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Introduction



Why `0?

Many problems in signal/image processing are concerned with sparse recovery:

compressed sensing, variable selection, source separation, learning...

d = Ax + n

- d ∈ Rm: observed data (signal processing notation)

- x ∈ Rn unknown solution to be estimated

- A ∈ Rm×n observation matrix,

• Few observations y and large explicative unknown variables x , with m� n.

Undertermined system! A is ill-conditioned, noise is present.

• Regularisation: assume the signal is sparse by considering `1-norm or `0

pseudo-norm constraints:

‖x‖1 ≤ K , ‖x‖0 ≤ K

with ‖x‖0 := # {xi , i = 1, . . . , n : xi 6= 0} =
∑n

i=1 |xi |0, with

|z|0 =

{
1 if x 6= 0

0 if x = 0

NB: `0-norm is NOT a norm as ‖λx‖0 = ‖x‖0 6= λ‖x‖0.
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Dictionary representation in imaging

Image are heterogeneous signals, with smooth (homogeneous) areas, edges, texture,...

Take d ∈ Rm be a patch of an image or a signal

Each d is represented by given waveforms whose shape matches the image structure.

Standard choices of ai vectors come from Haar, smooth wavelets, sine/cosine

transform...

Take A = [a1, ..., an] ∈ Rm×n to be a set of normalised (basis) vectors.
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Dictionary representation in imaging

• Such A is a redundant dictionary (sequence of representative waveforms)

• The dictionary A is adapted to the signal d if d can be represented by a few

number of vectors ai (atoms) of A, that is d ≈ Ax with x sparse, that is

‖x‖0 ≤ K , K << n
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Examples in signal/image processing

Examples

• signal is a sum of spikes, modelled by a sum of Dirac
∑K

r=1 xr δtr .

• acquisition system is modelled as a convolution with a Gaussian function:

d(·) = h ∗
∑K

r=1 xr δtr =
∑K

r=1 xrh(· − tr ).

Assume that the Dirac locations tr are on a regular grid indexed by i = 1, ...n

• 1D example: Channel estimation in communications, ...

• 2D example: Single Molecule Localisation in super-resolution microscopy
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Single Molecule Localisation in super-resolution microscopy I

SMLM idea

Modelling: for t ∈ {1, . . . ,T}, given a blurry, undersampled and noisy image

dt ∈ Rm, consider the problem:

find sparse xt s.t. dt = Axt + nt , ∀t ∈ {1, . . . ,T}

A := SH ∈ Rm×n with H ∈ Rn×n convolution and S ∈ Rm×n undersampling , n = Lm, L > 1.
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Single Molecule Localisation in super-resolution microscopy II

Regularisation approach: look for sparse solutions at each time t ∈ {1, . . . ,T}

x∗t ∈ arg min
x

1

2
‖Ax − dt‖2 + λ‖x‖0 + ιx≥0(x), λ > 0

Final reconstruction obtained simply by x =
∑T

i=1 x
∗
t (Gazagnes, Soubies,

Blanc-Féraud, Schaub, ’15, Lazzaretti, Calatroni, Estatico, ’21)
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`2-`0 minimisation



`2-`0 minimisation

`2-`0: problem forms

For A ∈ Rm×n, m ≤ n consider the following formulations:

• Exact recovery:

x̂ ∈ arg min
x∈Rn

‖x‖0 subject to Ax = d

• Approximation problem in constrained forms (ε > 0,K > 0)

x̂ ∈ arg min
x∈Rn

1

2
‖Ax − d‖2

2 subject to ‖x‖0 ≤ K

x̂ ∈ arg min
x∈Rn

‖x‖0 subject to ‖Ax − d‖2
2 ≤ ε

• Approximation problem in penalised form (λ > 0)

x̂ ∈ arg min
x∈Rn

G`0
(x) :=

1

2
‖Ax − d‖2

2 + λ‖x‖0

• non-continuous, non-convex and NP-hard optimisation problem (Natarajan, ’95, Davies et

al., ’97): a solution cannot be verified in polynomial time w.r.t the dimension of the problem

• Non equivalent formulations

• Existence of optimal solutions and relations between formulations in Nikolova, ’16

• Very active field of research in signal and image processing, and in statistics.
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How people do: `2-`1 minimisation

A popular way to deal with this problem consists in considering the `1-norm instead

`2-`1 problem formulations

• Constrained formulation (K > 0):

x̂ ∈ arg min
x∈Rn

‖Ax − d‖2
2 subject to ‖x‖1 ≤ K

• Penalised formulation (λ > 0):

x̂ ∈ arg min
x∈Rn

‖Ax − d‖2
2 + λ‖x‖1

• Easier optimization problems: convex and continuous (but non smooth) →
available solvers (see previous courses)!

• The two formulations are equivalent

• Under some conditions involving A, solving these problems allows to find a

solution of the `2-`0 problem (Candès, Romberg, Tao, ’05)

• They are known as Basis Pursuit De-Noising (BPDN) Chen et al., ’98, or

LASSO (Tibshirani, ’96) problems, respectively.
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`1 norm promotes sparsity

Standard example in R2.

Level lines of ‖Ax − d‖2
2.
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`1 norm promotes sparsity

Standard example in R2.

Level lines of ‖Ax − d‖2
2 with `2 constraint ‖x‖2 ≤ K → (x1, x2) 6= (0, 0).
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`1 norm promotes sparsity

Standard example in R2.

Level lines of ‖Ax − d‖2
2 with `1 constraint ‖x‖1 ≤ K → x1 = 0.
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Sparsity through sof-thresholding

Recall that in 1D:

x̂ = arg min
x∈R

{
1

2
(d − x)2 + λ|x |

}
= proxλ|·|(d)

is reached at

x̂ = Tλ(d) =

{
d − sign(d)λ if |d | > λ

0 if |d | ≤ λ

By, separability, this is then used for defining proxλ‖·‖1
(·).

. . . many zeros!

Note: using `2 norm we get instead

x̂ = arg min
x∈R

{
1

2
(d − x)2 + λx2

}
.

x̂ = d
1+2λ

which is different from 0 as soon as d 6= 0.
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Algorithmic advantages in solving `2-`1 problems

You now know how to solve the problem:

arg min
x

1

2
‖Ax − d‖2 + λ‖x‖1, λ > 0

• ISTA (Combettes, Wajs, ’05)

• FISTA (Beck, Teboulle, ’09)

• If A is positive definite → strongly convex problem, hence V-FISTA can be used

(Beck, ’17)

For analysis approaches, i.e. when sparsity is assumed w.r.t. to some basis W ∈ RN×n

(gradient, wavelets. . . )

arg min
x

1

2
‖Ax − d‖2 + λ‖Wx‖1, λ > 0

you can use, e.g., ADMM (Glowinski, Marroco, ’75, Boyd et al, ’11).
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So. . . why just not solving `2-`1?

Compressed Sensing Theory

• A sparse signal (‖x‖0 ≤ K) can be exactly reconstructed by solving the

constrained `1 problem when Restricted Isometry Property (RIP) of matrix A

(Donoho et al., Candès et al. ’06)

• Roughly speaking A satisfies the RIP if ATA ≈ Id .

• Under RIP conditions on A, `0 can be replaced by `1.

• Otherwise (frequent cases in inverse problems), the two optimisation problems

give different solutions.

• `1 promotes sparsity but introduces biases, since in correspondence of the actual

non-zeros the magnitude is lowered.

• `0 better promotes sparsity than `1 in the general case.
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Algorithms for `2-`0 minimisation



Algorithms for `2-`0 minimisation

Iterative Hard Thresholding



Non-convex proximal gradient: iterative hard thresholding

Consider the penalised form of the problem:

arg min
x∈Rn

1

2
‖Ax − d‖2

2 + λ‖x‖0

• 1
2
‖Ax − d‖2 is L-smooth (L = ‖A‖2)

• The proximal operator of ‖ · ‖0 is the hard thresholding operator

Algorithm: Iterative hard thresholding (IHT)

Input: x0 ∈ Rn, τ ∈
(
0, 1

L

)
.

for k ≥ 0 do

xk+1 = proxτλ‖·‖0

(
xk − τAT (Axk − d)

)
= H√2λτ

(
xk − τAT (Axk − d)

)
end for

• IHT converges to a critical point (in Blumensath, Davies, ’09 for τ = 1 and ‖A‖ < 1, in Attouch et al., ’13

general FB-type result)

• As always for non convex problems, initialisation is crucial! One good idea is to initialise with the solution of

arg min
x∈Rn

1

2
‖Ax − d‖2

2 + λ‖x‖1 → computed by FISTA
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IHT: ideas

arg min
x∈Rn

G`0
(x) :=

1

2
‖Ax − d‖2

2 + λ‖x‖0,

Introduce the surrogate function for all z ∈ Rn:

CS
`0

(x , z) :=
1

2
‖Ax − d‖2

2 + λ‖x‖0 −
1

2
‖Ax − Az‖2

2 + ‖x − z‖2
2

It can be shown that if ‖A‖ < 1, then CS
`0

(x , z) majorises G`0
(x):

G`0
(x) ≤ CS

`0
(x , z), ∀z ∈ Rn.

Note, moreover, that G`0
(x) = CS

`0
(x , x). We can thus optimise CS

`0
(x , z) with

respect to x . We can rewrite:

CS
`0

(x , z) =
1

2

n∑
i=1

(
x2
i − 2xi

(
zi + aTi d − aTi Az

)
+ λ|xi |0

)
+

1

2

(
‖d‖2 + ‖z‖2 − ‖Az‖2

)
By treating the case xi = 0 and xi 6= 0 separately and comparing we get:

x = H√2λ(z − AT (Az − d)), ∀z

IHT obtained by setting z = xk and x = xk+1.
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Algorithms for `2-`0 minimisation

Greedy algorithms



Greedy algorithms

Greedy algorithms: matching pursuit (MP) (Mallat et al., ’93), Orthogonal MP (Pati

et al., ’93), Orthogonal Least Squares (OLS, Chen et al., ’89), Bayesian OMP (Herzen

et al., ’10), Single Best Replacement (Soussen et al, ’11).

Matching Pursuit

d ∈ Rm is the signal to represent with a limited number of K � n of atoms of

dictionary A ∈ Rm×n, i.e. of columns ai of A, i = 1, . . . , n.

MP considers the constrained formulation:

arg min
x∈Rn

‖Ax − d‖2, subject to ‖x‖0 ≤ K

and try to add one component at a time.
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Matching pursuit: main ideas

Assumption: A has unit column norms, i.e. ‖ai‖ = 1 for all i = 1, . . . , n.

Algorithm: Matching pursuit

Input: A s.t. ‖ai‖ = 1, d , K � n.

Initialise: r0 = d , σ0 = ∅, x0 = 0.

while #σk ≤ K do

ik = arg max
j∈{1,...,n}

|〈rk , aj 〉|

σk+1 = σk ∪ {ik}
xk+1 = xn + 〈aik , rk 〉eik
rk+1 = rk − 〈rk , aik 〉aik

end while

• The quantity ‖rk‖ converges exponentially to 0 (Mallat et al, ’93)

• In Gribonval et al., ’96, a different correlation function (not |〈·, ·〉|) is considered.
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Orthogonal Matching Pursuit

OMP idea (Pati et al. ’93, Tropp, ’04): at each iteration of MP optimally estimate

the intensity values having the current support fixed by solving

xk+1 = arg min
x∈Rn

‖Ax − d‖2, subject to xi = 0 ∀i /∈ ω := σ(xk ) ∪ ik+1

Algorithm: Orthogonal matching pursuit

Input: A s.t. ‖ai‖ = 1, d , K � n.

Initialise: r0 = d , σ0 = ∅, x0 = 0.

while #σk ≤ K do

ik = arg max
j∈{1,...,n}

|〈rk , aj 〉|

σk+1 = σk ∪ {ik}

xk+1 = arg min
x∈Rn

‖Ax − d‖2, subject to xi = 0 ∀i /∈ σ(xk+1)

rk+1 = d − Axk+1

end while

• “Orthogonal” as by definition at each k ≥ 0 the residual belongs to the

orthogonal space of the current support

• Convergence in n iterations at most (new component at each iteration)

• Exact sparse recovery results (under some conditions on A) (Tropp, ’04) 18



Further greedy algorithms

The main idea of the other existing greedy algorithms is that at each iteration

one component is:

• added

• removed

• replaced

The more complex is the strategy, the best is the solution, but the largest is the

computing time. . .
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Continuous relaxations



Continuous relaxation idea

Think of a different idea for solving the problem:

1

2
‖Ax − d‖2 + λ‖x‖0 =⇒

1

2
‖Ax − d‖2 +

n∑
i=1

φi (xi )

Idea: use continuous and separable functions φi (xi ) (convex and non-convex).

• `1 norm: LASSO (Tibshirani, ’96), Basis Pursuit (Chen, ’98), Compressed

Sensing (Donoho, ’06, Candès et al., ’06)

• Adaptive LASSO (Zou, ’06)

• Exponential approximation (Mangasarian, ’96)

• Log-sum penalty (Candès, ’08)

• Smoothly Clipped Absolute Deviation (SCAD) (Fan, Liu, ’01) and Minimax

Concave Penalty (MCP) (Zhang, ’10

• `p “norms”, p < 1 (Chartrand, ’07, Foucart, Lai, ’09)

• Beautiful review (Soubies, Blanc-Féraud, Aubert, ’17)

Which approximation should we use?
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Continuous relaxation idea

Think of a different idea for solving the problem:

1

2
‖Ax − d‖2 + λ‖x‖0 =⇒

1

2
‖Ax − d‖2 +

n∑
i=1

φi (xi )

Idea: use continuous and separable functions φi (xi ) (convex and non-convex).

−2 0 2
0

0.5

1

1.5

`0 `1

Cap-`1 `0.5

Log-Sum SCAD

MCP Exp

Which approximation should we use?
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Continuous relaxation idea

Think of a different idea for solving the problem:

1

2
‖Ax − d‖2 + λ‖x‖0 =⇒

1

2
‖Ax − d‖2 +

n∑
i=1

φi (xi )

Idea: use continuous and separable functions φi (xi ) (convex and non-convex).

Thresholding on R+

Which approximation should we use? 20



Continuous relaxations

Exactness



What is a good relaxation?

G`0
(x) =

1

2
‖Ax − d‖2 + λ‖x‖0 =⇒ G̃(x) :=

1

2
‖Ax − d‖2 +

n∑
i=1

φi (xi )

Good (exact) relaxation

• G`0
(x) and G̃(x) have the same global minimisers:

arg min
x∈Rn

G`0
(x) = arg min

x∈Rn
G̃(x), (global) (P1)

• G̃(x) has “less” local minimisers than G`0
(x):

x∗ minimiser of G̃ ⇒ x∗ minimiser of G`0
(P2)
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The continuous exact `0 relaxation (CEL0) penalty

In Soubies, Aubert, Blanc-Féraud, ’15-’17 a particular choice of φ : R→ R+ is studied.

By convex conjugation, the penalty removing most of the local minimisers is:

φCEL0(‖ai‖, λ, x) = λ−
‖ai‖2

2

(
|x | −

√
2λ

‖ai‖

)2

1{
|x|≤

√
2λ
‖ai‖

}

where 1C (x) = 1 if x ∈ C and 1C (x) = 0 otherwise.

x

φ(x)

−
√

2λ
‖ai‖

√
2λ
‖ai‖

φCEL0

β− β+
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Good relaxations: examples
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Capped-`1, Zhang, ’09
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Examples of penalties for which (P1) (top) or (P1) and (P2) (bottom) hold for

a = 0.5, λ = 1 and d = 1.8 in the 1D case.
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The CEL0 relaxation

GCEL0(x) :=
1

2
‖Ax − d‖2 +

n∑
i=1

φCEL0(‖ai‖, λ, xi )︸ ︷︷ ︸
ΦCEL0:=

where: φCEL0(‖ai‖, λ, x) = λ− ‖ai‖
2

2

(
|x | −

√
2λ
‖ai‖

)2
1{
|x|≤

√
2λ
‖ai‖

}
Properties of GCEL0:

• Inferior limit of all functions satisfying (P1) and (P2)

• Convex envelope of G`0
if A diagonal or ATA = sId, s > 0

• Continuous

• Non convex for general operators A

• Convexity w.r.t. each component xi , i = 1, . . . , n

Thanks to its continuity we can resort to nonsmooth, nonconvex algorithms such as,

e.g., forward-backward and majorisation-minimisation (MM) algorithms (e.g., iterative

reweighted `1 Ochs et al., ’15).
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Understanding the relaxation

1D example: G`0
(x) := 1

2
(ax − y)2 + λ|x |0 for a, λ > 0.

Blue lines: plots of G`0
for different values of d (note discontinuity in x = 0). Red

lines: plots of GCEL0 (convex biconjugate).

In 1D GCEL0 is always a convex function, in the multi-dimensional case it depends on

the operator A. Generally, it is non-convex with convex 1D restrictions.
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Forward-backward splitting for `2-CEL0

Iterate for k ≥ 0 and τ ∈ (0, 1
‖A‖2 )

xk+1 ∈ proxτΦCEL0

(
xk − τAT (Axk − d)

)
where, by separability, we can look at the prox of the 1D components:

proxτφCEL0(a,λ;·)(u) =

{
sign(u) min

(
|u|, (|u| −

√
2λτa)+/(1− a2τ)

)
if a2τ < 1

u1|u|>
√

2τλ + {0, u}1|u|=√2τλ if a2τ ≥ 1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

 

 

L0

L1

MCP

Dependence of φCEL0 on a = ‖ai‖ at component u = xi .

Convergence to a critical point under Kurdyka- Lojaseiwicz (KL) property (Attouch et al, ’13).
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Continuous relaxations

Iteratively reweighted algorithms



Key idea

min
x∈Rn

F (x) := f (x) + g(x)

for g proper, l.s.c. and bounded from below but generally non-convex

Majorisation-minimisation technique

Construct a sequence of easier (convex) functions majorising F and minimise

them to simplify the problem.

Minimisation of a non-convex function (red) using MM techniques. Non-convexity

induced by g(x) = log(1 + 2|x |). Majorant functions in blue.
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Key idea

min
x∈Rn

F (x) := f (x) + g(x)

for g proper, l.s.c. and bounded from below but generally non-convex

Majorisation-minimisation technique

Construct a sequence of easier (convex) functions majorising F and minimise

them to simplify the problem.

Pseudocode: general idea for MM algorithms

Input: x0 ∈ Rn.

while not converging do

Build a majorising function Mxk : Rn → R such that:

• ∀x ∈ Rn: F (x) ≤ Mxk (x)

• F (xk ) = Mxk (xk )

• Mxk (xk ) ∈ Γ0(Rn)

Define xk+1 ∈ arg minx Mxk (x)

end while
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MM approaches

Several approaches for building such functions:

• Iterative least-squares (IRLS) (Daubechies et al. ’10, Gorodnitsky, Rao, ’97):

Mxk (x) =
∑

(wxk )ix
2
i

• MM approaches for inverse problems (Chouzenoux et al., ’10 -. . . )

• Iterative reweighted `1 algorithms: better suited to construct majorants of

functions which are not sufficiently smooth of the form:

F (x) =
1

2
‖Ax − d‖2 +

∑
φ(|xi |)

with φ : R+ → R continuous, concave and non-decreasing (Ochs et al, ’15.)

Algorithm: IR`1 (Ochs et al, ’15)

Input: x0 ∈ Rn.

while not converging do

(wxk )i ∈ ∂+φi (|(xk )i |)
xk+1 ∈ arg minx

1
2
‖Ax − d‖2 +

∑n
i=1(wxk )i |xi | → solve with FISTA

end while

∂+φi (|(xk )i |) extends the notion of subdifferentials to the non-convex case (Clarke,

’90, Rockfellar, Wets, ’09)
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IR`1 for GCEL0 minimisation

Weights can be computed in an explicit form:

(wxk )i :=

{√
2λ‖ai‖ − ‖ai‖2|(xk )i | if 0 ≤ |(xk )i | <

√
2λ/‖ai‖

0 ‖(xk )i | ≥
√

2λ/‖ai‖

Convergence of IR`1 to critical points can be proved for general class of functions

satisfying the so-called Kurdyka- Lojasiewicz property (Ochs et al, ’15).
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Application to super-resolution

microscopy



Super-resolution microscopy

Spatial resolution is limited by light diffraction phenomena.

Point Spread Function: Gaussian, Airy disk. . .

Rayleigh criterion

d =
0.61λ

NA
≈ 200nm

• λ: emission wavelength

• NA: microscope numerical aperture
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Super-resolution microscopy

Spatial resolution is limited by light diffraction phenomena.

Point Spread Function: Gaussian, Airy disk. . .

Rayleigh criterion

d =
0.61λ

NA
≈ 200nm

• λ: emission wavelength

• NA: microscope numerical aperture

Resolvable VS. non-resolvable line profiles 30



Discrete mathematical modelling

X

Y

Image formation model

Y = P(Mq (H(X )) + B) + N

• Y ∈ RN×N : LR acquisition

• X ∈ RL×L: HR image (L = qN, q ∈ N)

• P(·): Poisson r.v.

• Mq ∈ RN×L: down-sampling matrix

• H ∈ RN×N : convolution matrix

• N: additive white Gaussian noise

• B: background

q = 4

31



State-of-the-art methods in fluorescence microscopy

Key idea

In microscopy imaging, the experimental setup and the sample preparation can be

used to ‘sparsify’ the measurements.

Fluorescence microscopy

Absorption/emission diagram

Fluorescent molecules

Nobel prize in chemistry in 2008.
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State-of-the-art methods in fluorescence microscopy

Key idea

In microscopy imaging, the experimental setup and the sample preparation can be

used to ‘sparsify’ the measurements.

Example: Single Molecule Localization Microscopy

(Betzig, Zhuang, Hess, ’06, Rust, Bates, Zhuang, ’06)

- Specific fluorescent molecules activating with low

probability in a sequential way

- Improved sparsity!

http://zeiss-campus.magnet.

fsu.edu/

32
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Spoiler

yt = P(Ψxt + b) + nt , Ψ := MqH, nt ∼ N (0, σ2Id), ȳ :=
T∑
t=1

yt/T

33



Weighted CEL0

To incorporate signal-dependence (modelling Poisson photon counting) in Lazzaretti,

Calatroni, Estatico, ’21 we considered a weighted `2 fidelity term.

Weighted-`2-`0 problem

x∗ ∈ arg min
x∈RL2

Gw`0
(x) :=

1

2

N2∑
j=1

((Ψx)j − yj − bj )
2

yj + bj
+ λ‖x‖0 + ι≥0(x)

 , λ > 0

Theorem

• If ΨTWΨ = D2 with D = diag(‖ψi‖W ) ∈ RL2×L2
, then GwCEL0 = G∗∗w`0

.

• arg minGwCEL0 = arg minGw`0
(same global minimisers)

• x minimiser of GwCEL0 ⇒ x minimiser of Gw`0
(less local minimisers).

+ Minimisation with IR`1.
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Zoom on a detail
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Zoom on a detail

35



Conclusions

We focused on models and algorithms tackling the `2-`0 minimisation problem.

• NP-hardness is avoided by alternative formulations

• Greedy approaches provide interesting results, at the price of increased complexity

• Continuous relaxations (both convex and non-convex) ease the problem

• CEL0 is the “best” (liminf) continuous, non-convex relaxation, and it is exact.

• A MM strategy such as IR`1 can be used. Fast convex optimisation is here

essential for solving inner problems with high precision.

• Application areas are vast: inverse problems in imaging, vision, variable selection

in machine learning. . .
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Interested in a PostDoc (or PhD) in optimisation?

Task-adaptive bilevel learning of flexible statistical models for imaging and vision

(2023-2027)

• 2-year post-doctoral position (open)

• 1 PhD position (from October 2023)
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Announcement II: SSVM 2023

• What? IX conference on Scale Space and Variational Methods in Computer

Vision (SSVM).

• Where? Hotel Flamingo, Santa Margherita di Pula, Sardegna, IT.

• When? May 21-25 2023

• Who? Giunta Gruppo UMI MIVA + G. Rodriguez (local organiser)

• Why Oral + poster session of selected papers (published in Springer LNCS)

Website: SSVM 2023

NEW DEADLINE for submissions: January 30 2023
38
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Questions?

calatroni@i3s.unice.fr
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