in the bilinear
map (-,-) : X' x X = R (duality pairing) whose continuity (in both variables)
is ruled by the duality bound

V(f,9) € X x X [{g, /)l < llgllar |l fIl- (6)



This bound is tight because of . In fact, we like to view @ as the Banach
counterpart of the Cauchy-Schwartz inequality.

As prototypical example, we now consider the finite-dimensional Banach
space X = (RY, || - |l,,) with p > 1 and

1/p
€ (1, ( N p)
vx = (z,) €RY %], = p€(l,00) (D=1 lznl )
p =00 Supne{l ____ N} |l‘n|

The dual space is X' = (RY, | - |l¢,) with % + % = 1, which is the same set
RY. but equipped with a different norm. The duality pairing between those
two topological vector spaces is ruled by the Holder inequality

vx,y €RY 1 G 3)| < [Ixlle, Iy lle, (8)

Definition 1. Let (X, X’) be a dual pair of Banach spaces. Then, the elements
f*e X and f € X form a conjugate pair if

o ||f*lar = ||fllx (norm preservation), and

o (" Narxx ="l fllx (sharp duality bound).

For any given f € X, the set of admissible conjugates defines the duality
mapping

T =€ X f Nar = 1fllx and (£, flarcx = 12l £l 2},

which is a non-empty subset of X'. Whenever the duality mapping is single-
valued (for instance, when X' is strictly convex), one also defines the duality
operator Jx : X — X', which is such that f* = Jx(f).



2 Deep splines with stability control

2.1 Simple convolution layer

We shall investigate the stability properties of the convolution operator T} :
l5(Z) — Lo(Z), which is such that Tp{z}[n] = (h*z)[n] = >, hlklz[n — K]
The Lipschitz constant of T}, is the operator norm

. h* x|,
Lip(Ty) = |Tal =  sup M0*2lles
ccts@0\{0} Tl

(9)

This convolution operator can also be characterized by its frequency response
h(w) = Fa{h} = > ez h[kle™“* where the operator Fy : £2(Z) — La([—m, 7)) is
the discrete Fourier transform. The latter is an isometry, as expressed Parseval’s
formula:

LG dw R
Vo€ lo(Z): alf, =D |xk]* = / \z(w)?% = 12117, (—rmp-  (10)
keZ -

1. Use the discrete Fourier transform and Parseval’s formula to get an esti-
mate of Lip(T},).

2. Show that Lip(Tx) = ||Tr|| < > pez |kl = ||R]le,z), the advantage of
the latter being that it is very easy to calculate.

3. Can you ensure that the bound in Item 1 is tight? Are there scenarios

where the simpler bound in Item 2 is tight as well?

2.2 Pointwise nonlinearities

Let us consider the following functions, which are shown in Fig. [T}

0, < -1
1 -1
i) = 4 L F® TEELO) (11)
1—z, x2€][0,1)
0, r>1
f(@) =% +2—ReLU(z — 1) (12)
0, x <0
x, z €10,1)
= 13
9() 1-1z—1), ze[1,3) (13)
0, x> 3

where ReLU(z) = (x)+ = max(z,0).

1. Compute f', Lip(f), f, TVP(f) = |Df| r.
Hint: Use the property that ||6(- — zo)||m = 1 for any zo € R.



20~

Figure 1: Continuous piece-wise linear (CPWL) functions/activations.

Compute ¢, Lip(g), TV (g) = [D?g]| -
Express f as f(z) = bg+b1z+a|x—1| with suitable values of by, b1,a € R,.

4. Can you express f as f(x) = ), ., c[k]tri(z — k) 7 If yes, give the explicit
value of the B-spline coefficients c[k].

5. Express g as g(z) = >, axReLU(x — x;) with suitable values of (ax, zx)
and show that TV®)(g) = >k lakl.

6. Let o(x) = >, oy c[k]tri(z — k). Give the explicit expression of Lip(c) and

TV® (o) in terms of the B-spline coefficients c[k].
Hint: Exzpress o'(x) in terms of rectangular basis functions.
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