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Variational formulation of inverse problems in imaging

m Linear forward model

y=Hs+n

Integral operator

Problem: recover s from noisy measurements y

m Regularization of ill-posed inverse problem

Siec = arg min |ly — Hs|l; + A|Ls|p . p =12

. v
data consistency  regularization

Linear inverse problems (20th century theory)
m Dealing with ill-posed problems: Tikhonov regularization

R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

minR(s) subjectto |y — Hs|3 < o2
. Andrey N. Tikhonov (1906-1993)

m Equivalent variational problem

s* = argmin ||y — Hs||§ + )\||Ls||%
—— N —

data consistency  regularization

Formal linear solution: s = (H"H + A\L”L)"'H'y =R, -y

Interpretation: “filtered” backprojection



Supervised learning as a (linear) inverse problem
but an infinite-dimensional one ...

Given the data points (€., ym) € RV find f : RY - R st f(zn) ®ynform=1,..., M

m Introduce smoothness or regularization constraint (Poggio-Girosi 1990)

R(f) = |fl5 = ILfIZ, = /N |Lf(z)|?dz: regularization functional
R

M
mingey R(f) subjectto Y |ym — f(@m)|]” < 0

m=1

m Regularized least-squares fit (theory of RKHS)

M
frcns = arg min (;lymf(wm)l2+m(f)> with  R(f) = || fII%, = kernel estimator

(Wahba 1990; Schélkopf 2001)

Can your learn the map y = f(x) ?
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General notion of Banach space

Normed space: vector space X" equipped with a norm || - || x

Cauchy sequence of functions (¢;);en in X:
forany e > 0,3nc s. t. |jg; — @jllx < eforalli, j > n. Stefan Banach (1892-1945)

Definition
A Banach space is a complete normed space X;
that is, such that lim; ¢; = ¢ € X for any Cauchy sequence (¢;) in X.

m Generality of the concept

= Linear space of vectors uw = (u1,...,un) € RN
= Linear space of functions u : R? — R = Linear space of vector-valued functions w = (uy,...,uy) : R* — RV
= Space of linear functional v : X — R = Linear space £(X',)) of bounded operators U : X — Y

Dual of a Banach space

Dual of the Banach space (X, || - ||x):

X’ = space of linear functionals g : f — (g, f) £ g(f) € R that are continuous on X

X' is a Banach space equipped with the dual norm: llgllxr = sup ((g, f>>
rexvioy \Ifllx

= lgllar > H&E F£0

m Generic duality bound 1 £1lx

Forany f € X,g € X" [{g, /)] < llgllx (| ]l

m Duals of L,, spaces: (LP(Rd))/ =Ly (Rd) with + 1% =1 for p € (1,00)

1
p

Holder inequality: [ (f, ¢)| < /Rd [f(r)e(r)] dr < |[fllL,[IelL,,



Riesz conjugate for Hilbert spaces

m Duality bound for Hilbert spaces (equivalent to Cauchy-Schwarz inequality)

Forall (u,v) e H x H':  |[{(u,v)| < ||ull [|v|lw

. Frigyes Riesz (1880-1956
m Definition 9 ( )

The Riesz conjugate of v € H is the unique element u* € H' such that

(u,u*) = (u,u)y = ||u||%-t = |lulla flu* |3 (sharp duality bound)
m Properties +
= Norm preservation:  |jul|y = ||u*|w (isometry)

= u* =R Yu} (inverse Riesz map)
» Invertibility:  » = (u*)* = R{u*} (H') = H (reflexivity)

» Linearity:  (u1 +ug)* = uf +uj

Generalization: Duality mapping

Definition
Let (X, X’) be a dual pair of Banach spaces. Then, the elements f* € X’ and f € X
form a conjugate pair if

e | f*llar = ||fllx (norm preservation), and

Arne Beurling (1905-1986)
o (f* Narxx =l Ifllx (sharp duality bound).

For any given f € X, the set of admissible conjugates defines the duality mapping

J(f)={f €X' fla = flxand (f*, farcx = 11 fll 2},

which is a non-empty subset of X’. Whenever the duality mapping is single-valued
(for instance, when X is strictly convex), one also defines the duality operator
Jx : X — X', which is such that f* = Jx(f).

(Beurling-Livingston, 1962)



Properties of duality mapping

Theorem
Let (X, X) be a dual pair of Banach spaces. Then, the following holds:

1. Every f € X admits at least one conjugate f* € X”.
2. Forevery f € X, the set J(f) is convex and weak-* closed in X”.

3. The duality mapping is single-valued if X is strictly convex; the latter condition
is also necessary if X is reflexive.

X is strictly convex if, for all f1, fo € X suchthat ||fi]|x = ||follx = 1
and fi # fa,one has ||Af1 + (1 — ) fa]|x < 1forany A € (0,1).

X is reflexive if X" = X.

Mother of all representer theorems

arg min E(y,v(f)) +¢ (Ifllar)

Lausanne, Christmas 2018

Mathematical assumptions:
e (X, X’)is adual pair of Banach spaces.
e N, = span{v,, }M_, C X with the v, being linearly independent.

e v: X = RY: fs ((n,f),...,(vum, [)) is the linear measurement operator
(it is weak* continuous on X’ because vy, ...,vy € X).

o E:RM x RM — RT is a strictly-convex loss functional.

e ¢ : RT — RT is some arbitrary strictly-increasing convex function.

14



General abstract representer theorem

Theorem
For any fixed y € RM, the solution set of the generic optimization problem

S = arg}lelgl/E(ny(f)) + ¢ ([[fllx)

is non-empty, convex and weak*-compact, and all solutions fy € S C X’ are 5
(X', X)-conjugate of a common v, € N,, = span{v,, }_, C X.
dualiy
The parametric form of the solution depends on the space type. map
HVO E Ny

1) If X’ is a Hilbert space and 1 is strictly convex, then the solution is
unique and it admits a linear expansion with coefficients (a,,) € RM

M
fo= Z AmPm,
m=1

where ¢, = Jx{vn} € X’ with J x the Riesz map X' — X',

(Unser, FOCM 2020)

General representer theorem (Cont’d)

2) If X' is a strictly convex Banach space and v is strictly convex, then the

solution is unique and it admits the representation with (a,,) € RM
(Unser, FoCM 2020)

M
fO:JX{Zame}a fo

m=1
where J y is the (nonlinear) duality operator X — X”'. dualiy
map
3) Otherwise, when X" is not strictly convex, the solution set S is the g € Ny
convex hull of its extreme points, which can all be expressed as
Ko
f() = Z CLEf, fO
k=1

for some Ko < M, c1,...,ck, € R, where ey, ..., ex, € X' are some
extreme points of the unit ball By = {z € X' : ||z|x < 1}.

(Boyer-Chambolle-De Castro-Duval-De Gournay-Weiss, SIAM J. Optimization, 2019)



Extreme points

m Definition

Let S be a convex set. Then, the point = € S is extreme
if it cannot be expressed as a (non-trivial) convex combination of any other points in S.

m Extreme points of unit ball in ¢,(Z)

8 Uoo(Z): eg[n]==£1
s 01(Z): e, =10 —ng] (Kroneckerimpulse)
= Lp(Z)withp € (1,00) 1 ep = u/l||ulls, forany u € £,(Z)

Definition of strictly convexity of a Banach space: all boundary points are extreme !!!

OUTLINE

= Introduction ¢/
= Foundations of functional learning ¢/

= From classical to modern regularization-based techniques

Learning in RKHS

Kernel methods of ML

Smoothing splines

Sparse kernel methods  _
Sparse adaptive splines / T,'f g 7
Lipschitz splines l

= Splines are universal solutions of linear inverse problems

= Connection with neural networks
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1. Learning in reproducing kernel Hilbert space

Definition

A Hilbert space # of functions on R? is called a reproducing kernel Hilbert space (RKHS)
if 6(-—x0) € H' forany xo € R?. The corresponding unique Hilbert conjugate /.(-, o) =
(6(- — =0))" € H when indexed by z is called the reproducing kernel of .

m Learning problem

Given the data (2. ym) _, With 2, € R%, find the function fy : R? — R s.t.
M
flo = iz g (Z ol D o)) 5 Mllfllﬂ))
m=1

s FE,, :R xR — R (strictly convex)

= 1 : R — R* (strictly increasing and convex)

Learning in RKHS (Cont’d)

m Special case of general representer theorem
= X =H, X' =H"=H (all Hilbert spaces are reflexive)

" Uy =0(-—ax,) (Dirac sampling functionals)

M g
= Additive loss: E(y,2) = Y Em (ym, 2m) specific of ML
m=1

m Key observation

Reproducing kernel = Schwartz kernel of Riesz map

R=Jy H -H:ve ) h(-,y)v(y)dy = Om=Ju{0(-—xn)}=h(,z,)
R

m Implied form of unique solution = linear kernel expansion

M M
fo(z) = Z ampm(T) = Z amh(x, ;) (Scholkopf representer theorem, 2001)
m=1 m=1

19
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2. Regularization with a LS| operator = kernel methods of ML

m Quadratic Tikhonov regularization functional
R(f) = IfI3 = ILfIZ, = /RN ILf(z)*d

L: Linear shift-invariant (LSI), invertible regularization operator

~

L(w): frequency response of L

m Key observation

Reproducing kernel = Impulse response of L~1L~1* = (L*L)~!

v =Jy{v}=h=*v where hzf_l{li(i)|2}€L1(Rd)

(Poggio-Girosi 1990)

Hilbertian isometries

Lfl* Lfl

H — LyRY) —
— —

L* L

m Parametric form of solution = expansion of kernels centered on data points

/

fo@) = 3" andw {5~ )} (@) = Y awhla - @)

3. Smoothing splines

M
Jo=arg min, (m2_1|f<xm> ~ yml? +)\/R ’dﬁf

2
dw)

m Smoothness regularization (spline semi-norm)

(Schoenberg 1964; de Boor 1966)

R(f) =|Df||7, with D=4L; Null space : Np = {p(z) = ap : ap € R}

m Direct-sum RKHS topology: Lo p(R) = Hp & ANp

D has a unique inverse only if one factors out the null space

1
Impulse response of (D*D)~':  h(z) = F~! {W} (z) = %m

m Solution = linear spline with knots at z1, ...,z

M
fo@) = a0+ ) amlz — x|
m=1

“o 0.2 04 0.6 08 1

X Data points
—Smoothing splines
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4. Sparse kernel expansions
m Sparsity-promoting regularization functional

R(f) = ||%<W|dw

L: Linear shift-invariant (LSI), invertible regularization operator

~

L(w): frequency response of L

Banach isometry

L—l
LR — LR
L

rzas
gLy

\ S
A
Zod

Theoretical roadblock: The general representer theorem does
no predual space X such that L; (RY) = X".

not apply because there exists

The optimization problem is ill-defined and does not admit a solution !

Proper continuous counterpart of /1-norm

= Dual definition of #1-norm (in finite dimensions only)

N
£l =S Iful = s (fou)
n=1

WERN: [ <1

Co(RY) = (S®RY), [ - [l2..) C Loo(R?)

Space of bounded Radon measures on R?

M(R?Y) = (Co(RY) = {f € SR+ [ fllm = sup

PESRY): [lplloo<1

Superset of L;(R%)
Vi€ LiRY): (Ifllm=Ifllz, = Li(RT) C M(RY)

Johann Radon (1887-1956)

Space C(R?) of functions on R¢ that are continuous, bounded, and decaying at infinity

(fyp) < 400}

= Extreme points of unit ball in M(R9): ey, = £5(- — 7) with 71, € R?

23
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4. Sparse kernel expansions (2nd attempt)

m Sparsity-promoting regularization functional

R(f) = ILfllm = (Lf,e)

sup
P€CH(RY):[lp]| Lo <1

L: Linear shift-invariant (LSI), invertible regularization operator

~

L(w): frequency response of L

-

d
L(w)} € [n(R%)

Impulse response of L=1': h = F~! {

Banach isometry
L—l
d
= MR
L

M(R?)

Extreme points: e, = L™1{5(- — 74)}

Corollary (3rd case of representer theorem)

The extreme points fy of S = arg  min
fEML(RY)

Ko
folz) = Z agh(x — T)
k=1

forsome Ko < M, 14,..

<Z Erm (ym, f(@m)) + AlILS | 1

. Tr, € RYand a = (a;) € REo. Moreover,

) can all be expressed as

Ko

Lol =S laxl = llalle-

k=1

25

RKHS vs. sparse kernel expansions (LSI)

M

(Z Ep (ym, f(@m)) + AILSI7,

min
fGszL(Rd)

)

M
frrus(x) = Z amhpp (T — T,)

m=1

=

Quadratic energy: || L frius|?, = a’ Ga

Positive-definite kernel:

} (@)

Gram matrix: (G|, = hpp(Tm — p)

hpp(z) = F~1 { \Z(i)|2

M
[ mmin (mE_j (Yms f (@) + Al f||M)
Ko
= fparse(®) =D aphisi(@ — 7¢)
k=1

Sparsity-promoting energy: || L fsparsellm = ||@lle,

Adaptive parameters: Ko < M, 14,

Admissible kernel:

} (@)

hsi(x) = 7~ {alw)

...,TKOGRd

26



5. Sparse adaptive spline

M
_ : § : 2 2 Mammen 1997; Unser 2017)
=ar min T + A||D ( ,
fo ngMDz(R) < 3 |f( m) ym| H f“/\/l)

m Sparsity-promoting regularization

R(f) = [ID?f||m Null space : Np> = {p(z) = by + by : by, by € R}

m Direct-sum Banach topology: Mp:(R) = Upz & Npe

D? has a unique invertise only if one factors out the null space

Impulse response of D=2 (two-fold integrator):  h(z) = (z); = ReLU(z)

0 0.2 0.4 0.6 0.8 1

m Solution = linear spline with (few) adaptive knots at 74, . . ., 7x, (Debarre JCAM 2022)
Ko
fo@) =bo+biz+ Y ar(z — i)+
k=1

27

Comparison of linear interpolators

T nin D (T d: s.t / m my 17 B A/j
arg 1 1( )/ ‘ ('T)‘ r (.:C ) Y m

arg min |[D*flla st f(@m) =Ym, m=1,..., M
FEBV)(R)

(Unser JMLR 2019; Lemma 2)

28



6. Lipschitz splines

M
(Z |f(xm) - ym|2 + )\”Df”Loo)
m=1

m Lipschitz boundedness constraint

R(f) = DSl

Extreme points of unit ball in Lo (R): e such that ex(z) = £1

= ar min
fo=sarg g

Null space : Np = {p(z) =bo : by € R}

m Direct-sum Banach topology: W1 (R) = Up & Np

D has a unique inverse only if one factors out the null space

up = D7 ley(z) = /

m Solution = linear spline with with many oscillations (non-unique)

e (t)dt + C : linear spline with binary slope (+1)

Ko
fol@) =bo+ Y axuk(x)
k=1

29
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= Splines are universal solutions of linear inverse problems

Splines and operators
Representer theorem for gTV regularization

= Connection with neural networks

Splines and operators

Definition
A linear operator L : X — ), where X D S(RY) and ) are appropriate (dense)
subspaces of S’(R?), is called spline-admissible if

1. itis linear shift-invariant (LSI);
2. its null space NV, = {p € X : L{p} = 0} is finite-dimensional of size Ny;

3. there exists a function pr, : RY — R of slow growth (Green’s function of L)
such that L{pr,} = ¢.

m Example of admissible operator
n_ 4%
dzn

. 27t xmil '
with  ppn(x) = ﬁ and Ap» = Span{(m—l)!}m_l

32
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Splines are analog, but intrinsically sparse

L: spline-admissible operator; i.e., LS| and quasi-invertible

d: Dirac distribution

Definition

The function s : R — R (possibly of slow growth) is a nonuniform L-spline with knots {x. }rcs

PN Ls = Z apd(-—xr) =w : spline’s innovation
keS

d
L=—
K dx
ag 1
Lk Th+1
Spline theory: (Schultz-Varga, 1967)
Formal spline synthesis
L: spline admissible operator (LSI)
m Finite-dimensional null space: N7, = span{pn},]yg1
m Green’s function pr, : R — R suchthat L{pp} = 6
Spline’s innovation: w = Zakd(- — xy)
k
a1 all
[ p e ,
| T1 ¢ ¢ T T

No
= s(x) = Zaka(a: —x) + Z bnpn ()
k n=1
.

Requires specification of boundary conditions

33
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Representer theorem for gTV regularization

= L: spline-admissible operator with null space N, = span{pn}i\fg1
= gTV semi-norm: ||L{s}| ; = supy,_. <1 (L{s}, ¥) My (RY) = {fe S'(RY) : ||ILfllm < oo}

= Measurement functionals h,, : Mg (R?) — R (weaks-continuous)

fEML(JRd)

(P1) arg min (Zwm—hm,f?HannM)

Convex loss function: £ : RM x RM — R v My —=RM with v(f) = (b1, f),..., (har, f))

(P1) arg min (B (y.v(f)) +AlILS]m)

Representer theorem for gTV-regularization
The extreme points of (P1’) are non-uniform L-spline of the form

Kknots NO
fspline(m) = Z a'ka(w - wk) + Z bnpn(w)
k=1 n=1

with pr, such that L{pL} =0, Kinots < M — Ny, and HLfsplineHM = ||a||gl.

(U.-Fageot-Ward, SIAM Review 2017)
35

Example: 1D inverse problem with TV regularization

— _ 2 (2)
Sspllne arg sE/\rfil]il;l(R (Z ‘ym | + )\TV ( )>
m Total 2nd-variation: TV (s) = supy_ <1 (D%s, @) = [[D?s]| s
2
L=D?= % pp2(x) = (z)4+: ReLU Np2 = span{1,x}
xr
m Generic form of the solution l

K
Sspline (%) = b1 + box + Z ar(r — )+

no penalty Tk

with K < M and free parameters by, by and (ak, 7x)5_,

36



Other spline-admissible operators

m L =D" (pure derivatives) (Schoenberg 1946)

= polynomial splines of degree (n — 1)

s L=D"+a, D"t +-.-+apl (ordinary differential operator) (Dahmen-Micchelli 1987)

= exponential splines

m Fractional derivatives: L =D” PN (jw)? (U.-Blu 2000)

= fractional splines

m Fractional Laplacian: (—A)% PN [|w]|” (Duchon 1977)
= polyharmonic splines
m Elliptical differential operators; e.g, L = (—A + al)” (Ward-U. 2014)

= Sobolev splines

OUTLINE

= Introduction ¢/
= Foundations of functional learning ¢/
= From classical to modern regularization-based techniques v

= Splines are universal solution of inverse problems v

= Connection with deep neural networks

Continuous piecewise linear (CPWL) functions / splines
Limit behavior of shallow univariate ReLU networks RO
Representer theorem for deep neural networks




Feedforward deep neural network

m Layers: {=1,...,L

layers

= Deep structure descriptor: (Ny, N1,--- , NL)
= Neuron or node index: (n,¢), n=1,--- , N,

= Activation function: 0 : R — R (RelLU)

O

O

= Linear step: RVe-1 — RN m-1,00 O
fz:wae(w):Wl$+bé ’
neuron n, L

= Nonlinear step: RVt — RNe -

o oy(x) = (o(z1),...,0(xn,)) nodes i

i Learned

_— —
e —
—

faeep(®) = (0o froop_10---0030 fy0010 f)(x)

39

Continuous-PieceWise Linear (CPWL) functions

m 1D: Non-uniform spline de degree 1 RO T
Partition: R = UkK:O Py, with P, = [Tk,’l'k+1), To=—0<1 < <7 <Tg41 = +00.
The function fspiine : R — R is a piecewise-linear spline with knots 74, . . ., 7k if

w (i) forz € Py : fopline(z) = fi(x) 2 apx + by with (ag,by) € R2, k=0,..., K
= (1) fspline is continuous R — R
K

= foptine(z) =bo + b1z + > _an(z — 7)1 withbo, by € R, (@x) € RE.
k=1

40



CPWL functions in high dimensions

m Multidimensional generalization ,

Partition of domain into a finite number of non-overlapping convex polytopes; i.e.,

RN = Ui, Py with u(Py, N Py,) = 0 for all ky # ko
The function fcpwr, : RY — R is continuous piecewise-linear with partition P, . .., Px

m (Z) forx € Py : fchL(iL') = fk(w) éaszrbk with a; € ]RN,bk eREk=1,...,K

= (41) fopwr is continuous RY — R

The vector-valued function fcpwr, = (f1, ..., far) : RY — RM is a CPWL
if each component function f,, : RY — R is CPWL.

Deep ReLU neural networks are splines

fdeep(w):(ULO.fLOaLflo"’OUZOfQOolofl)(w)

3Pli;'1e

m Enabling property
Composition f5 o f; of two CPWL functions with compatible domain and range is CPWL.

= Each linear layer f () = W + by is (trivially) CPWL (Montufar NIPS 2014)
m Each scalar neuron activation, o, ¢(z) = ReLU(x), is CPWL (Strang SIAM News 2018)
=0y =(01,4,...,0n,,) (pointwise nonlinearity) is CPWL

= The whole feedforward network feep : RY0 — RV is CPWL

m The CPWL also remains valid for more complicated neuronal responses
as long as they are CPWL; that is, linear splines.

41
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Limit behaviour of univariate shallow ReLU neural nets

K neurons
m Shallow univariate ReLU neural network with skip connection
K Ko
fo(z) = co +cr1z + ka(wkx — i)+ =cotar+ Y an(—7)s
k=1 k=1

m Standard training with weight decay

M K
. : 2 A 2 2
(NN-1) : arge:(f}ifb,@m{l |Ym — fo(am)| +5k§:1\vk| + |w]

Theorem
For any K > K (with Ky < M), the solution of (DNN-1) is achieved by the sparse adaptive spline:

M
fspline =arg min |ym - f(xm)|2 + )‘||D2.fHM .
fEBV(Q)(]R) 1

m=

Arguments for the proof: (Savarese 2019; Parhi-Nowak 2020)

m Scale invariance of ReLU architecture: For any v > 0, the map (v, wy) —
(yvk, wi /) does not affect fo.

m At the optimum of (NN-1), |wy| = vk, fork=1,..., K and
TV (fo) = i, |a| with ay, = vy |wy|.

43

Refinement: free-form activation functions

= Layers: {=1,...,L

layers

Deep structure descriptor: (No, Ny, -+, Np,)
= Neuron or node index: (n,¢), n=1,---, N,

= Activation function: 0 : R - R (RelLU)

O O

= Linear step: RVe-1 — RN
frixze— f(x) =Wex+by

neuron

(n,0)
= Nonlinear step: RV — RV

= T oy n
or T O'Z(IL') _ (O'n,_é (-Tl), o ,(TN[.[(:L'N[)) e Zn,e «’Tn.i(wn,zzl 1+ ,e)

facep(®) = (Lo froop 100030 fy0010f,) ()

Joint learning / training ?
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Representer theorem for deep neural networks

Theorem (TV(Z)-optimaIity of deep spline networks) (Unser, JMLR 2019)
= neural network f : RNo — RNz with deep structure (No, Ny, ..., Nr)

z—f(x)=(ocpolLo0, 10 -0ly00104)(x)

= normalized linear transformations £, : RNe-1 — RN¢ 2 s U,z with weights

U, = [ulj s u‘wyg]T € RNexNe-1 gych that Hun,[H =1
s free-formactivations o, = (o1.¢,...,0n,4) : RV — RNt with 01 4,...,0n,0 € BV (R)
Given a series data points (€, y,,) m = 1,..., M, we then define the training problem

M

N L N
i E(y, ,f(xm Re(Ug) + A ™V (0, , 1
arg(Un’(U”fflElgv(z)(R))(Z (Y F(@m)) +u; (U +AD Y TV () | (1)

m=1 =1 n=1
= F:RM x RNt — R*: arbitrary convex error function

w Ry : RNexNeei 5 R+: convex cost

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

Kne
Ono(x) = bine + bopex + Z eyt (T — Thon )+
k=1
with adaptive parameters K, ¢ < M — 2, T1 n¢, .-, TK, ymne € R,and by n e, b2 n e, @16, -+, 0K, o nye € R
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CONCLUSION: Central role of splines

= Foundations of functional learning

Functional optimization in Banach spaces (enabled by representer theorem)
Hilbert spaces: the tools of classical ML
Non-convex Banach spaces: for sparsity-promoting regularization (e.g., CS)

= Splines and machine learning

Traditional kernel methods are closely related to splines
(with one knot/kernel per data point)

Sparse variants offer promising perspectives
Deep ReLU neural nets are high-dimensional piecewise-linear splines

Approximation properties of shallow networks are fully explained by spline theory

Free-form activations with TV-regularization = Deep splines
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Sketch of proof

M N L N,
min E(y,,.f(@n)) +1> Re(Up) + A T™V® (0, .,
(U[),(O‘,,_{GBV(Q)(R)) (w ‘ (ym ( m)) / ; [( f) ZZ ( 1)

= =1 n=1
Optimal solution f = &, 0 £, 06,10 0fs 07 o £, with optimized weights U,
and neuronal activations ¢, ¢.
Apply “optimal” network f to each data point x,,:

e Initialization (input): 4,,, o = Tm,.

e For{=1,...,L

Zme = (ZLmtr - 2Nemit) = Ut U o1
i/m,z = (gl,m,ﬁa sy gNz,m,f) S RNE
with gn,m,l = 5"rz,é(zn,m,l) n = 17 ey Né~ = f(wm) = gm L

This fixes two terms of minimal criterion: fo:l E(Ypn,Upm,1) and 25:1 R(Uy).

f achieves global optimum

& 0,0 =arg min HDQfHM st f(znme) = Unme, m=1,..., M
' FEBV(R)
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