Lecture 3: Models and algorithms for $\ell_{2}-\ell_{0}$ optimisation problems

Luca Calatroni
CR CNRS, Laboratoire I3S
CNRS, UCA, Inria SAM, France

MIVA ERASMUS BIP PhD winter school
Advanced methods for mathematical image analysis
University of Bologna, IT
January 18-20 2022

Table of contents

1. Introduction
2. $\ell_{2}-\ell_{0}$ minimisation
3. Algorithms for $\ell_{2}-\ell_{0}$ minimisation

Iterative Hard Thresholding
Greedy algorithms
4. Continuous relaxations

Exactness
Iteratively reweighted algorithms
5. Application to super-resolution microscopy

Introduction

Why ℓ_{0} ?

Many problems in signal/image processing are concerned with sparse recovery: compressed sensing, variable selection, source separation, learning...

$$
d=A x+n
$$

- $d \in \mathbb{R}^{m}$: observed data (signal processing notation)
- $x \in \mathbb{R}^{n}$ unknown solution to be estimated
- $A \in \mathbb{R}^{m \times n}$ observation matrix,
- Few observations y and large explicative unknown variables x, with $m \ll n$. Undertermined system! A is ill-conditioned, noise is present.
- Regularisation: assume the signal is sparse by considering ℓ_{1}-norm or ℓ_{0} pseudo-norm constraints:

$$
\|x\|_{1} \leq K, \quad\|x\|_{0} \leq K
$$

with $\|x\|_{0}:=\#\left\{x_{i}, i=1, \ldots, n: x_{i} \neq 0\right\}=\sum_{i=1}^{n}\left|x_{i}\right|_{0}$, with

$$
|z|_{0}= \begin{cases}1 & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Dictionary representation in imaging

Image are heterogeneous signals, with smooth (homogeneous) areas, edges, texture,...
Take $d \in \mathbb{R}^{m}$ be a patch of an image or a signal

Each d is represented by given waveforms whose shape matches the image structure. Standard choices of a_{i} vectors come from Haar, smooth wavelets, sine/cosine transform...

Take $A=\left[a_{1}, \ldots, a_{n}\right] \in \mathbb{R}^{m \times n}$ to be a set of normalised (basis) vectors.

Dictionary representation in imaging

- Such A is a redundant dictionary (sequence of representative waveforms)
- The dictionary A is adapted to the signal d if d can be represented by a few number of vectors a_{i} (atoms) of A, that is $d \approx A \times$ with \times sparse, that is

$$
\|x\|_{0} \leq K, \quad K \ll n
$$

Examples in signal/image processing

Examples

- signal is a sum of spikes, modelled by a sum of Dirac $\sum_{r=1}^{K} x_{r} \delta_{t_{r}}$.
- acquisition system is modelled as a convolution with a Gaussian function: $d(\cdot)=h * \sum_{r=1}^{K} x_{r} \delta_{t_{r}}=\sum_{r=1}^{K} x_{r} h\left(\cdot-t_{r}\right)$.

Assume that the Dirac locations t_{r} are on a regular grid indexed by $i=1, \ldots n$

- 1D example: Channel estimation in communications, ...
- 2D example: Single Molecule Localisation in super-resolution microscopy

Single Molecule Localisation in super-resolution microscopy I

SMLM idea
Modelling: for $t \in\{1, \ldots, T\}$, given a blurry, undersampled and noisy image $d_{t} \in \mathbb{R}^{m}$, consider the problem:

$$
\text { find sparse } \quad x_{t} \quad \text { s.t. } \quad d_{t}=A x_{t}+n_{t}, \quad \forall t \in\{1, \ldots, T\}
$$

$A:=S H \in \mathbb{R}^{m \times n}$ with $H \in \mathbb{R}^{n \times n}$ convolution and $S \in \mathbb{R}^{m \times n}$ undersampling, $n=L m, L>1$.

Single Molecule Localisation in super-resolution microscopy II

Regularisation approach: look for sparse solutions at each time $t \in\{1, \ldots, T\}$

$$
x_{t}^{*} \in \underset{x}{\arg \min } \frac{1}{2}\left\|A x-d_{t}\right\|^{2}+\lambda\|x\|_{0}+\iota_{x \geq 0}(x), \quad \lambda>0
$$

Final reconstruction obtained simply by $x=\sum_{i=1}^{T} x_{t}^{*}$ (Gazagnes, Soubies, Blanc-Féraud, Schaub, '15, Lazzaretti, Calatroni, Estatico, '21)

Acquisition

$\ell_{2}-\ell_{0}$ minimisation

$\ell_{2}-\ell_{0}$ minimisation

$\ell_{2}-\ell_{0}$: problem forms

For $A \in \mathbb{R}^{m \times n}, m \leq n$ consider the following formulations:

- Exact recovery:

$$
\hat{x} \in \underset{x \in \mathbb{R}^{n}}{\arg \min }\|x\|_{0} \text { subject to } A x=d
$$

- Approximation problem in constrained forms $(\epsilon>0, K>0)$

$$
\begin{aligned}
& \hat{x} \in \underset{x \in \mathbb{R}^{n}}{\arg \min } \frac{1}{2}\|A x-d\|_{2}^{2} \text { subject to }\|x\|_{0} \leq K \\
& \hat{x} \in \underset{x \in \mathbb{R}^{n}}{\arg \min }\|x\|_{0} \text { subject to }\|A x-d\|_{2}^{2} \leq \epsilon
\end{aligned}
$$

- Approximation problem in penalised form $(\lambda>0)$

$$
\hat{x} \in \underset{x \in \mathbb{R}^{n}}{\arg \min } G_{\ell_{0}}(x):=\frac{1}{2}\|A x-d\|_{2}^{2}+\lambda\|x\|_{0}
$$

- non-continuous, non-convex and NP-hard optimisation problem (Natarajan, '95, Davies et al., '97): a solution cannot be verified in polynomial time w.r.t the dimension of the problem
- Non equivalent formulations
- Existence of optimal solutions and relations between formulations in Nikolova, '16
- Very active field of research in signal and image processing, and in statistics.

How people do: $\ell_{2}-\ell_{1}$ minimisation

A popular way to deal with this problem consists in considering the ℓ_{1}-norm instead

$\ell_{2}-\ell_{1}$ problem formulations

- Constrained formulation $(K>0)$:

$$
\hat{x} \in \underset{x \in \mathbb{R}^{n}}{\arg \min }\|A x-d\|_{2}^{2} \text { subject to }\|x\|_{1} \leq K
$$

- Penalised formulation $(\lambda>0)$:

$$
\hat{x} \in \underset{x \in \mathbb{R}^{n}}{\arg \min }\|A x-d\|_{2}^{2}+\lambda\|x\|_{1}
$$

- Easier optimization problems: convex and continuous (but non smooth) \rightarrow available solvers (see previous courses)!
- The two formulations are equivalent
- Under some conditions involving A, solving these problems allows to find a solution of the $\ell_{2}-\ell_{0}$ problem (Candès, Romberg, Tao, '05)
- They are known as Basis Pursuit De-Noising (BPDN) Chen et al., '98, or LASSO (Tibshirani, '96) problems, respectively.

ℓ_{1} norm promotes sparsity

Standard example in \mathbb{R}^{2}.

Level lines of $\|A x-d\|_{2}^{2}$.

ℓ_{1} norm promotes sparsity

Standard example in \mathbb{R}^{2}.

Level lines of $\|A x-d\|_{2}^{2}$ with ℓ_{2} constraint $\|x\|_{2} \leq K \rightarrow\left(x_{1}, x_{2}\right) \neq(0,0)$.

ℓ_{1} norm promotes sparsity

Standard example in \mathbb{R}^{2}.

Level lines of $\|A x-d\|_{2}^{2}$ with ℓ_{1} constraint $\|x\|_{1} \leq K \rightarrow x_{1}=0$.

Sparsity through sof-thresholding

Recall that in 1D:

$$
\hat{x}=\underset{x \in \mathbb{R}}{\arg \min }\left\{\frac{1}{2}(d-x)^{2}+\lambda|x|\right\}=\operatorname{prox}_{\lambda|\cdot|}(d)
$$

is reached at

$$
\hat{x}=\mathcal{T}_{\lambda}(d)= \begin{cases}d-\operatorname{sign}(d) \lambda & \text { if }|d|>\lambda \\ 0 & \text { if }|d| \leq \lambda\end{cases}
$$

By, separability, this is then used for defining prox ${ }_{\lambda\|\cdot\|_{1}}(\cdot)$.
... many zeros!

Note: using ℓ_{2} norm we get instead

$$
\hat{x}=\underset{x \in \mathbb{R}}{\arg \min }\left\{\frac{1}{2}(d-x)^{2}+\lambda x^{2}\right\} .
$$

$\hat{x}=\frac{d}{1+2 \lambda}$ which is different from 0 as soon as $d \neq 0$.

Algorithmic advantages in solving $\ell_{2}-\ell_{1}$ problems

You now know how to solve the problem:

$$
\underset{x}{\arg \min } \frac{1}{2}\|A x-d\|^{2}+\lambda\|x\|_{1}, \quad \lambda>0
$$

- ISTA (Combettes, Wajs, '05)
- FISTA (Beck, Teboulle, '09)
- If A is positive definite \rightarrow strongly convex problem, hence V-FISTA can be used (Beck, '17)

For analysis approaches, i.e. when sparsity is assumed w.r.t. to some basis $W \in \mathbb{R}^{N \times n}$ (gradient, wavelets...)

$$
\underset{x}{\arg \min } \frac{1}{2}\|A x-d\|^{2}+\lambda\|W x\|_{1}, \quad \lambda>0
$$

you can use, e.g., ADMM (Glowinski, Marroco, '75, Boyd et al, '11).

So. . . why just not solving $\ell_{2}-\ell_{1}$?

Compressed Sensing Theory

- A sparse signal $\left(\|x\|_{0} \leq K\right)$ can be exactly reconstructed by solving the constrained ℓ_{1} problem when Restricted Isometry Property (RIP) of matrix A (Donoho et al., Candès et al. '06)
- Roughly speaking A satisfies the RIP if $A^{T} A \approx I d$.
- Under RIP conditions on A, ℓ_{0} can be replaced by ℓ_{1}.
- Otherwise (frequent cases in inverse problems), the two optimisation problems give different solutions.
- ℓ_{1} promotes sparsity but introduces biases, since in correspondence of the actual non-zeros the magnitude is lowered.
- ℓ_{0} better promotes sparsity than ℓ_{1} in the general case.

Algorithms for $\ell_{2}-\ell_{0}$ minimisation

Algorithms for $\ell_{2}-\ell_{0}$ minimisation

Iterative Hard Thresholding

Non-convex proximal gradient: iterative hard thresholding

Consider the penalised form of the problem:

$$
\underset{x \in \mathbb{R}^{n}}{\arg \min } \frac{1}{2}\|A x-d\|_{2}^{2}+\lambda\|x\|_{0}
$$

- $\frac{1}{2}\|A x-d\|^{2}$ is L-smooth $\left(L=\|A\|^{2}\right)$
- The proximal operator of $\|\cdot\|_{0}$ is the hard thresholding operator

Algorithm: Iterative hard thresholding (IHT)

Input: $x_{0} \in \mathbb{R}^{n}, \tau \in\left(0, \frac{1}{L}\right)$.
for $k \geq 0$ do

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\tau \lambda\|\cdot\|_{0}}\left(x_{k}-\tau A^{T}\left(A x_{k}-d\right)\right) \\
& =\mathcal{H}_{\sqrt{2 \lambda \tau}}\left(x_{k}-\tau A^{T}\left(A x_{k}-d\right)\right)
\end{aligned}
$$

end for

- IHT converges to a critical point (in Blumensath, Davies, '09 for $\tau=1$ and $\|A\|<1$, in Attouch et al., '13 general FB-type result)
- As always for non convex problems, initialisation is crucial! One good idea is to initialise with the solution of

$$
\underset{x \in \mathbb{R}^{n}}{\arg \min } \frac{1}{2}\|A x-d\|_{2}^{2}+\lambda\|x\|_{1} \quad \rightarrow \text { computed by FISTA }
$$

IHT: ideas

$$
\underset{x \in \mathbb{R}^{n}}{\arg \min } G_{\ell_{0}}(x):=\frac{1}{2}\|A x-d\|_{2}^{2}+\lambda\|x\|_{0}
$$

Introduce the surrogate function for all $z \in \mathbb{R}^{n}$:

$$
C_{\ell_{0}}^{S}(x, z):=\frac{1}{2}\|A x-d\|_{2}^{2}+\lambda\|x\|_{0}-\frac{1}{2}\|A x-A z\|_{2}^{2}+\|x-z\|_{2}^{2}
$$

It can be shown that if $\|A\|<1$, then $C_{\ell_{0}}^{S}(x, z)$ majorises $G_{\ell_{0}}(x)$:

$$
G_{\ell_{0}}(x) \leq C_{\ell_{0}}^{S}(x, z), \quad \forall z \in \mathbb{R}^{n}
$$

Note, moreover, that $G_{\ell_{0}}(x)=C_{\ell_{0}}^{S}(x, x)$. We can thus optimise $C_{\ell_{0}}^{S}(x, z)$ with respect to x. We can rewrite:

$$
C_{\ell_{0}}^{S}(x, z)=\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i}\left(z_{i}+a_{i}^{T} d-a_{i}^{T} A z\right)+\lambda\left|x_{i}\right|_{0}\right)+\frac{1}{2}\left(\|d\|^{2}+\|z\|^{2}-\|A z\|^{2}\right)
$$

By treating the case $x_{i}=0$ and $x_{i} \neq 0$ separately and comparing we get:

$$
x=\mathcal{H}_{\sqrt{2 \lambda}}\left(z-A^{T}(A z-d)\right), \quad \forall z
$$

IHT obtained by setting $z=x_{k}$ and $x=x_{k+1}$.

Algorithms for $\ell_{2}-\ell_{0}$ minimisation

Greedy algorithms

Greedy algorithms

Greedy algorithms: matching pursuit (MP) (Mallat et al., '93), Orthogonal MP (Pati et al., '93), Orthogonal Least Squares (OLS, Chen et al., '89), Bayesian OMP (Herzen et al., '10), Single Best Replacement (Soussen et al, '11).

Matching Pursuit

$d \in \mathbb{R}^{m}$ is the signal to represent with a limited number of $K \ll n$ of atoms of dictionary $A \in \mathbb{R}^{m \times n}$, i.e. of columns a_{i} of $A, i=1, \ldots, n$.

MP considers the constrained formulation:

$$
\underset{x \in \mathbb{R}^{n}}{\arg \min }\|A x-d\|^{2}, \quad \text { subject to } \quad\|x\|_{0} \leq K
$$

and try to add one component at a time.

Matching pursuit: main ideas

Assumption: A has unit column norms, i.e. $\left\|a_{i}\right\|=1$ for all $i=1, \ldots, n$.

Algorithm: Matching pursuit

Input: A s.t. $\left\|a_{i}\right\|=1, d, K \ll n$.
Initialise: $r_{0}=d, \sigma_{0}=\emptyset, x_{0}=0$.
while $\# \sigma_{k} \leq K$ do

$$
\begin{aligned}
i_{k} & =\underset{j \in\{1, \ldots, n\}}{\arg \max }\left|\left\langle r_{k}, a_{j}\right\rangle\right| \\
\sigma_{k+1} & =\sigma_{k} \cup\left\{i_{k}\right\} \\
x_{k+1} & =x_{n}+\left\langle a_{i_{k}}, r_{k}\right\rangle e_{i_{k}} \\
r_{k+1} & =r_{k}-\left\langle r_{k}, a_{i_{k}}\right\rangle a_{i_{k}}
\end{aligned}
$$

end while

- The quantity $\left\|r_{k}\right\|$ converges exponentially to 0 (Mallat et al, '93)
- In Gribonval et al., '96, a different correlation function (not $|\langle\cdot, \cdot\rangle|$) is considered.

Orthogonal Matching Pursuit

OMP idea (Pati et al. '93, Tropp, '04): at each iteration of MP optimally estimate the intensity values having the current support fixed by solving

$$
x_{k+1}=\underset{x \in \mathbb{R}^{n}}{\arg \min }\|A x-d\|^{2}, \quad \text { subject to } x_{i}=0 \forall i \notin \omega:=\sigma\left(x_{k}\right) \cup i_{k+1}
$$

Algorithm: Orthogonal matching pursuit
Input: A s.t. $\left\|a_{i}\right\|=1, d, K \ll n$.
Initialise: $r_{0}=d, \sigma_{0}=\emptyset, x_{0}=0$.
while $\# \sigma_{k} \leq K$ do

$$
\begin{aligned}
i_{k} & =\underset{j \in\{1, \ldots, n\}}{\arg \max }\left|\left\langle r_{k}, a_{j}\right\rangle\right| \\
\sigma_{k+1} & =\sigma_{k} \cup\left\{i_{k}\right\} \\
x_{k+1} & =\underset{x \in \mathbb{R}^{n}}{\arg \min }\|A x-d\|^{2}, \quad \text { subject to } x_{i}=0 \forall i \notin \sigma\left(x_{k+1}\right) \\
r_{k+1} & =d-A x_{k+1}
\end{aligned}
$$

end while

- "Orthogonal" as by definition at each $k \geq 0$ the residual belongs to the orthogonal space of the current support
- Convergence in n iterations at most (new component at each iteration)
- Exact sparse recovery results (under some conditions on A) (Tropp, '04)

Further greedy algorithms

The main idea of the other existing greedy algorithms is that at each iteration one component is:

- added
- removed
- replaced

The more complex is the strategy, the best is the solution, but the largest is the computing time...

Continuous relaxations

Continuous relaxation idea

Think of a different idea for solving the problem:

$$
\frac{1}{2}\|A x-d\|^{2}+\lambda\|x\|_{0} \Longrightarrow \frac{1}{2}\|A x-d\|^{2}+\sum_{i=1}^{n} \phi_{i}\left(x_{i}\right)
$$

Idea: use continuous and separable functions $\phi_{i}\left(x_{i}\right)$ (convex and non-convex).

- ℓ_{1} norm: LASSO (Tibshirani, '96), Basis Pursuit (Chen, '98), Compressed Sensing (Donoho, '06, Candès et al., '06)
- Adaptive LASSO (Zou, '06)
- Exponential approximation (Mangasarian, '96)
- Log-sum penalty (Candès, '08)
- Smoothly Clipped Absolute Deviation (SCAD) (Fan, Liu, '01) and Minimax Concave Penalty (MCP) (Zhang, '10
- ℓ_{p} "norms", $p<1$ (Chartrand, '07, Foucart, Lai, '09)
- Beautiful review (Soubies, Blanc-Féraud, Aubert, '17)

Which approximation should we use?

Continuous relaxation idea

Think of a different idea for solving the problem:

$$
\frac{1}{2}\|A x-d\|^{2}+\lambda\|x\|_{0} \Longrightarrow \frac{1}{2}\|A x-d\|^{2}+\sum_{i=1}^{n} \phi_{i}\left(x_{i}\right)
$$

Idea: use continuous and separable functions $\phi_{i}\left(x_{i}\right)$ (convex and non-convex).

Which approximation should we use?

Continuous relaxation idea

Think of a different idea for solving the problem:

$$
\frac{1}{2}\|A x-d\|^{2}+\lambda\|x\|_{0} \Longrightarrow \frac{1}{2}\|A x-d\|^{2}+\sum_{i=1}^{n} \phi_{i}\left(x_{i}\right)
$$

Idea: use continuous and separable functions $\phi_{i}\left(x_{i}\right)$ (convex and non-convex).

Which approximation should we use?

Continuous relaxations

Exactness

What is a good relaxation?

$$
G_{\ell_{0}}(x)=\frac{1}{2}\|A x-d\|^{2}+\lambda\|x\|_{0} \quad \Longrightarrow \quad \tilde{G}(x):=\frac{1}{2}\|A x-d\|^{2}+\sum_{i=1}^{n} \phi_{i}\left(x_{i}\right)
$$

Good (exact) relaxation

- $G_{\ell_{0}}(x)$ and $\tilde{G}(x)$ have the same global minimisers:

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}}{\arg \min } G_{\ell_{0}}(x)=\underset{x \in \mathbb{R}^{n}}{\arg \min } \tilde{G}(x), \quad \text { (global) } \tag{P1}
\end{equation*}
$$

- $\tilde{G}(x)$ has "less" local minimisers than $G_{\ell_{0}}(x)$:

$$
\begin{equation*}
x^{*} \text { minimiser of } \tilde{G} \Rightarrow x^{*} \text { minimiser of } G_{\ell_{0}} \tag{P2}
\end{equation*}
$$

The continuous exact ℓ_{0} relaxation (CELO) penalty

In Soubies, Aubert, Blanc-Féraud, '15-'17 a particular choice of $\phi: \mathbb{R} \rightarrow \mathbb{R}_{+}$is studied. By convex conjugation, the penalty removing most of the local minimisers is:

$$
\phi_{C E L O}\left(\left\|a_{i}\right\|, \lambda, x\right)=\lambda-\frac{\left\|a_{i}\right\|^{2}}{2}\left(|x|-\frac{\sqrt{2 \lambda}}{\left\|a_{i}\right\|}\right)^{2} \mathbf{1}_{\left\{|x| \leq \frac{\sqrt{2 \lambda}}{\left\|a_{i}\right\|}\right\}}
$$

where $\mathbf{1}_{C}(x)=1$ if $x \in C$ and $\mathbf{1}_{C}(x)=0$ otherwise.

Good relaxations: examples

Capped- ℓ_{1}, Zhang, '09

MCP, Zhang, '01

SCAD, Fan, Li, '01

Truncated- ℓ_{p}

Examples of penalties for which (P1) (top) or (P1) and (P2) (bottom) hold for $a=0.5, \lambda=1$ and $d=1.8$ in the 1D case.

The CELO relaxation

$$
G_{C E L O}(x):=\frac{1}{2}\|A x-d\|^{2}+\underbrace{\sum_{i=1}^{n} \phi_{C E L O}\left(\left\|a_{i}\right\|, \lambda, x_{i}\right)}_{\Phi_{C E L O}:=}
$$

where: $\phi_{C E L O}\left(\left\|a_{i}\right\|, \lambda, x\right)=\lambda-\frac{\left\|a_{i}\right\|^{2}}{2}\left(|x|-\frac{\sqrt{2 \lambda}}{\left\|a_{i}\right\|}\right)^{2} \mathbf{1}_{\left\{|x| \leq \frac{\sqrt{2 \lambda}}{\left\|a_{i}\right\|}\right\}}$
Properties of $G_{C E L O}$:

- Inferior limit of all functions satisfying (P1) and (P2)
- Convex envelope of $G_{\ell_{0}}$ if A diagonal or $A^{T} A=s l d, s>0$
- Continuous
- Non convex for general operators A
- Convexity w.r.t. each component $x_{i}, i=1, \ldots, n$

Thanks to its continuity we can resort to nonsmooth, nonconvex algorithms such as, e.g., forward-backward and majorisation-minimisation (MM) algorithms (e.g., iterative reweighted ℓ_{1} Ochs et al., '15).

Understanding the relaxation

1D example: $G_{\ell_{0}}(x):=\frac{1}{2}(a x-y)^{2}+\lambda|x|_{0}$ for $a, \lambda>0$.

Blue lines: plots of $G_{\ell_{0}}$ for different values of d (note discontinuity in $x=0$). Red lines: plots of $G_{\text {CELO }}$ (convex biconjugate).

In 1D $G_{\text {CELO }}$ is always a convex function, in the multi-dimensional case it depends on the operator A. Generally, it is non-convex with convex 1D restrictions.

Forward-backward splitting for ℓ_{2}-CELO

Iterate for $k \geq 0$ and $\tau \in\left(0, \frac{1}{\|A\|^{2}}\right)$

$$
x_{k+1} \in \operatorname{prox}_{\tau \Phi}{ }_{C E L O}\left(x_{k}-\tau A^{T}\left(A x_{k}-d\right)\right)
$$

where, by separability, we can look at the prox of the 1D components:

$$
\operatorname{prox}_{\tau \phi_{C E L O}\left(a, \lambda_{;}\right)}(u)= \begin{cases}\operatorname{sign}(u) \min \left(|u|,(|u|-\sqrt{2 \lambda} \tau a)_{+} /\left(1-a^{2} \tau\right)\right) & \text { if } a^{2} \tau<1 \\ u \mathbf{1}_{|u|>\sqrt{2 \tau \lambda}}+\{0, u\} \mathbf{1}_{|u|=\sqrt{2 \tau \lambda}} & \text { if } a^{2} \tau \geq 1\end{cases}
$$

Dependence of $\phi_{\text {CELO }}$ on $a=\left\|a_{i}\right\|$ at component $u=x_{i}$.
Convergence to a critical point under Kurdyka-Łojaseiwicz (KL) property (Attouch et al, '13).

Continuous relaxations

Iteratively reweighted algorithms

Key idea

$$
\min _{x \in \mathbb{R}^{n}} F(x):=f(x)+g(x)
$$

for g proper, I.s.c. and bounded from below but generally non-convex

Majorisation-minimisation technique

Construct a sequence of easier (convex) functions majorising F and minimise them to simplify the problem.

Minimisation of a non-convex function (red) using MM techniques. Non-convexity induced by $g(x)=\log (1+2|x|)$. Majorant functions in blue.

Key idea

$$
\min _{x \in \mathbb{R}^{n}} F(x):=f(x)+g(x)
$$

for g proper, I.s.c. and bounded from below but generally non-convex

Majorisation-minimisation technique

Construct a sequence of easier (convex) functions majorising F and minimise them to simplify the problem.

Pseudocode: general idea for MM algorithms

Input: $x_{0} \in \mathbb{R}^{n}$.
while not converging do
Build a majorising function $M_{x_{k}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that:

- $\forall x \in \mathbb{R}^{n}: F(x) \leq M_{x_{k}}(x)$
- $F\left(x_{k}\right)=M_{x_{k}}\left(x_{k}\right)$
- $M_{x_{k}}\left(x_{k}\right) \in \Gamma_{0}\left(\mathbb{R}^{n}\right)$

Define $x_{k+1} \in \arg \min _{x} M_{x_{k}}(x)$
end while

MM approaches

Several approaches for building such functions:

- Iterative least-squares (IRLS) (Daubechies et al. '10, Gorodnitsky, Rao, '97):

$$
M_{x_{k}}(x)=\sum\left(w_{x_{k}}\right)_{i} x_{i}^{2}
$$

- MM approaches for inverse problems (Chouzenoux et al., '10-...)
- Iterative reweighted ℓ_{1} algorithms: better suited to construct majorants of functions which are not sufficiently smooth of the form:

$$
F(x)=\frac{1}{2}\|A x-d\|^{2}+\sum \phi\left(\left|x_{i}\right|\right)
$$

with $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ continuous, concave and non-decreasing (Ochs et al, '15.)

Algorithm: $\mathrm{IR} \ell_{1}$ (Ochs et al, '15)
Input: $x_{0} \in \mathbb{R}^{n}$.
while not converging do

$$
\begin{aligned}
& \left(w_{x_{k}}\right)_{i} \in \partial^{+} \phi_{i}\left(\left|\left(x_{k}\right)_{i}\right|\right) \\
& x_{k+1} \in \arg \min _{x} \frac{1}{2}\|A x-d\|^{2}+\sum_{i=1}^{n}\left(w_{x_{k}}\right)_{i}\left|x_{i}\right| \rightarrow \text { solve with FISTA }
\end{aligned}
$$

end while
$\partial^{+} \phi_{i}\left(\left|\left(x_{k}\right)_{i}\right|\right)$ extends the notion of subdifferentials to the non-convex case (Clarke, '90, Rockfellar, Wets, '09)

$\operatorname{IR} \ell_{1}$ for $G_{C E L O}$ minimisation

Weights can be computed in an explicit form:

$$
\left(w_{x_{k}}\right)_{i}:= \begin{cases}\sqrt{2 \lambda}\left\|a_{i}\right\|-\left\|a_{i}\right\|^{2}\left|\left(x_{k}\right)_{i}\right| & \text { if } 0 \leq\left|\left(x_{k}\right)_{i}\right|<\sqrt{2 \lambda} /\left\|a_{i}\right\| \\ 0 & \left\|\left(x_{k}\right)_{i} \mid \geq \sqrt{2 \lambda} /\right\| a_{i} \|\end{cases}
$$

Convergence of $\mathrm{IR} \ell_{1}$ to critical points can be proved for general class of functions satisfying the so-called Kurdyka-Łojasiewicz property (Ochs et al, '15).

Application to super-resolution microscopy

Super-resolution microscopy

Spatial resolution is limited by light diffraction phenomena.

Rayleigh criterion

$$
d=\frac{0.61 \lambda}{N A} \approx 200 \mathrm{~nm}
$$

- λ : emission wavelength
- NA: microscope numerical aperture

Point Spread Function: Gaussian, Airy disk...

Rayleigh

Super-resolution microscopy

Spatial resolution is limited by light diffraction phenomena.

Rayleigh criterion

$$
d=\frac{0.61 \lambda}{N A} \approx 200 \mathrm{~nm}
$$

- λ : emission wavelength
- NA: microscope numerical aperture

Point Spread Function: Gaussian, Airy disk...

Resolvable VS. non-resolvable line profiles

Discrete mathematical modelling

Image formation model

$$
\boldsymbol{Y}=\mathcal{P}\left(M_{q}(H(\boldsymbol{X}))+\boldsymbol{B}\right)+\boldsymbol{N}
$$

- $Y \in \mathbb{R}^{N \times N}: \operatorname{LR}$ acquisition
- $\boldsymbol{X} \in \mathbb{R}^{L \times L}: H R$ image $(L=q N, q \in \mathbb{N})$
- $\mathcal{P}(\cdot):$ Poisson r.v.

$$
q=4
$$

- \mathbf{N} : additive white Gaussian noise
- B: background

State-of-the-art methods in fluorescence microscopy

Key idea

In microscopy imaging, the experimental setup and the sample preparation can be used to 'sparsify' the measurements.

Fluorescence microscopy

Nobel prize in chemistry in 2008.

State-of-the-art methods in fluorescence microscopy

Key idea

In microscopy imaging, the experimental setup and the sample preparation can be used to 'sparsify' the measurements.

Example: Single Molecule Localization Microscopy (Betzig, Zhuang, Hess, '06, Rust, Bates, Zhuang, '06)

- Specific fluorescent molecules activating with low probability in a sequential way
- Improved sparsity!

http://zeiss-campus.magnet. fsu.edu/

Spoiler

WCEL0-frame

Ground truth

$$
\boldsymbol{y}_{t}=\mathcal{P}\left(\boldsymbol{\Psi} \boldsymbol{x}_{t}+\boldsymbol{b}\right)+\boldsymbol{n}_{t}, \quad \boldsymbol{\Psi}:=\boldsymbol{M}_{q} \boldsymbol{H}, \quad \boldsymbol{n}_{t} \sim \mathcal{N}\left(0, \sigma^{2} \boldsymbol{l d}\right), \quad \overline{\boldsymbol{y}}:=\sum_{t=1}^{T} \boldsymbol{y}_{t} / T
$$

Weighted CELO

To incorporate signal-dependence (modelling Poisson photon counting) in Lazzaretti, Calatroni, Estatico, '21 we considered a weighted ℓ_{2} fidelity term.

Weighted- $\ell_{2}-\ell_{0}$ problem

$\boldsymbol{x}^{*} \in \underset{\boldsymbol{x} \in \mathbb{R}^{L^{2}}}{\arg \min }\left\{G_{\mathrm{w} \ell_{0}}(\boldsymbol{x}):=\frac{1}{2} \sum_{j=1}^{N^{2}} \frac{\left((\Psi \boldsymbol{x})_{j}-y_{j}-b_{j}\right)^{2}}{y_{j}+b_{j}}+\lambda\|\boldsymbol{x}\|_{0}+\iota \geq 0(\boldsymbol{x})\right\}, \quad \lambda>0$

Theorem

- If $\Psi^{\boldsymbol{T}} \boldsymbol{W} \Psi=\boldsymbol{D}^{2}$ with $\boldsymbol{D}=\operatorname{diag}\left(\left\|\boldsymbol{\psi}_{i}\right\| W\right) \in \mathbb{R}^{L^{2} \times L^{2}}$, then $G_{W C E L O}=G_{w \ell_{0}}^{* *}$.
- $\arg \min G_{W C E L O}=\arg \min G_{w \ell_{0}}$ (same global minimisers)
- x minimiser of $G_{W C E L O} \Rightarrow x$ minimiser of $G_{w \ell_{0}}$ (less local minimisers).
+ Minimisation with $\operatorname{IR} \ell_{1}$.

Zoom on a detail

GT

CELO

One frame

$\overline{\mathrm{y}}$

DeepStorm

Zoom on a detail

CELO

One frame

wCELO

DeepStorm

Conclusions

We focused on models and algorithms tackling the $\ell_{2}-\ell_{0}$ minimisation problem.

- NP-hardness is avoided by alternative formulations
- Greedy approaches provide interesting results, at the price of increased complexity
- Continuous relaxations (both convex and non-convex) ease the problem
- CELO is the "best" (liminf) continuous, non-convex relaxation, and it is exact.
- A MM strategy such as $\operatorname{IR} \ell_{1}$ can be used. Fast convex optimisation is here essential for solving inner problems with high precision.
- Application areas are vast: inverse problems in imaging, vision, variable selection in machine learning. . .

Interested in a PostDoc (or PhD) in optimisation?

Task-adaptive bilevel learning of flexible statistical models for imaging and vision (2023-2027)

- 2-year post-doctoral position (open)
- 1 PhD position (from October 2023)

Announcement II: SSVM 2023

- What? IX conference on Scale Space and Variational Methods in Computer Vision (SSVM).
- Where? Hotel Flamingo, Santa Margherita di Pula, Sardegna, IT.
- When? May 21-25 2023
- Who? Giunta Gruppo UMI MIVA + G. Rodriguez (local organiser)
- Why Oral + poster session of selected papers (published in Springer LNCS)

Website: SSVM 2023

NEW DEADLINE for submissions: January 302023

Questions?

calatroni@i3s.unice.fr

