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e building blocks of classical image processing

Linear transforms
= Digital filters

= Fourier transform (FFT)

= Wavelet transform, DCT

= Karhunen-Loéve tranform

= Independent component analysis

Pointwise non-linearities

= Gain control
= Thresholding, clipping
= Soft-threshold



The building blocks of modern image processing

m Linear transforms Neural networks

Skip connection

Linear weights

(164 64 64 «—# of channels e T )

U-net
spatial dimension : 512 x 512
s 6128 1z

= Fully connect layers

= Convolutional layers

= Multi-channel filterbanks

m Pointwise non-linearities o _
Activation functions

= Sigmoid
= RelLU i

1

m Integrated software frameworks O PyTorch TensorFlow

m Specialized hardward: GPUs

Formal model of neuron (McCulloch & Pitt)

weights bias

—t

2} wy ' activation
I output

T2 wa 1 N WpTy —b >0

input (binary) > {07 g’;’—l b= y
. : ) n=1 WnTn — S
Ty wy

https://en.wikipedia.org/wiki/Artificial_neuron



Artificial neurons

-1 Definition: An artificial neuron with weights w = (wy, ..., wy) € RY, bias b € R

w ‘b and activation function o : R — R is defined as the function f : RY

—u™, N
: o— f(ac):o(WTa:—b)za(anl’n—b>-

n=1

— R

m Examples of activation functions

1
0, <0

x>0
m Threshold Logic Unit (Heaviside): TLU(z) = {

1 (Rumelhart 1986, ...)
1+e®

m Sigmoid function: o(z) =

" 77 (McCullogh & Pitt 1943; Rosenblatt 1957)

ﬁ(&\ﬁgﬁﬁ—— m Rectified Linear Unit: ReLU(z) = x4+ = max(0, z) glé
- & . ® And variants ..... L%

The building blocks of classical and modern image processing

m Linear transforms Neural networks

Lineaf weights

= Fully connect layers

64 64 64« # of channels

‘+

spatial dimension : 512 x 512

= Convolutional layers
= Multi-channel filterbanks

\ TrairTnabIe

m Pointwise non-linearities

Activation functions

m Integrated software framework O PyTorch
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OUTLINE

= Introduction v

= Scientific context: Image reconstruction
Classical image reconstruction

Compressed sensing and the sparsity revolution AdG GilobalBiolm
Emergence of deep-CNN-based methods for image reconstruction (2016-2021)
= Can we trust CNN-based methods ? FNS NF|

Dark sides of deep architectures

Safeguards: imposing consistency and stability
PnP framework with recurrent CNNs

= Controlled design of nonlinearities
Optimality of splines

. AdG FunLearn
Deep spline framework

(2021-2026)

= Application to (stable) iterative image reconstruction

Scientific context: Image Reconstruction

m Inverse problem (typically ill-posed)

noise
y=Hs+n
linear —..
model NI 'i-
H n

Goal: recover s from noisy measurements y

m Classical paradigm: Formulation as an optimization problem

Siec = arg min |ly — Hs|l; + A|Ls|p . p =12

. M
data consistency  regularization



Classical image reconstruction (p=2)
m Dealing with ill-posed problems: Tikhonov regularization
R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

msin R(s) subjectto |y —Hs|j3 < o? (consistency)

m Equivalent variational problem Andrey N. Tikhonov (1906-1993)

s* = argmin ||y — Hs|3 + |Ls|
—_—— ~——

data consistency  regularization
Formal linear solution: s = (H H + A\L”L)"'H'y =R, -y

Interpretation: “filtered” backprojection

Image reconstruction under sparsity constraints (CS) p=1
m Convex optimization problem with non-smooth regularization (Donoho, Candes, 2006)

(1) Ssparse = argmin (%Hy — Hs|2 + g(s)) with  g(s) = A||Lsl|¢, (regularization)

m Solution by forward-backward splitting  (Combettes-Wajs, 2005)

Repeat
ﬁ 2" =g 4 5 (HTy — HTHS("—l)) Linear step (consistency with imaging physics)
\ s(M = Prox., (z(”)) Proximal step (regularization = prior constraints)

until stop criterion

. 2
Guarantee of convergence: ¥ < 5— gy )

Proximal operator:  prox,(z) = argmin (1||z —s||5 + g(s))  (Moreau 1962)
S

Interpretation: Sameas (1)withH=1 = “denoising” of current estimate z



Efficient proximal denoising: wavelet-domain soft thresholding

m Regularization: Promote sparsity in an orthogonal wavelet basis
g(s) = A[WTs|l;, with WTW =1 (Orthonormality)

Proximal step:  z = prox, (z) = argmin (3 |z — s||3 + AW 's|¢,)
S

Mallat’s algorithm Donoho’s wavelet denoising

VA VA
Fast Wavelet Inverse Wavelet
Transform X Transform

m lterative Soft-Thresholding Algorithm (ISTA)  (Figueiredo-Nowak 2003)

Repeat

) =g 4 1 (HTy - HTHS("*U)
L

z("
\ ) s(™ = Wavelet Threshold (z(") ; )\/L)

until stop criterion

ISMRM reconstruction challenge

L regularization (Laplacian) {1 wavelet regularization

WISTA

Collaboration with
Prof. Klass Priissmann

ETH:zurich

(Guerquin-Kern IEEE TMI2011)

... and variants: WISTA, FISTA, ...



Compressed sensing: Applications in imaging

- Magnetic resonance imaging (MRI) (Lustig-Donoho, Mag. Res. Im. 2007)
ceteatncare  PHILIPS SIEMENS

- Radio Interferometry (Wiaux, Notic. R. Astro. 2007)

- Teraherz Imaging (Chan, Appl. Phys. 2008)

- X-ray (interior) tomography (Wang, Phys. Med. & Biol; 2009)

- Digital holography (Brady, Opt. Express 2009; Marim 2010)

- Spectral-domain OCT (Liu, Opt. Express 2010)

- Coded-aperture spectral imaging (Arce, IEEE Sig. Proc. 2014)

- Localization microscopy (Zhu, Nat. Meth. 2012)

- Ultrafast photography (Gao, Nature 2014)

AT SignalProcessing

MACHINE
G

Flurry of new textbooks on neural networks

&

NEURAL Handbook APPLIED NEURAL NETWORKS
NETWORKs of FOR SIGNAL PROCESSING

SIGZ?XT N%ET%IE)ARLE NEURAL NETWORKS . Geometry

PROCESSING FOR SIGNAL

3 : : — SIGNAL PROCESSING Of Deep
| and Machine PROCESSIN Learning

Learning
with Applications

Jong ChulYe

FALONG LUO AND ROLF UNBEHAUEN

ASignal Processing Perspective

Fdieed by
YU HEN HU
_JENQ-NENG HWANG

) Springer




Appearance of Deep ConvNets

(Jin et al. 2016; Adler-Oktem 2017; Chen et al. 2017; ...)

m CT reconstruction based on Deep ConvNets
= Input: Sparse view FBP reconstruction
= Training: Set of 500 high-quality full-view CT reconstructions

= Architecture: U-Net with skip connection

Skip connection

(Jin et al., [EEE TIP 2017)

1 64 64 64 « # of channels

U-net

spatial dimension :512x512

12864 64 1 1

»|»‘» >®~

8

128
256 x 256

T
128

512 256 256) > 3x3conv.+BN

N N +RelU
+ 2x2max pooling

128" 256 256
H-
128x128

256" 512 512 1024

s4xes|_H-HH-IH | _ N

+ skip connection
512, 22 ] and concatenation
* 3x3up-conv2.

5121 1024 [ 1024
32x 32\ - — —

CT data Dose reduction by 7: 143 views

+BN +RelLU
- 1x1conv.

FBP TV
Ground truth SNR 24.06 SNR 29.64

Reconstructed from
from 1000 views

W MAYO CLINIC
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CT data Dose reduction by 7: 143 views

FBP TV FBPConvNet
Ground truth SNR 24.06 SNR 29.64 SNR 35.38

Reconstructed from

from 1000 views (Jin et al, IEEE Trans. Im Proc., 2017) $IEEE
W MAYO CLINIC 2019 Best Paper Award
CT data Dose reduction by 20: 50 views
FBP TV FBPConvNet

SNR 13.43

(Jin et al., IEEE Trans. Im Proc., 2017)

Ground truth SNR 24.89 SNR 28.53

Reconstructed from
from 1000 views

W MAYO CLINIC



Deep CNNs for bioimage reconstruction images

(Jin--Unser, IEEE TIP 2017)
(Chen--Wang, Biomed Opt. Exp 2017)

- X-ray tomography

(Hammernik--Pock, Mag Res Med 2018 )

- Magnetic resonance imaging (MRI)
(Tezcan--Konukoglu, IEEE TMI2018 )

(Schlemper---Rueckert, IEEE TMI 2018)
(Hauptmann--Arridge, Mag Res Med 2019)

- Dynamic MRI (cardial imaging)

- 2D microscopy (Rivenson--Ozcan, Optica 2017)

- 3D fluorescence microscocopy (Weigert--Jug, Myers, Nature Meth. 2018)

- Super-resolution microscopy (Nehme--Shechtman, Optica 2018)

- Diffraction tomography (Sun--Kamilov, Optics Express 2018)

- Ultrasound (Yoon--Ye, IEEE TMI 2019)
OUTLINE

= Introduction v/

= Scientific context: Image reconstruction v/

= Can we trust CNN-based methods ?
The dark side of deep architectures

Safeguards: imposing consistency and stability
PnP framework with recurrent CNNs

= Controlled design of nonlinearities

= Application to (stable) iterative image reconstruction

Jong Chul Ye, Yonina C. Eldar,
and Michael Unser

Deep Learning for
Biomedical Image
Reconstruction

20



But CNN-based methods also have their weaknesses

Al Moore’s law: doubling every 3.4 month !

= They require lots of training data
Medical imaging: limited access to patient data Tt
Lack of gold standards (except for compressed sensing scenarios) : " Neurt ArciectureSear
Training for (3D) medical imaging is extremely computer intensive h i

Jay (Trainin,
o

= They are hard to tune
Many design parameters: depth, width, number of channels
Use of ad hoc modules: batch normalization !

source: openAl

= They lack robustness oNAS December 2020

. . e

ng in imag
- eep learnin £ Al
i ilities of d costs O
On instz® tion and the potential C ansere”
reconstruc b Clarice Poon’, Ben Adcock!, and Anders &

sco Renna’s

Adversarial attacks

Unpredictable results

ock?,

Vegard Antun®, France "
Viathematics, Univers

pepartme
95y, BC sA 156, €

L. bonoho, stanford U —_—

Reference SPARSE-SENSE (TV)

(variant of FBPConvNet)

Figure 3: Reconstructions in a case of anaplastic astrocytoma, a rare
malignant brain tumor. SPARSE-SENSE and DL reconstructions are from
the same 4x-accelerated retrospectively undersampled acquisition. DL
achieves lower whole-volume MAE than SPARSE-SENSE, but fails to

properly reconstruct regions near the tumor.

G. Nataraj and R. Otazo. “Investigating robustness to unseen pathologies in model-free deep multicoil reconstruction.”
ISMRM 2020 Workshop on Data Sampling & Image Reconstruction



Mathematical safeguards

Forward imaging model: y = Hx + nygise

Image reconstruction algorithm:  x = fp(y) Reconstruction

m Consistency of reconstruction

ly — Hx|| = ||y — Hfg(y)|| < ¢  for some suitable ¢

m Stability of reconstruction algorithm
%2 — %1[| = fo(y2) —fo(y)ll < L ly2 —y1ll,  forall yz,y1 € Q CRY

with L = Lip(fy) reasonably small (del Aguila Pla IEEE TCI, 2023)

23

Lipschitz constant of primary modules

m Pointwise nonlinearity

o: R — R where o is differentiable |/
do(z) z

Lip(o) = sup =|lo'||L.  (cf. Mean Value Theorem) '
z€R dz

Heaviside

Example: Lip(ReLU) = sup,cp |u(z)| =1

m Linear (resp. affine) transform
Tin : RM - RN with  x +— Ax (linear)

or x> Ax+ b (affine) where A ¢ RM*N b ¢ RM

Lip(Tyin) = sup ||Ax|[2 = p(A) (spectral norm = largest singular value of A)
lIx[l2<1

m Composition — T T2 \—

Lip(T1) = L1 & Lip(T2) = L» = Lip(Ty 0 Ty) < LoLy

24



Consistency via PnP variant of iterative reconstruction

Schematic structure of iterative reconstruction algorithm : % = argmin (% |y — Hx||* + g(x)>

Repeat

2" = x4 (HTy — HTHX(”*1)> Linear step (consistency with imaging physics)
Niter

x(") = ProXq (z(”)) Proximal or “denoising” step (regularization)
until stop criterion
Proximal operator:  prox, (z) = arg min (3llz — x[|* + g(x))
Plug-and-Play variant (Venkatakrishnan-Bouman 2013)
Repeat
z(" = x4 <HTy - HTHX("_l)) Linear step (consistency with imaging physics)
Niter

x(M) = (1= B)Id + Bfe) (z(")) Suitable nonlinear map (e.g., CNN)

until stop criterion

Requirement for convergence: || follLip <1 (Non-expansive operator) (Bauschke-Combettes 2017, Hertrich et al. 2021)

Neural nets with free-form activations and stability control

layers
= Layers: /=1,...,L
= Deep structure descriptor: (No, N1, -+, Np)
O
= Neuron or node index: (n,¢), n=1,---, Ny o
= Activation function o, , : R =R (free-form) Dw-1 O
= Linear step: RNe-1 — RV rewen O (n, 0)
fZ L X = _fé(.’L‘) = me + bg Zne = ono(WE zo_1 + bng)
nodes
= Nonlinear step: RNt — RVe
op:x— op(x) = (Umg(acl), .. .,O’N£7@(;I?Nl))
Fdeep(T) = ULOfLOUL 10---0030 fyooi0 fy)(x)
a \ ////
L Joint Iearning / training
Stability control: || fyeepllLip < ] lloellnip p(We) =1
=17 1

Lip-1 splines / \ spectral normalization vs. Parseval frame

25
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OUTLINE

= Introduction v/

= Scientific context: Image reconstruction ¢/

= Can we trust CNN-based methods? v

Safeguards: imposing consistency and stability

= Controlled design of nonlinearities

Optimality of splines
Deep spline framework

= Application to (stable) iterative image reconstruction

Learning activation functions / pointwise nonlinearities
Finding the “optimal” pointwise nonlinearity ¢ : R — R

Infinite-dimensional optimization problem is that is inherently ill-posed
m Incorporating a regularization

= Should not penalize simple solutions (e.g., identity or linear scaling)
= Should impose differentiability (for DNN to be trainable via backpropagation)

= Should favour simplest CPWL solutions; i.e., with “sparse 2nd derivatives”

= minimizing/constraining TV ? (0) £ ||D%0]| s (Second-order total-variation)
m Controlling stability:  Lip(c) = sup,g |[Do(z)| < 1

m Searchspace: BV@P(R)={f:R = R:|D*f|l;m <o0} < Lip(R)

28
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Proper continuous counterpart of /1-norm

= Dual definition of £1-norm (in finite dimensions only)

N
1fle =S 1ful = swp (fou)
n=1

u€RN: [ufo0<1
Johann Radon (1887-1956)

= Space Cy(R?) of functions on R that are continuous, bounded, and decaying at infinity

Co(RY) = (S®RY), [ - [l2..) C Loo(R?)

= Space of bounded Radon measures on R

MR = (CoRY) = {f € S'RY) : || flm £ sup (f,¢) < +o0}
PES(RY): |lplloc <1

= Superset of L;(R%)
Vi€ Li®RY): Nfllm=flle, = LiRY) C MR

= Extreme points of unit ball in M(R%): e = £6(- — 71) with 75, € R?

Comparison of linear interpolators

arg min Df(z)*dz st m) =Ym, m=1,.... M
e i [ IDf@) F@n) = g m

(de Boor 1966)

arg min |[D*flla st f(@m) =Ym, m=1,..., M
FEBV)(R)

(Unser JMLR 2019; Lemma 2)

29
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Optimality of splines: TV(@ regularization with slope constraints
Training data: (T, ym) ERXR, m=1,...,. M

Generic loss functional £ : R x R — R (strictly convex) Slope parameters: smin < Smax

M
(TV2:SC)  S=arg min (Z E(f(@m), ym) + ATv<2><f>> ,
FEBVA(R) \ “—

st Smin < f/(%) < Smax, VZ E€R

X Data points|| K o '
=0 Solution with fewest knots |

Theorem (new improved: for Stéphane Mallat’s birthday - April 2023) N

The solution set of (TV2-SC) is a non-empty, weak*-compact subset of
BV® (R), and all its extreme points are adaptive piecewise-linear
splines with a most (M — 2) knots.

Sparsest spline solution is identifiable using a variant of Debarre’s algorithm. A

0 0.2 0.4 0.6 0.8 1

) (Debarre JCAM 2022)
m Special cases of (Smin, Smax)

(Smin, Smax) = R (unconstrained)

= (—1,1): Lipschitz-1 splines (Aziznejad, IEEE OJSP 2022)
= (0,1): firmly non-expansive = prox of a convex potential
= (0, +00): monotone splines = derivative of a convex potential — invertible function
s (—p,+00) with 0 < p (small): weakly-monotone splines = derivative of a p-weakly-convex potential
31
Representer theorem for stable, free-form deep neural networks
Theorem (Optimality of Lipschitz-1 deep spline networks)
= neural network f : RNo — RNz with deep structure (Ny, Ny, ..., Nz)
T faeep(@) =(0r0froop 100 fy,0010f)(x)
= linear transformations f, : RVe-1 — RN 2 vy Wz with W, € RVeXNe—s
u free-form activations o = (01,4,...,0n,¢) : RV = RM with o14,....0n,0 € BV (R)
Given a series data points (,, y,,) m = 1, ..., M, we then define the training problem
M L N,
ar min E(y,,, Tm)) +A VP (0,
o (35 E O Frfon) 23351V, )
st Lip(o,0),p(Wy) <1, (n=1,....Ny, £=1,--- L) ™) = Lip(fdeep) <1

where E : RVt x RNt — Rt is an arbitrary convex loss function.

The solution of (1) exists and is achieved by a deep spline network with activations of the form

Ko
O (T) = b1ne + ban ez + Z Ak, e(T — Thon,e)+5
k=1
with adaptive parameters K, ¢ <M — 2, Tine, .-, TK, sne €ER,and b1 p 0,02 00,01 es - - 0K, ;e €R.

Precursor without stability: (Unser, JMLR 2019)
32



Outcome of representer theorem

Kn,é
0—71,£($) = bl,n,f + bQ,n,ém‘ + Z ak,n,f(x - Tk,n,ﬂ)-{-?
k=1
Each neuron (fixed index (n,()) is characterized by o

= its number K = K, > 0 of knots (ideally, much smaller than M);

= the locations {7, = Tk,nl}f:l of these knots; .

= the expansion coefficients b, = (b1,n.0, b2,n¢) € R?,
an0= (a1, 0K n0) € RE.

These parameters (including the number of knots) are data-dependent
and must be adjusted (automatically) during training.

m Link with /; minimization techniques

K
§ Af.nl

k=1

K¢
TV (0.0) = Y laknel = landh and  Lip(on.) = sup
k=1 Ke{l,..., Kne}

33

How to effectively train deep splines ?

Stochastic gradient descent (the difficult part being to optimize the knot locations)

Workaround: Fixed set of knots on a grid—rely on £;-minimization to suppress the unnecessary ones

m Gridded RelLU representation

kmax

o(z) =by+ bz + Z ag(x — kT) 4+
k:kmin

m B-spline representation

kmax+1

o)=Y ()

k:kmin -1

where ¢ (z) = tri(x — k), for kmin < k < kmax

34



Equivalence between RelLU and B-spline representations

Simplified cardinal spline setting with 7" = 1 and ¢ (z) = tri(z — k), k € Z

m Expressivity of triangular B-spline basis

Polynomials: 1= Ztri(w — k), x = Z k tri(z — k)
kEZ k€eZ
+oo
Gridded ReLUs:  (z — ko)1 = »_ (k — ko)tri(z — k)
k=ko

m From RelLUs to B-splines

tri(z) = —1(x +1); +2(z)4 —1(z — 1)+

m Second total variation

o(z)=> ckltri(z—k) = TV (0)=dy*cs,
kEZ
2nd difference filter: do|-] = (—1,2, 1)

B-spline basis—complexity is independent of grid size !

TABLE IV: B-splines vs. gridded ReLUs vs. APLUs

Architecture, Memory Time
Nb. coefficients (megabytes) per
epoch
(seconds)
B-splines, K =9 1132 44.92
B-splines, K =29 1133 41.89
)
B-splines, K = 499 1299 41.19
Gridded ReLUs, K =9 3313 49.86
Gridded ReLUs, K =29 9616 81.21
APLUs, K =9 3316 49.72
() APLUs, K =29 9618 87.34
For the gridded ReLU and APLU networks, the
: maximum number of knots allowed by the GPU

memory is 31.

Explanation: only two active basis functions per data point

35
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Implementation: Lip-1 spline CNN (trained for denoising)

Facep(®@) = (00 fr oo 100050 fy0010 f;)(x)

/ !

Learnable linear spline .
Convolutional layer

nonlinearities (pointwise)

m Linear B-spline basis

= Compact support
= Efficient forward & backward pass

= Easy to compute Lipschitz constant
(max. absolute derivative)

Knot spacing: 7', Number of knots: K (Bohra et al. IEEE Open JSP 2020)

m Constrain Lipschitz constant of each layer to be no greater than one

= Convolutional layer: Lip-1 projector (spectral normalization vs. Parseval frame) g
[ E
= Linear spline layer: Lip-1 spline projector (clipping of finite difference

P Y p-isp pro) (clipping ) (Ducotterd et al. ArXiv 2022)

PnP image reconstruction: Experimental set-up

m Training of Gaussian denoiser

240K examples of 40 x 40 patches from BSD500 dataset

= Additive Gaussian noise with ¢ = 5/255 Deep-spline denoising Dn-CNN

= 3 x 3 convolution kernels, 32 channels

Deep spline activations with T'= 0.1, K = 51

= Number of layers =3, 5,7, 9 g g g 5
THE R R T
m Compressed sensing MRI o ; ;
= 256 x 256 ground-truth images
= Subsampling ratio = 0.3 Learned Lip-1 filters = Parseval frames

Gaussian additive noise with ¢ = 10/255

= Number of layers of denoising CNN =5

ol

37
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Results: Gaussian denoising with Parseval frames

—— RELU-U —@— RELU-L
m 371
i —¢
[a's
=2
wn
[a 361
A 4 )
o— ¢ ? 1
2 4 6 8

Number of layers

0.950+

SSIM

—— Parseval DS-L

— T 1]

0.925+

P —

2 4 6 8
Number of layers

¥ Drop in performance for constrained ReLU nets

4 DS-L performs better than ReLU-L even with fewer parameters

Compressed Sensing MRI

Random sampling pattern

Ground truth

Subsampling mask Random Radial Cartesian

Image type Brain Bust Brain Bust Brain Bust
Zero-filling 23.72 25.88 2299 2392 21.34 23.03
ReLU-L 30.70  30.59 29.60 30.09 23.70 26.87
Parseval DS-L 33.19 3388 31.68 33.15 2497 28.68

Least squares reconstruction (Zero-filled )

ReLU-L

Parseval DS-L

39

40



WCRR variant: Learnable Weakly-Convex Ridge Regularizer

Ichan
. 1
min, (2l|y - Hx|3 + Z (1, 'I>i(W¢X))> Weakly-convex extension of FOE (Chen-Pock 2014)
x i=1

= System matrix: H € RM*N
= Learnable filters (CNN) : W; € RV*N 5 =1,. .. Ihan
= Shared free-form potentials : ®;(u) = (®;(u1), ..., ®;(un)) with ®;(u) = [*_ ¢i(z)dz

m lterative reconstruction

Recurrent neural network (steepest descent)

Ichan

x(MH) = x(M) _ o (Z W] ¢, (W;x™) + H" (Hx™ — y)> with ¢, = ®)
=1

m Training on denoising problem
» Parametrization of the slope: ¢; = @, : R — R
s.t. weak-monotonicity constraint and penalty on TV(Q)(@‘Z-) (sparsity) = linear splines
= Deep equilibrium training of variational denoiser where the ¢; are expanded in a B-spline basis.

41

Table 4.1
PSNR and SSIM wvalues for both reconstruction experiments.

Metric PSNR  SSIM Metric PSNR SSIM Param.
Zero-fill 2792 0.711 TV 31.57 0.852 1
TV[5] 32.03  0.7922 ACR [37] 31.58 0.848 6-10°
CRR-NN [19] 33.14  0.842 CRR-NN 32.87 0.862 5-10°
WCRR-NN 34.55  0.858 AR [34] 33.62 0.875 2-107
Prox-DRUNet [23]  35.09  0.864 WCRR-NN 34.06 0.895 2-10%

Prox-DRUNet 34.20 0.901 2-107

(a) MRI (b) CT

Ground-truth

WCRR Prox-DRUNet
(34.43dB, 0.899) (34.52dB, 0.889)

Zero-fill v CRR
(25.05dB, 0.642) (29.86dB, 0.802) (31.68dB, 0.861)

42



but, PSNR (or SSIM) is not the whole story

Theoretical guarantees : convergence, consistency, stability

weakly convex “state-of-the i
CNN

Phantom TV - (31.66dB, 0.853) CRR - (33.21dB, 0.868) WCRR - (34.50dB, 0.899) Prox_DRUNet - (34.65dB, 0.904)

convex convex learned
handcrafted learned

Figure 4.2. Reconstructions for the sparse-view CT experiment. The reported metrics are PSNR and SSIM.
43

Learned filters and nonlinearities

80 channels

Potential function

0.003

0.002

0.001

o100 o075, o050 o025 0000 0025 0050 0075 0100
Activation function

0100
0075
000
0025
0025
0050
0075
0100
EXE “00s0 EXT o.

Nonlinearities are shared up to a channel-wise scaling factor

44



Deep spline framework for learning nonlinearities
https://github.com/Biomedical-lmaging-Group/DeepSplines
m Typical usage
= Revamping of traditional architectures (spirit of unrolling)
m Versatibility = Refinement of not-so-deep architectures
= Lip-1 activations = Incorporation of stability constraints
= Gradient of a (weakly-)convex potential

= Proximity operator of a (weakly-)convex potential
= Components of recurrent networks via deep equilibrium

m Quest for simplicity/interpretatibility
= Ability to suppress unnecessary linear layers (via skip connection : by + byx)

= Sharing a nonlinearity (up to an individual scaling factor)
= Determination of the sparsest solution via the Debarre algorithm

= Efficient encoding via non-uniform B-splines (during inference)
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