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Introduction



Many problems in signal/image processing are concerned with sparse recovery:
compressed sensing, variable selection, source separation, learning...

- d € R™: observed data (signal processing notation)

- x € R" unknown solution to be estimated

- A€ RM™X" observation matrix,

o Few observations y and large explicative unknown variables x, with m < n.
Undertermined system! A is ill-conditioned, noise is present.

e Regularisation: assume the signal is sparse by considering ¢1-norm or £y
pseudo-norm constraints:

Xl < K, lIxllo < K
with [|x]lo == #{xi;, i=1,...,n:x # 0} = >, |xilo, with
1 ifx#0
|zlo = .
0 if x=0

NB: £g-norm is NOT a norm as || Ax|lg = [Ixllg # AlIxIlo-



Dictionary representation in imaging

Image are heterogeneous signals, with smooth (homogeneous) areas, edges, texture,...

Take d € R™ be a patch of an image or a signal

00 #0000 g0 000 00 00 00 1600 Zoo0

Each d is represented by given waveforms whose shape matches the image structure.
Standard choices of a; vectors come from Haar, smooth wavelets, sine/cosine

transform...
i ! ! '
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i
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Take A = [a1, ..., an] € R™*" to be a set of normalised (basis) vectors.



Dictionary representation in imaging

e Such Ais a redundant dictionary (sequence of representative waveforms)

e The dictionary A is adapted to the signal d if d can be represented by a few
number of vectors a; (atoms) of A, that is d ~ Ax with x sparse, that is

lIxllo < K,

A

K <<n

ap a3

=X1 +x2 +X3 + ...

3 aip a3



Examples in signal /image processing

Examples

e signal is a sum of spikes, modelled by a sum of Dirac Zi(:l XrOt, .

e acquisition system is modelled as a convolution with a Gaussian function:

d(-) = h* 3200 X6y, = 3270 xeh(- — ).

Assume that the Dirac locations ¢, are on a regular grid indexed by i = 1,...n

-1 +
-1,
-3

d = A X + n

e 1D example: Channel estimation in communications, ...

e 2D example: Single Molecule Localisation in super-resolution microscopy



Single Molecule Localisation in super-resolution microscopy |

SPECIMEN

Activation Beam ON

Activated Molecules

SMLM idea

Modelling: for t € {1,..., T}, given a blurry, undersampled and noisy image
d: € R™, consider the problem:

find sparse x; s.t. di=Axe +n,, Vte{l,...,T}

A:= SH € R™*" with H € R"*" convolution and S € R™*" undersampling , n = Lm, L > 1.
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Single Molecule Localisation in super-resolution microscopy ||

Regularisation approach: look for sparse solutions at each time t € {1,..., T}

o1
x; € argmin EHAX*dt||2+)\HXHO+Lx20(X)7 A>0
X

Final reconstruction obtained simply by x = Z,T:1 x; (Gazagnes, Soubies,
Blanc-Féraud, Schaub, '15, Lazzaretti, Calatroni, Estatico, '21)

WCELO-frame WCELO-final

Acquisition Ground truth




l>-£y minimisation



¢>-fo minimisation

l2-fo: problem forms

For A € R™*" m < n consider the following formulations:

e Exact recovery:
X € argmin ||x||o subject to Ax =d
xERN

e Approximation problem in constrained forms (¢ > 0,K > 0)
1
R € argmin =||Ax — d||3 subject to ||x|jo < K
x€ERN 2
£ € argmin ||x|lo subject to ||Ax —d||3 < e
x€ERN
e Approximation problem in penalised form (A > 0)

. 1
% € arg min Gy (x) = | Ax — d[13 + Allxlo
x€ERN 2

° , and optimisation problem (Natarajan, '95, Davies et
al., '97): a solution cannot be verified in polynomial time w.r.t the dimension of the problem

e Non equivalent formulations
e Existence of optimal solutions and relations between formulations in Nikolova, '16

e Very active field of research in signal and image processing, and in statistics.



How people do: /,-/; minimisation

A popular way to deal with this problem consists in considering the ¢;-norm instead
l>-¢1 problem formulations

e Constrained formulation (K > 0):

% € argmin [|Ax — d||3 subject to ||x|[1 < K
xeRn

e Penalised formulation (X > 0):

% € argmin ||Ax — d||3 + Al|x]|1
x€ERM

o Easier optimization problems: convex and continuous (but non smooth) —
available solvers (see previous courses)!

e The two formulations are equivalent

e Under some conditions involving A, solving these problems allows to find a
solution of the ¢>-£y problem (Candes, Romberg, Tao, '05)

e They are known as (BPDN) Chen et al., '98, or
(Tibshirani, '96) problems, respectively.



/1, norm promotes sparsity

Standard example in R

Xy

(S

X

Level lines of ||Ax — d|3.

10



/1, norm promotes sparsity

Standard example in R

Level lines of ||Ax — d||3 with £ constraint ||x|l < K — (x1,x) # (0,0).

10



/1, norm promotes sparsity

Standard example in R

Level lines of ||Ax — d||3 with £ constraint [|x|; < K — xi = 0.

10



Sparsity through sof-thresholding

Recall that in 1D:
1
£ = argmin {E(d —x)% 4 /\|x|} = prox . (d)

is reached at
d —sign(d)\ if [d| > A

:T*(d):{o if |d] < A

x>

By, separability, this is then used for defining prox, ., ().

... many zeros!

A Note: using {2 norm we get instead
1
X = argmin {7(d —x)2+ )\X2} .
xeR 2
K= H% which is different from 0 as soon as d # 0.

11



Algorithmic advantages in solving ¢>-/; problems

You now know how to solve the problem:

1
arg min EHAX—dHQ—l—)\Hle, A>0
X

e ISTA (Combettes, Wajs, '05)
e FISTA (Beck, Teboulle, '09)

e If A is positive definite — strongly convex problem, hence V-FISTA can be used
(Beck, '17)

For analysis approaches, i.e. when sparsity is assumed w.r.t. to some basis W € RV*"
(gradient, wavelets. . .)

1
arg min §||Ax7d||2+)\HWx||1, A>0
X

you can use, e.g., ADMM (Glowinski, Marroco, '75, Boyd et al, '11).

12



So. .. why just not solving ¢>-¢;7?

Compressed Sensing Theory

e A sparse signal (||x|lo < K) can be exactly reconstructed by solving the
constrained ¢; problem when Restricted Isometry Property (RIP) of matrix A
(Donoho et al., Candés et al. '06)

e Roughly speaking A satisfies the RIP if ATA = Id.

e Under RIP conditions on A, £y can be replaced by ¢;.

e Otherwise (frequent cases in inverse problems), the two optimisation problems
give different solutions.

e (1 promotes sparsity but introduces biases, since in correspondence of the actual
non-zeros the magnitude is lowered.

e /y better promotes sparsity than ¢; in the general case.

13



Algorithms for />-/; minimisation



Algorithms for />-fy; minimisation

Iterative Hard Thresholding



Non-convex proximal gradient: iterative hard thresholding

Consider the penalised form of the problem:

o1
arg min — [ Ax — d|f3 + Alxllo
x€Rn 2

o 1|lAx — d||? is L-smooth (L = ||A]=2)

e The proximal operator of || - ||o is the hard thresholding operator

Algorithm: lterative hard thresholding (IHT)

Input: xp € R", 7 € (O7 %)

for k > 0 do
Xk+1 = ProX- x| lo (xk - TAT(AXk — d))
= H\/ﬁ (Xk - TAT(AXk - d))
end for

e |HT converges to a critical point (in Blumensath, Davies, '09 for 7 = 1 and ||A|| < 1, in Attouch et al., '13
general FB-type result)

e As always for non convex problems, initialisation is crucial! One good idea is to initialise with the solution of

1
argmin —||Ax — ng + Allx|l1 — computed by FISTA
x€ERN 2 14



IHT: ideas

) 1
argmin Gy (x) := = ||Ax — d|[3 + Al|x|lo,
xERN 2

Introduce the surrogate function for all z € R":
CE(0,2) 1= 3 1A% — I + Nlxllo — 3 1Ax — Az[ + I — 213
It can be shown that if ||A]| < 1, then CZS0 (x,z) majorises Gy (x):
Gy (x) < Cp (x,2), VzER",

Note, moreover, that Gy, (x) = CZSO (x,x). We can thus optimise Cg)(x,z) with
respect to x. We can rewrite:

N / 3 1
Colx2) == (x; —2x (zi+a/d—a] Az) + A X,\O)Jri (141 + ||2]I* — || Az]]?)
<=1 : g

By treating the case x; = 0 and x; # 0 separately and comparing we get:
X:Hm(27AT(Azfd))7 Vz

IHT obtained by setting z = x, and x = Xj41.

15



Algorithms for />-fy; minimisation

Greedy algorithms



Greedy algorithms

Greedy algorithms: matching pursuit (MP) (Mallat et al., '93), Orthogonal MP (Pati
et al., '93), Orthogonal Least Squares (OLS, Chen et al., '89), Bayesian OMP (Herzen
et al., '10), Single Best Replacement (Soussen et al, '11).

Matching Pursuit

d € R™ is the signal to represent with a limited number of K < n of atoms of
dictionary A € R™*" je. of columns a; of A, i =1,...,n.

MP considers the constrained formulation:
argmin ||Ax — d||?, subject to ||x[jo < K
xERN
and try to add one component at a time.

16



Matching pursuit: main ideas

Assumption: A has unit column norms, i.e. ||aj|| =1 foralli=1,...,n.

Algorithm: Matching pursuit

Input: As.t. |laj|| =1, d, K< n.
Initialise: rp = d, 09 =0, xp = 0.
while #o0, < K do

ix = argmax  [(rg, aj)|
Jje{1,...,n}

Ok41 = o, U {ik}
Xk4+1 = Xn + <aik7 rk>eik
g1 = e — r, @i, ) ai,

end while

e The quantity ||rg|| converges exponentially to 0 (Mallat et al, '93)

e In Gribonval et al., '96, a different correlation function (not |(-,-)|) is considered.

17



Orthogonal Matching Pursuit

OMP idea (Pati et al. '93, Tropp, '04): at each iteration of MP optimally estimate
the intensity values having the current support fixed by solving

Xkq1 = argmin [|[Ax — d||?, subject to x; = 0 Vi ¢ w := o(xx) U iks1
x€ERM

Algorithm: Orthogonal matching pursuit

Input: As.t. |aj|| =1, d, K< n.
Initialise: rp = d, o9 =0, xp = 0.
while #o0, < K do

ix = argmax [(rx, aj)|
je{1,...,n}

o1 = o Uik}

Xk+1 = argmin ||Ax — dH27 subject to x; =0 Vi & o(Xk+1)
xERN

rk+1 = d — AXiq1

end while

e “Orthogonal” as by definition at each k > 0 the residual belongs to the
orthogonal space of the current support

e Convergence in n iterations at most (new component at each iteration)

e Exact sparse recovery results (under some conditions on A) (Tropp, '04) 18



Further greedy algorithms

The main idea of the other existing greedy algorithms is that at each iteration
one component is:

e added
e removed

e replaced

The more complex is the strategy, the best is the solution, but the largest is the
computing time. ..

19



Continuous relaxations




Continuous relaxation idea

Think of a different idea for solving the problem:

Idea:

1 1 2
b= dI> + Allxllo = s = di* + > #i(x)
i=1

use continuous and separable functions ¢;(x;) (convex and non-convex).
£1 norm: LASSO (Tibshirani, '96), Basis Pursuit (Chen, '98), Compressed
Sensing (Donoho, '06, Candes et al., '06)
Adaptive LASSO (Zou, '06)
Exponential approximation (Mangasarian, '96)
Log-sum penalty (Candes, '08)

Smoothly Clipped Absolute Deviation (SCAD) (Fan, Liu, '01) and Minimax
Concave Penalty (MCP) (Zhang, '10

£p “norms”, p < 1 (Chartrand, '07, Foucart, Lai, '09)

Beautiful review (Soubies, Blanc-Féraud, Aubert, '17)
Which approximation should we use?

20



Continuous relaxation idea

Think of a different idea for solving the problem:
1 2 1 2 -
SIAx—dIP+Alxlo = ZlAx—dI?+ Y ¢ilx)
i=1

Idea: use continuous and separable functions ¢;(x;) (convex and non-convex).

143 | = =

0.5 b b
Cap-£1 Lo.s
Log-Sum —— SCAD
—— MCP Exp

I ]
=2 0 2

Which approximation should we use?

20



Continuous relaxation idea

Think of a different idea for solving the problem:

1 1 .
ShAx—dIP +Alxlle = ZlAx—d|P + 3 6i(x)
i=1
Idea: use continuous and separable functions ¢;(x;) (convex and non-convex).

3
— 4 —0
25 —Cap-& — eovs
— Log-Sum —SCAD
—MCP —Exp
2 |-
15
'I [
0.5
0
0 0.5 1 15 2 2.5 3

Thresholding on Rt

Which approximation should we use? 20



Continuous relaxations

Exactness



What is a good relaxation?

1 ~ 1 z
Geo(x) = 5/1Ax = d|2 + A = G0 = SllAx = dI? + 3 i)
=

Good (exact) relaxation

e Ggy(x) and G(x) have the same global minimisers:

argmin Gy, (x) = arg min G(x), (global) (P1)
xERM xERP

o G(x) has “less” local minimisers than Gy (x):

x* minimiser of G = x* minimiser of Gy, (P2)

21



The continuous exact ¢y relaxation (CEL0) penalty

In Soubies, Aubert, Blanc-Féraud, '15-'17 a particular choice of ¢ : R — R4 is studied
By convex conjugation, the penalty removing most of the local minimisers is:

\/— 2
(' = > 1{|x|sm

IISIH

dcero(llaill, A, x) = A —
lla;l

where 1¢(x) =1 if x € C and 1¢(x) = 0 otherwise

ALocen

oo

22



Good relaxations: examples

MCP, Zhang, '01

3

2 1 0 1 2

SCAD, Fan, Li, '01

6= 110,
—— =120,
—h=130,
0= 140,

2 1 0 1 2 3

Truncated-/,

Examples of penalties for which (P1) (top) or (P1) and (P2) (bottom) hold for

a=0.5 A=1and d = 1.8 in the 1D case.

23



The CELO relaxation

1 n
Gerro(x) = 5[l Ax — dl* + > sceo(llaill, A, x)
=1

P o=

2 2
where: ¢cero(llaill, A, x) = A — Ha'g” (|X| - %) 1{|X|S¢K}

Ta;
Properties of Gcgpo:
e Inferior limit of all functions satisfying (P1) and (P2)
e Convex envelope of Gy, if A diagonal or ATA=sld, s >0
e Continuous
e Non convex for general operators A
e Convexity w.r.t. each component x;, i =1,...,n
Thanks to its continuity we can resort to nonsmooth, nonconvex algorithms such as,

e.g., forward-backward and majorisation-minimisation (MM) algorithms (e.g., iterative
reweighted ¢; Ochs et al., '15).

24



Understanding the relaxation

1D example: Gy, (x) := %(ax — y)? + Mx]o for a, \ > 0.

Blue lines: plots of Gy, for different values of d (note discontinuity in x = 0). Red
lines: plots of Gcgp (convex biconjugate).

In 1D Gcgp is always a convex function, in the multi-dimensional case it depends on
the operator A. Generally, it is non-convex with convex 1D restrictions.

25



Forward-backward splitting for ¢,- CELQ

Iterate for k > 0 and 7 € (0, W)

X1 € ProXeg g0 <xk — ’TAT(AXk — d))
where, by separability, we can look at the prox of the 1D components:
sign(u) min (\u|, (lu] — v2xra)4 /(1 — 327)) if a2 <1
ProX, g cgyo(ani) (U) = { ul s s t+ {0, u}l\u|:\/27'7)\ if 2?1 >1

—L0

——MCP|

B R S B R B R
Dependence of ¢¢cgo on a = ||a;|| at component u = x;.

Convergence to a critical point under Kurdyka-tojaseiwicz (KL) property (Attouch et al, '13).
26



Continuous relaxations

Iteratively reweighted algorithms



min F(x) := f(x) + g(x)

x€ERM

for g proper, l.s.c. and bounded from below but generally non-convex
Majorisation-minimisation technique

Construct a sequence of easier (convex) functions majorising F and minimise
them to simplify the problem.

Minimisation of a non-convex function (red) using MM techniques. Non-convexity
induced by g(x) = log(1 + 2|x|). Majorant functions in blue.
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min F(x) := f(x) + g(x)

x€ERM

for g proper, l.s.c. and bounded from below but generally non-convex
Majorisation-minimisation technique

Construct a sequence of easier (convex) functions majorising F and minimise
them to simplify the problem.

Pseudocode: general idea for MM algorithms
Input: xp € R".
while not converging do
Build a majorising function My, : R” — R such that:
o Vx € R™: F(x) < My, (x)
o F(xx) = My, (xx)
o My, (xk) € To(R")
Define xx41 € arg min, M, (x)
end while

27



MM approaches

Several approaches for building such functions:
e lterative least-squares (IRLS) (Daubechies et al. '10, Gorodnitsky, Rao, '97):
My (x) = > _(ws )ix}

e MM approaches for inverse problems (Chouzenoux et al., '10 -...)

e lterative reweighted /¢; algorithms: better suited to construct majorants of
functions which are not sufficiently smooth of the form:

F() = S Ax — dI? + 3 a(lx)

with ¢ : R — R continuous, concave and non-decreasing (Ochs et al, '15.)

Algorithm: IR¢; (Ochs et al, '15)

Input: xp € R".
while not converging do

(Wi )i € 0% 9i(|(xx)il)

Xit1 € argmin, 3{|Ax — d||2 + 327, (wy )ilxi| — solve with FISTA
end while

97 ¢i(|(xk)i|) extends the notion of subdifferentials to the non-convex case (Clarke,
'90, Rockfellar, Wets, '09)
28



IR/; for Gcerg minimisation

Weights can be computed in an explicit form:

(wx )i = {\/ﬁaf” — il (xi)il if 0 < |(xi)il < V2M/||aill
e 0 ()il > V2X/||ai]|

Convergence of IR/ to critical points can be proved for general class of functions
satisfying the so-called Kurdyka-tojasiewicz property (Ochs et al, '15).

29



Application to super-resolution
microscopy




Super-resolution microscopy

Spatial resolution is limited by light diffraction phenomena.

‘ - @’ Rayleigh criterion

POINT SOURCE PSF

. 0.61\
d= —h =~ 200nm
Systéme Optique e \: emission wavelength

e NA: microscope numerical aperture

Point Spread Function: Gaussian, Airy disk. ..

Unresolved

Resolved Rayleigh
Griterion

30



Super-resolution microscopy

Spatial resolution is limited by light diffraction phenomena.

Rayleigh criterion

POINT SOURCE

0.61X
d = —— =&~ 200nm
NA
Systéme Optique e \: emission wavelength

e NNA: microscope numerical aperture

Point Spread Function: Gaussian, Airy disk. ..

3750M , Line profile 2

Ground truth Diffraction limited image

pubaiiy Line profile 1

/J\'\\\ﬂ

FWHM = 228nm

Resolvable VS. non-resolvable line profiles
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Discrete mathematical modelling

X

Image formation model

Y = P(Mg(H(X)) + B) + N

o Y e RVXN: IR acquisition

o X € REXL: HR image (L=gN, q € N)

e P(-): Poisson r.v.

e My € RNVXL, down-sampling matrix
o H e RV*N. convolution matrix qg=4
e N: additive white Gaussian noise

e B: background 31



State-of-the-art methods in fluorescence microscopy

In microscopy imaging, the experimental setup and the sample preparation can be
used to ‘sparsify’ the measurements.

To image

S,
Fluorescence excited state levels
bmission) E
( ) 5
Filter Cube b
[ absorbed emitted
Excitation excitation fluorescence
— ght light
ctaton it
v
So ground state level

Fluorescent molecules
fluorescence
ffotimo (- nsoc)

Absorption /emission diagram

Nobel prize in chemistry in 2008.
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State-of-the-art methods in fluorescence microscopy

In microscopy imaging, the experimental setup and the sample preparation can be
used to ‘sparsify’ the measurements.

) ) ; ) Activation Beam ON
Example: Single Molecule Localization Microscopy "
(Betzig, Zhuang, Hess, '06, Rust, Bates, Zhuang, '06)

- Specific fluorescent molecules activating with low
probability in a sequential way

Activated Molecules

http://zeiss-campus.magnet.
fsu.edu/

32
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http://zeiss-campus.magnet.fsu.edu/

WCELO-frame WCELO-final

Acquisition Ground truth

;
¥ = P(Txe + b) + ne, Wi=MgH, n~N(0,0°Id), §:=> y/T
33




Weighted CELO

To incorporate signal-dependence (modelling Poisson photon counting) in Lazzaretti,
Calatroni, Estatico, '21 we considered a weighted /5 fidelity term.

Weighted-¢>-/;, problem

. . 1 s ((¥x); b;)?
x* € argmin { Gy, (x) 1= 7Z—+>\||X||O+L>O(x) ; A>0
XERLZ 2 = yj aF b
Theorem

o If BTWW¥ = D? with D = diag(||9i|w) € REXL, then Gucero = G

wlo®
e arg min Gycero = arg min G4, (same global minimisers)

e x minimiser of Gycgro = x minimiser of Gy, (less local minimisers).

+ Minimisation with IR/¢;.

34



Zoom on a detail

One frame

CELO wCELO DeepStorm
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One frame

CELD wCELO DeepStorm
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Conclusions

We focused on models and algorithms tackling the ¢>-¢p minimisation problem.

e NP-hardness is avoided by alternative formulations

e Greedy approaches provide interesting results, at the price of increased complexity
e Continuous relaxations (both convex and non-convex) ease the problem

e CELO is the “best” (liminf) continuous, non-convex relaxation, and it is exact.

e A MM strategy such as IR/; can be used. Fast convex optimisation is here
essential for solving inner problems with high precision.

e Application areas are vast: inverse problems in imaging, vision, variable selection
in machine learning. ..
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Interested in a PostDoc (or PhD) in optimisation?

AGENCE NATIONALE DE LA RECHERCHE

Task-adaptive bilevel learning of flexible statistical models for imaging and vision
(2023-2027)

e 2-year post-doctoral position (open)

e 1 PhD position (from October 2023)
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Announcement Il: SSVM 2023

e What? IX conference on Scale Space and Variational Methods in Computer
Vision (SSVM).

e Where? Hotel Flamingo, Santa Margherita di Pula, Sardegna, IT.

e When? May 21-25 2023

e Who? Giunta Gruppo UMI MIVA + G. Rodriguez (local organiser)

e Why Oral + poster session of selected papers (published in Springer LNCS)

Website: SSVIM 2023

NEW DEADLINE for submissions: January 30 2023
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https://events.unibo.it/ssvm2023

Questions?

calatroni@i3s.unice.fr
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