
Lecture 2: Convex non-smooth optimisation

Luca Calatroni
CR CNRS, Laboratoire I3S
CNRS, UCA, Inria SAM, France

MIVA ERASMUS BIP PhD winter school

Advanced methods for mathematical image analysis

University of Bologna, IT

January 18-20 2022

Table of contents

1. Non-smooth optimisation

Subgradients

The proximal operator

Projected gradient descent

2. The proximal gradient algorithm

Convergence properties

3. Acceleration strategies

FISTA

Strongly convex FISTA

4. Extensions

Inexact algorithms

Backtracking strategies for FISTA

5. Non-convex algorithms

1

Life is not smooth. . .

In many applications the function g in

min
x∈Rn

{F (x) := f (x) + g(x)} ,

is different from 0. Typically, g is convex, but non differentiable so its

gradient (and henceforth the one of F) cannot be defined in a standard way.

Note: take implicit gradient-descent for suitable τ > 0:

xk+1 = xk − τ∇f (xk+1) ⇔ ∇f (xk+1) +
xk+1 − xk

τ
= 0,

So if xk+1 exists, it is a critical point of the function:

x 7→ f (x) +
‖xk − x‖2

2τ

If f ∈ Γ0(Rn) (not necessarily smooth!), xk+1 is indeed the unique critical point of

this function. . .

non-smoothness encoded via “implicit” updates?

2

Non-smooth optimisation

Non-smooth optimisation

Subgradients

A preliminary observation

One can show that if f : Rn → R is differentiable:

f is convex ⇔ (∀x , y ∈ Rn) f (y) ≥ f (x) +∇f (x)T (y − x)︸ ︷︷ ︸
=:φ(y ;x)

• the function φ(·; x) is an affine lower bound/estimator of f (·)
• the tangent to f at any x ∈ dom(f) is below f at all points.

Recall: If f is µ-strongly convex, then, analogously, f has a quadratic lower bound

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖x − y‖2, ∀x , y ∈ Rn.

3

A preliminary observation

One can show that if f : Rn → R is differentiable:

f is convex ⇔ (∀x , y ∈ Rn) f (y) ≥ f (x) +∇f (x)T (y − x)︸ ︷︷ ︸
=:φ(y ;x)

• the function φ(·; x) is an affine lower bound/estimator of f (·)
• the tangent to f at any x ∈ dom(f) is below f at all points.

Recall: If f is µ-strongly convex, then, analogously, f has a quadratic lower bound

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖x − y‖2, ∀x , y ∈ Rn.

3

Subgradients and subdifferential

Definition (Subgradients and subdifferential)

Let g ∈ P be convex. Then, a vector p ∈ Rn is a subgradient of g at point

x ∈ dom(g) iff:

g(y) ≥ g(x) + pT (y − x), ∀y ∈ Rn

If x /∈ dom(g), we set ∂g(x) = ∅. The set of all subgradients at a point x ∈ Rn is

called the subdifferential of g in x , and it is the denoted by:

∂g(x) = {p ∈ Rn : p is a subgradient of g at point x}

Interpretation:

• p ∈ ∂g(x) if and only if φ(y ; x) = g(x) + pT (y − x) is a lower affine bound for g .

• ∂g(x) collects all the slopes of the tangent lines through x .

4

Remarks

In general, ∂g(·) : Rn → 2R
n

is not a singleton

Multiple subgradients at a non-differentiable point x0.

Example: g : R→ R, g(x) = |x |.

∂g(x) =

{1} if x > 0

{−1} if x < 0

[−1, 1] if x = 0.

Proposition (subdifferential at differentiable points)

If g is convex and differentiable in x ∈ dom(g), then:

∂g(x) = {∇g(x)} .

5

Remarks

In general, ∂g(·) : Rn → 2R
n

is not a singleton

Multiple subgradients at a non-differentiable point x0.

Example: g : R→ R, g(x) = |x |.

∂g(x) =

{1} if x > 0

{−1} if x < 0

[−1, 1] if x = 0.

Proposition (subdifferential at differentiable points)

If g is convex and differentiable in x ∈ dom(g), then:

∂g(x) = {∇g(x)} .
5

Subdifferential of norm

Compute ∂‖x‖ for all x ∈ Rn.

• g(x) = ‖x‖ is differentiable for all x 6= 0. There, ∂‖x‖ = x
‖x‖ .

• The point of interest (non-differentiability) is 0

In x = 0 subgradients p ∈ Rn verify:

‖y‖ ≥ 0 + pT (y − 0) = pT y ∀y ∈ Rn

Take the maximum on both sides for all y : ‖y‖ ≤ 1, you get:

1 = max
y :‖y‖≤1

‖y‖ ≥ max
y :‖y‖≤1

pT y = ‖p‖

Contrarily, if ‖p‖ ≤ 1, then by Cauchy-Schwarz inequality there holds:

pT y ≤ ‖p‖‖y‖ ≤ ‖y‖

Hence, we proved p ∈ ∂‖0‖ if and only if ‖p‖ ≤ 1. Hence

∂‖0‖ = {p ∈ Rn : ‖p‖ ≤ 1} = B1(0) ⇒ ∂‖x‖ =

{
x
‖x‖ x 6= 0

B1(0) x = 0.

6

Calculus rules: separable functions

Often, the n-dimensional function you deal with, can be nicely expressed as the sum of

1D components. For instance, think of:

• norms ‖x‖pp , p ≥ 1: ‖x‖pp =
∑n

i=1|xi |p . . .

• sum of norms, e.g. g(x) = ‖x‖1 + λ
2
‖x‖2

2 =
∑n

i=1

(
|xi |+ λ|xi |2

)
.

• . . .

Definition (separable function)

Let g ∈ P be convex. We say that g is separable if there exist proper, univariate

convex functions gi : R→ R such that

g(x) =
n∑

i=1

gi (xi), ∀x ∈ Rn.

Proposition (subdifferential of separable functions)

Let g ∈ P be convex and separable. Then, for all x ∈ dom(g):

∂g(x) = (∂gi (xi))ni=1 = (∂g1(x1))× . . .× (∂gn(xn)).

7

Calculus rules: separable functions

Often, the n-dimensional function you deal with, can be nicely expressed as the sum of

1D components. For instance, think of:

• norms ‖x‖pp , p ≥ 1: ‖x‖pp =
∑n

i=1|xi |p . . .

• sum of norms, e.g. g(x) = ‖x‖1 + λ
2
‖x‖2

2 =
∑n

i=1

(
|xi |+ λ|xi |2

)
.

• . . .

Definition (separable function)

Let g ∈ P be convex. We say that g is separable if there exist proper, univariate

convex functions gi : R→ R such that

g(x) =
n∑

i=1

gi (xi), ∀x ∈ Rn.

Proposition (subdifferential of separable functions)

Let g ∈ P be convex and separable. Then, for all x ∈ dom(g):

∂g(x) = (∂gi (xi))ni=1 = (∂g1(x1))× . . .× (∂gn(xn)).

7

Calculus rules: sum and multiplication by scalar

Proposition (Moreau-Rockafellar)

Let g,g2 : Rn → R be two proper convex functions. Then:

∂g1(x) + ∂g2(x) ⊂ ∂ (g1(·) + g2(·)) (x).

Moreover, if int(dom(g1)) ∩ int(dom(g2)) 6= ∅, then for all x ∈ Rn:

∂g1(x) + ∂g2(x) = ∂ (g1(·) + g2(·)) (x).

For λ ∈ R++, there holds:

∂ (λf) (x) = λ∂f (x), ∀x ∈ Rn.

Example: ∂(g1(·) + g2(·))(x) may differ indeed from ∂g1(x) + ∂g2(x)! In R take:

g1(x) :=

{
0 if x ≤ 0

+∞ if x > 0.
g2(x) :=

{
+∞ if x < 0

−
√
x if x ≥ 0.

We have:

∂g1(x) =

0 if x < 0

[0,+∞) if x = 0

∅ if x > 0

∂g2(x) =

∅ if x ≤ 0

− 1
2
√

x
if x > 0.

Hence, ∂g1(x) + ∂g2(x) = ∅ for all x ∈ R. However, g1(x) + g2(x) = ι0(x) and ∂ι0(0) = R.

8

Composite subgradients and chain rule

Proposition

Let f ∈ Γ0(Rn) be differentiable at x ∈ Rn and let g ∈ Γ0(Rn), then:

∂(f + g)(x) = {∇f (x)}+ ∂g(x).

Proposition

Let L ∈ RN×n and g : RN → R̄ a proper convex function. Then:

(∀x ∈ Rn) LT∂g(Lx) ⊂ ∂(g ◦ L)(x).

Moreover, if int(dom(g) ∩ R(L) 6= ∅, then:

(∀x ∈ Rn) LT∂g(Lx) = ∂(g ◦ L)(x).

9

Optimality conditions

Analogous to Fermat’s rule in non-smooth case.

Theorem (optimality conditions in non-smooth, convex case)

Let g ∈ Γ0(Rn). Then:

x∗ ∈ arg min
x∈Rn

g(x) ⇐⇒ 0 ∈ ∂g(x∗).

Interpretation:

• If the vector 0 ∈ Rn belongs to ∂g(x∗) (“flat plot”), then x∗ is a minimiser.

• If g is differentiable, the result reads 0 = ∇g(x∗) (Fermat’s rule).

10

Stationary points

If f , g ∈ Γ0(Rn) and f is smooth

arg min
x∈Rn

{F (x) := f (x) + g(x)}

x∗ ∈ arg min
x∈Rn

F (x)⇔ 0 ∈ ∂F (x∗) = ∂f (x∗)︸ ︷︷ ︸
f is smooth

+∂g(x∗) = {∇f (x∗)}+ ∂g(x∗)

Definition (stationary point)

A point x∗ ∈ Rn verifying:

0 ∈ {∇f (x∗)}+ ∂g(x∗) ⇔ −∇f (x∗) ∈ ∂g(x∗)

is said to be a stationary point of the composite functional F := f + g .

11

Non-smooth optimisation

The proximal operator

The proximal operator: definition

Crucial tool for the development of non-smooth optimisation algorithms. Relations

with activation functions in the context of deep networks (Combettes, Pesquet, ’20).

Definition

Let g ∈ P. Then, the proximal operator of g with parameter γ > 0 is defined as the

multi-valued map proxγg : Rn → 2R
n

defined for all x ∈ Rn:

proxγg (x) := arg min
y∈Rn

g(y) +
1

2γ
‖y − x‖2︸ ︷︷ ︸

=:h(y ;x)

With no further conditions on g , proxγg (x) is a multivalued set and there may exist

x̂ ∈ Rn s.t. proxγg (x̂) = ∅.

Proposition (uniqueness of the proximal point)

If g ∈ Γ0(Rn), then proxγg (x) exists and it is unique for all x ∈ Rn.

“Proof”: For all x ∈ Rn, the function h(·; x) is 1
γ

-strongly (hence strictly) convex,

hence it admits a unique minimiser.

12

The proximal operator: definition

Crucial tool for the development of non-smooth optimisation algorithms. Relations

with activation functions in the context of deep networks (Combettes, Pesquet, ’20).

Definition

Let g ∈ P. Then, the proximal operator of g with parameter γ > 0 is defined as the

multi-valued map proxγg : Rn → 2R
n

defined for all x ∈ Rn:

proxγg (x) := arg min
y∈Rn

g(y) +
1

2γ
‖y − x‖2︸ ︷︷ ︸

=:h(y ;x)

With no further conditions on g , proxγg (x) is a multivalued set and there may exist

x̂ ∈ Rn s.t. proxγg (x̂) = ∅.

Proposition (uniqueness of the proximal point)

If g ∈ Γ0(Rn), then proxγg (x) exists and it is unique for all x ∈ Rn.

“Proof”: For all x ∈ Rn, the function h(·; x) is 1
γ

-strongly (hence strictly) convex,

hence it admits a unique minimiser.

12

Graphical interpretation

Thin black lines: level lines of g . Thick black lines: boundary of domain. Blue points:

evaluation points are moved to the red points in the minimisation with an amount

depending on γ. Note: points are moved to the minimum of the function.

13

Relation with subdifferentials

For γ > 0 and x ∈ Rn, let z := proxγg (x). We have:

z := proxγg (x) ⇔ z = arg min
y∈Rn

g(y) +
1

2γ
‖y − x‖2

(optimality) ⇔ 0 ∈ ∂g(z) +
1

γ
(z − x)

(rearranging) ⇔ x ∈ z + γ∂g(z)

(using operators) ⇔ x ∈ (Id + γ∂g)(z)

(uniqueness) ⇔ z = (Id + γ∂g)−1(x)

For those of you who are familiar with convex analysis. . .

Remark1

z = proxγg (x) is given by the resolvent of the maximal monotone operator γ∂g

evaluated at x .

1Minty, (1962), Bauschke-Combettes, (2010). Chambolle-Pock, (2016)

14

Relation with subdifferentials

For γ > 0 and x ∈ Rn, let z := proxγg (x). We have:

z := proxγg (x) ⇔ z = arg min
y∈Rn

g(y) +
1

2γ
‖y − x‖2

(optimality) ⇔ 0 ∈ ∂g(z) +
1

γ
(z − x)

(rearranging) ⇔ x ∈ z + γ∂g(z)

(using operators) ⇔ x ∈ (Id + γ∂g)(z)

(uniqueness) ⇔ z = (Id + γ∂g)−1(x)

For those of you who are familiar with convex analysis. . .

Remark1

z = proxγg (x) is given by the resolvent of the maximal monotone operator γ∂g

evaluated at x .

1Minty, (1962), Bauschke-Combettes, (2010). Chambolle-Pock, (2016)

14

Firm non-expansiveness of the proximal operator

Proposition (firm non-expansiveness)

Let g ∈ Γ0(Rn). Then:

(∀x ∈ Rn) ‖proxg (x)− proxg (y)‖2 ≤ 〈x − y , proxg (x)− proxg (y)〉

Proof: There holds:

x − proxg (x) ∈ ∂f (proxg (x)), y − proxg (y) ∈ ∂f (proxg (y)).

By definition of subdifferential:

f (proxg (y)) ≥ f (proxg (x)) + 〈x − proxg (x), proxg (y)− proxg (x)〉,

and similarly inverting x and y . Summing:

��
��f (proxg (y)) +���

�f (proxg (x))

≥��
��f (proxg (y)) +���

�f (proxg (x)) + 〈y − f (proxg (y))− x + f (proxg (x)), f (proxg (x))− f (proxg (y))〉.

This implies non-expansiveness since:

‖proxg (x)−proxg (y)‖�2 ≤ 〈x−y , proxg (x)−proxg (y)〉 ≤ ‖x−y‖
(((

((((
((

‖proxg (x)− proxg (y)‖

15

Computation of proximal operators: indicator function

Example: Let C ⊂ Rn be a closed and convex set. Recall indicator function of C as:

ιC (x) :=

{
0 if x ∈ C

+∞ if x /∈ C

The function ιC (x) is proper, convex and l.s.c.

proxγιC (x) = arg min
y∈Rn

ιC (y) +
1

2γ
‖y − x‖2 = arg min

y∈C

1

2γ
‖y − x‖2 = PC (x),

i.e. the projection of x onto C (the closest point y ∈ C to x).

The notion of prox for functions g more general than ιC is the reason why the prox

operator is often referred to as generalised projection.

16

Computation of proximal operators: indicator function

Example: Let C ⊂ Rn be a closed and convex set. Recall indicator function of C as:

ιC (x) :=

{
0 if x ∈ C

+∞ if x /∈ C

The function ιC (x) is proper, convex and l.s.c.

proxγιC (x) = arg min
y∈Rn

ιC (y) +
1

2γ
‖y − x‖2 = arg min

y∈C

1

2γ
‖y − x‖2 = PC (x),

i.e. the projection of x onto C (the closest point y ∈ C to x).

The notion of prox for functions g more general than ιC is the reason why the prox

operator is often referred to as generalised projection.

16

Computation of proximal operators: `1 norm

Example: Let g(x) = |x | and γ > 0:

w = proxγg (x) = arg min
y∈R

|y |+
1

2γ
(y − x)2

By optimality:

γp + w − x = 0, p ∈ ∂|w | ⇔ w = x − γp, p ∈ ∂|w |

Recalling the expression of ∂| · |, one finds the definition of the soft-thresholding

function

w = proxγg (x) =

x − γ if x > γ

x + γ if x < −γ
0 if − γ ≤ x ≤ γ

= Tγ(x) := sign(x) max {|x | − γ, 0}

17

A non-convex example: the `0 pseudo-norm

Example: Take

g(x) = λ|x |0 :=

{
λ if x 6= 0

0 if x = 0

We want to compute:

proxλ|·|0 (z) = arg min
y∈R

h(y) :=
1

2λ
(y − z)2 + |y |0

• if y = 0, then h(0) = 1
2λ

z2

• if y 6= 0, then the minimum is reached at y∗ = z, and h(y∗) = 1

By comparison we get:

h(0) =
1

2λ
z2 ≤ h(y∗) = 1⇔ z2 ≤ 2λ⇔ −

√
2λ < z <

√
2λ

Therefore:

Soft VS. hard thresholding.

H√2λ(z) := proxλ|·|0 (z) =

0 if |z| <

√
2λ

z if |z| >
√

2λ

{0, z} if |z| =
√

2λ

18

Computation of proximal points: properties

Proposition (proximal operator of separable functions)

Let g ∈ Γ0(Rn) be separable, i.e. g(x) =
∑n

i=1 gi (xi) for functions gi ∈ Γ0(R).

Then for γ > 0

proxγg (x) =
(
proxγg1

(x1), . . . , proxγgn (xn)
)
,

• g(x) = λ‖x‖1, then proxλ‖·‖1
(x) = (Tλ(xi))ni=1 = Tλ(x).

• g(x) = λ‖x‖0, then:

proxλ‖·‖0
= H√2λ(x1)× . . .×H√2λ(xn).

Proposition (proximal operators of rescaled and perturbed functions)

Let g ∈ Γ0(Rn) and λ 6= 0. Define h1(x) := λg(x/λ). Then, for γ ∈ R++:

proxγh1
(x) = λprox γ

λ
g (x/λ).

Let h2(x) := αg(x) + β
2
‖x‖2, for α, β ∈ R++. Then, for γ ∈ R++:

proxγh2
(x) = prox αγ

1+βγ
g

(
x

1 + βγ

)
.

Let h3(x) := g(Wx) where W ∈ Rm×n is orthogonal, WTW = Id . Then, for

γ ∈ R++:

proxγh3
(x) = WT proxγg (Wx).

19

Computation of proximal points in general cases

Important remark

Having formulas for closed-form expressions of proximal points is very handy.

Otherwise, a minimisation problem needs to be solved!

However, general regularisers do not have this property!

For more examples of easily-proximable function, see, e.g.:

• Beck, First-order methods in optimization 2006 (Chapter 6): many examples of

proximal operators

• Parikh, Boyd, Proximal algorithms, 2013

• http://proximity-operator.net/index.html

In the lab class, we will make use of easily proximable (aka simple) functions. For

non-proximable functions (e.g. TV) alternative strategies/algorithms should be found:

• Fenchel duality

• Smoothing

• Other algorithms (e.g., ADMM: Alessandro Lanza’s computational imaging lab)

20

http://proximity-operator.net/index.html

Non-smooth optimisation

Projected gradient descent

Towards forward-bacwkard splitting: projected gradient descent

For differentiable f ∈ Γ0(Rn) and convex, closed C ∈ Rn:

arg min
x∈C

f (x) = arg min
x∈Rn

f (x) + ιC (x)

Algorithm: Projected Gradient Descent (PGD) algorithm

Input: τ ∈
(
0, 1

L

]
, x0 ∈ Rn.

for k ≥ 0 do

xk+ 1
2

= xk − τ∇f (xk)

xk+1 = PC (xk+ 1
2

) = arg min
y∈C

1

2
‖y − xk+ 1

2
‖2

= arg min
y∈Rn

ιC (y) +
1

2
‖y − xk+ 1

2
‖2 = proxιC (xk+ 1

2
)

end for

• First: gradient step, next projection step

• Starting point for generalisation to more general convex, non-differentiable

functions g . . .

21

Towards forward-backward splitting: explicit/implict GD

Let f , g ∈ Γ0(Rn) and let f be smooth. Want to solve:

arg min
x∈Rn

f (x) + g(x)

Consider for x0 ∈ Rn, suitable τ > 0 and k ≥ 0, the following iterative scheme:

xk+1 ∈ xk − τ∇f (xk)− τ∂g(xk+1) ⇔ (Id + τ∂g(·))(xk+1) ∈ xk − τ∇f (xk)

xk+1 ∈ (Id + τ∂g(·))−1(xk − τ∇f (xk)) ⇔ xk+1 = proxτg (xk − τ∇f (xk))

• Explicit GD on the smooth part f

• Implicit GD on the non-smooth part g

22

The proximal gradient algorithm

Framework: recap

arg min
x∈Rn

{F (x) := f (x) + g(x)} ,

• f ∈ Γ0(Rn) is differentiable with L-Lipschitz continuous gradient

∃L > 0, (∀x , y ∈ Rn) ‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖

• g ∈ Γ0(Rn) is typically non-smooth but (assume) easily-proximable!

Examples: g(x) = ιC (x), g(x) = ‖x‖1, g(x) = ‖x‖1 + ι≥0(x), g(x) = ‖x‖1 + λ
2
‖x‖2

2,

g(x) = ‖Wx‖1 with W orthogonal. . .

Algorithm: Forward-backward splitting (FB/FBS) algorithm2

Input: x0 ∈ Rn, τ ∈
(
0, 1

L

]
.

for k ≥ 0 do

xk+1 = proxτg (xk − τ∇f (xk))

end for

2Combettes, Wajs, 2005, Combettes, Pesquet, 2007

23

Remarks

• Step-size τ : still depending on the inverse of L, as for GD. If L is

unknown/difficult to compute, backtracking strategies can be used, τ = τk with

suitable update rules.

• If g is easily proximable: no inner minimisation. Otherwise: need to solve a

nested minimisation problem up to some accuracy (inexact algorithms).

• Computational cost/complexity: evaluation of ∇f may be costly (matrix/vector

products), number of iterations before convergence depends on τ .

* Too small τ : unnecessary too many iterations

* Too big τ : risk of moving to a point z for which F (z) > F (xk). . .

24

Particular cases

• If g ≡ 0: smooth-optimisation problem. FBS reduces to GD.

• If g(x) = ιC (x) for closed and convex C → PGD.

• If g(x) = λ‖Wx‖1 for λ > 0 and orthogonal W ∈ RN×n (Wavelet basis. . .)

min
x∈Rn

f (x) + λ‖Wx‖1,

then the algorithm takes the structure of the Iterative Soft-Thresholding

Algorithm (ISTA)

Iterative Soft Thresholding Algorithm (ISTA)3

The FB iteration takes the form:

xk+1 = WTTτλ(Wxk − τW∇f (xk)),

where Tτλ(·) is the soft-thresholding operator:

Tτλ(z) = (Tτλ(zj))j=1,...,n =
([
|zj | − λτ

]
+

sign(zj)
)
j=1,...,n

3Daubechies, Defrise, De Mol, 2004

25

The proximal gradient algorithm

Convergence properties

Convergence of FB iterations

Theorem (convergence of FB)4

Let (xk)k the sequence of iterates generated by FB. Then, if τ ∈ (0, 1/L], there

holds:

F (xk)− F (x∗) ≤
‖x0 − x∗‖2

2τk
.

If, additionally, f or g are strongly convex with parameters µf , µg > 0 with

µ := µf + µg , then:

F (xk)− F (x∗) +
1 + τµg

2τ
‖xk − x∗‖2 ≤ ωk (1 + τµg)‖x0 − x∗‖2

2τ
,

with ω = 1−τµf
1+τµg

< 1.

Same O(1/k)/O(ωk) rates as for GD! Alternative way of seeing this: for ε > 0, the

iterates to get an ε-solution, i.e. xk s.t.:

F (xk)− F (x∗) ≤ ε

is k ≥ dC/εe and k ≥ dC log(1/ε)e.

4Chambolle-Pock, 2016

26

Towards the proof: a generalised descent lemma

For all k ≥ and τ ∈ (0, 1/L] let:

xk+1 = Tτ (xk) := proxτg (xk − τ∇f (xk))

Generalised descent lemma

Let µ := µf + µg ≥ 0. Then, for all x ∈ Rn, there holds:

F (xk+1) + (1 + τµg)
‖x − xk+1‖2

2τ
≤ F (x) + (1− τµf)

‖x − xk‖2

2τ

Proof: By definition xk+1 solves:

xk+1 = arg min
x

g(x) + f (xk) + 〈∇f (xk), x − xk〉 +
‖x − xk‖2

2τ

By strong convexity there holds:

F (x)︷ ︸︸ ︷
f (x) + g(x) +(1− τµf)

‖x − xk‖2

2τ

s.c. of f︷︸︸︷
≥ f (xk) + 〈∇f (xk), x − xk〉 +

‖x − xk‖2

2τ
+ g(x)

minimality and µg + 1
τ

s.c.︷︸︸︷
≥ f (xk) + g(xk+1) + 〈∇f (xk), xk+1 − xk〉 +

‖xk+1 − xk‖2

2τ
+ (1 + τµg)

‖x − xk+1‖2

2τ

≥ . . .

Since f is L-Lipschitz there holds: f (xk) + 〈∇f (xk), xk+1 − xk〉 ≥ f (xk+1)− L
2
‖xk+1 − xk‖2, hence:

. . . ≥ F (xk+1) + (1 + τµg)
‖x − xk+1‖2

2τ
+

(
1

2τ
−

L

2

)
︸ ︷︷ ︸
≥0

‖xk+1 − xk‖
2
.

27

Convergence of FB: proof

Proof: Apply the generalised descent lemma for x = xk , get:

F (xk+1) ≤ F (xk+1) + (1 + τµg)
‖xk − xk+1‖2

2τ
≤ F (xk),

so F is decreasing. Define ω := 1−τµf
1+τµg

≤ 1, apply again the generalised descent

lemma, which for k = 0, . . . ,K − 1 can be multiplied by ω−k−1 and summed:

K∑
k=1

ω−K (F (xk)− F (x)) +
K∑

k=1

ω−k 1 + τµg

2τ
‖x−xk‖2 ≤

K−1∑
k=0

ω−k−1 1− τµf
2τ

‖x−xk‖2.

After cancellations, and using that F (xk) ≥ F (xK), for all k = 0, . . . ,K , we get:

ω−K

(
K−1∑
k=0

ωk

)
(F (xK)− F (x)) + ω−K 1 + τµg

2τ
‖x − xK‖2 ≤

1 + τµg

2τ
‖x − x0‖2.

• µ = 0, ω = 1: we deduce the result observing that
∑K−1

k=0 ωk =
∑K−1

k=0 1 = K .

• µ > 0, ω < 1: we deduce the linear rate by multiplying by ωK and observing that∑K−1
k=0 ωk = 1−ωK

1−ω ≥ 1.

28

Analysis of the forward-backward algorithm: convergence of the sequence

We focus on the simple convex case (i.e. µ = 0). For µ > 0 this holds a fortiori.

Proposition (Fejér monotonicity)

Let (xk) be the sequence generated by the FB algorithm with a constant stepsize τ ∈ (0, 1/L]. Then, for any

x∗ ∈ arg min F , there holds:

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.

Lemma (convergence under Fejér monotonicity)

Let (xk) ⊂ Rn be a sequence and let: D := {x̃ : x̃ is a limiting pont of (xk)} . Let S s.t. D ⊆ S . If (xk) is

Fejér monotone for all elements x∗ ∈ S , then it converges to a point in D.

Theorem (convergence of the iterates of FB)

Let (xk) be the sequence generated by the FB algorithm with a constant step-size

τ ∈ (0, 1/L]. Then, xk → x∗, where x∗ ∈ arg minF .

Proof: Let x̃ be a limit point of (xk). Then, there exists a subsequence (xkj
) such that xkj

→ x̃ . Then, since

F (xkj
)− F (x∗)→ 0, for j → +∞.

and F is l.s.c., we deduce:

F (x̃) ≤ lim inf
j→+∞

F (xkj
) = F (x∗).

By minimality, x̃ ∈ arg min F . By now defining S := argmin F and applying the Lemma the thesis follows since all

limiting points are elements of S .

29

Analysis of the forward-backward algorithm: convergence of the sequence

We focus on the simple convex case (i.e. µ = 0). For µ > 0 this holds a fortiori.

Proposition (Fejér monotonicity)

Let (xk) be the sequence generated by the FB algorithm with a constant stepsize τ ∈ (0, 1/L]. Then, for any

x∗ ∈ arg min F , there holds:

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.

Lemma (convergence under Fejér monotonicity)

Let (xk) ⊂ Rn be a sequence and let: D := {x̃ : x̃ is a limiting pont of (xk)} . Let S s.t. D ⊆ S . If (xk) is

Fejér monotone for all elements x∗ ∈ S , then it converges to a point in D.

Theorem (convergence of the iterates of FB)

Let (xk) be the sequence generated by the FB algorithm with a constant step-size

τ ∈ (0, 1/L]. Then, xk → x∗, where x∗ ∈ arg minF .

Proof: Let x̃ be a limit point of (xk). Then, there exists a subsequence (xkj
) such that xkj

→ x̃ . Then, since

F (xkj
)− F (x∗)→ 0, for j → +∞.

and F is l.s.c., we deduce:

F (x̃) ≤ lim inf
j→+∞

F (xkj
) = F (x∗).

By minimality, x̃ ∈ arg min F . By now defining S := argmin F and applying the Lemma the thesis follows since all

limiting points are elements of S .

29

Acceleration strategies

Acceleration strategies

FISTA

Accelerated proximal gradient algorithm

Idea: add inertia to “shift” the sequence of iterates.

xk−1
xk

xk+1
−∇f (xk)

xk−1
xk

xk+1

yk+1

−∇f (yk+1)

Algorithm: Fast Iterative Soft-Thresholding Algorithm (FISTA)5

Input: x0 = y0 ∈ Rn, τ ∈
(

0, 1
L

]
, t0 = 1.

for k ≥ 0 do

xk+1 = proxτg (yk − τ∇f (yk))

tk+1 =
1 +

√
1 + 4t2

k

2

yk+1 = xk+1 +
tk − 1

tk+1

(xk+1 − xk)

end for

5Nesterov, 2004 (APGD), Beck, Teboulle, 2009 (general g)

30

Properties of the parameter sequence

Proposition

Let {tk} be the sequence defined by t0 = 1 and tk+1 =
1+
√

1+4t2
k

2
for k ≥ 0. Then:

tk ≥
k + 2

3
∀k ≥ 0.

Proof: By induction. For k = 0:, obviously there holds: t0 = 1 ≥ 0+2
2

= 1. Suppose

the claim holds for some k > 0. Using the recursion:

tk+1 =
1 +

√
1 + 4t2

k

2
≥

1 +
√

1 + (k + 2)2

2
≥

1 +
√

(k + 2)2

2
=

k + 3

2
.

Alternative choices: The sequence {tk} can alternatively be chosen so as to satisfy

the following two properties holding for all k ≥ 0:

• tk ≥ k+2
2

• t2
k+1 − tk+1 ≤ t2

k .

For instance, the choice tk = k+2
2

satisfies both properties (Chambolle, Dossal, ’15).

31

Convergence of FISTA

Theorem (Accelerated convergence of FISTA)

Let (xk) the sequence of iterates generated by FISTA with τ ∈ (0, 1/L]. Then, for

any x∗ ∈ arg min F , there holds:

F (xk)− F (x∗) ≤
2‖x0 − x∗‖2

τ(k + 1)2

Proof: you will see this in the exercise class tomorrow with τ = 1/L.

Accuracy viewpoint: w.r.t. to the vanilla FB algorithm, an ε-accurate solution, i.e.:

F (xk)− F (x∗) ≤ ε
is obtained for k ≥ dC/

√
ε− 1e.

32

Acceleration strategies

Strongly convex FISTA

A strongly convex variant of FISTA

Assume now that f is strongly convex with µf > 0. Consider the algorithm:

Algorithm: Strongly convex FISTA - V-FISTA 6

Input: x0 = y0 ∈ Rn, τ = 1
L , and κ := L

µf
.

for k ≥ 0 do

xk+1 = prox 1
L
g

(yk −
1

L
∇f (yk))

yk+1 = xk+1 +

(√
κ− 1
√
κ + 1

)
(xk+1 − xk)

end for

Note: constant inertial parameter defined in terms of κ ≥ 1.

. . . Both L and µf are required (difficult to estimate in practice)!

6Beck, ’17, Chambolle, Pock ’16, Calatroni, Chambolle, ’19 (adaptive backtracking), Rebegoldi,

Calatroni, ’21 (variable scaling)

33

Convergence rates for strongly convex FISTA

Theorem (convergence of strongly convex FISTA7)

Let (xk) be the sequence of iterates generated by the strongly convex variant of the

FISTA algorithm. Then, there holds:

F (xk)− F (x∗) ≤
(

1−
1
√
κ

)k (
F (x0)− F (x∗) +

µf

2
‖x0 − x∗‖2

)
,

Proof: you will see this in the exercise classes.

• In Chambolle, Pock, ’16, Calatroni, Chambolle, ’19, Rebegoldi, Calatroni ’22:

strongly convex variant of FISTA allowing strong convexity both in f and in g

(better in g !)

• In Aujol, Dossal, Labarriere, Rondebierre, ’21: FISTA algorithm under PL

condition for f with an automatic estimate of the strong convexity parameter µf

7Beck, ’17

34

The FISTA club

• Convergence of iterates: OK for FB (based on monotonicity arguments), proved

for FISTA in Chambolle, Dossal, ’15;

• Monotone variants: MFISTA (Beck, Teboulle, ’09)

• Non-Euclidean, inexact variants:, Schmidt, Roux and Bach, ’11, Villa, Salzo,

Baldassarre, Verri, ’13, Bonettini, Rebegoldi, Ruggiero, ’19

• Strongly convex, inexact and scaled: SAGE-FISTA (Rebegoldi, Calatroni, ’22)

• Adaptive backtracking for estimating τ ‘on-the-fly’: Scheinberg, Goldfarb, Bai,

’14, Calatroni, Chambolle, ’19, Florea, Vorobyov, ’20

• Restarting schemes: heuristic (O’Donoghue, Candès, ’15), rigorous (Alamo et

al., ’19, Aujol, Dossal, Labarriere, Rondepierre et al., ’21)

• ODE interpretation: interpretation as discretised dynamical systems (with

different inertial/friction/damping terms) Su, Boyd, Candès, ’14, lot of works by

Attouch, Cabot, Chbani, Peypouquet

• Learned versions: LISTA (Gregor, Le Cunn, 2010)

• Faster-FISTA, Adaptive FISTA. . .

35

Conclusions

We discussed the use of proximal-based algorithms for convex structured

(smooth+non-smooth) optimisation problems in the form:

arg min
x

f (x) + g(x)

• We revised basic tools of convex analysis for generalising derivatives to

non-smooth functions

• We defined, characterised and looked at some fundamental properties of the

proximal operator

• We defined the forward-backward (aka proximal gradient method) generalising

the GD algorithm to the structured case and show a general convergence result

for strongly convex functions

• We discussed acceleration strategies à la Nesterov: FISTA and its strongly covex

variants

36

Extensions

Extensions

Inexact algorithms

Inexact proximal evaluations

p = proxg (a)⇔ p = argminx

{
φ(x) := g(x) +

1

2
‖x − a‖2

}
⇔ p − a ∈ ∂g(p)

37

Inexact proximal evaluations

p = proxg (a)⇔ p = argminx

{
φ(x) := g(x) +

1

2
‖x − a‖2

}
⇔ p − a ∈ ∂g(p)

There are various ways to relax this to incorporate errors8

- Type 1 errors : p̂ ≈ε1 p if

p̂ ∈ ε− argminx φ(x) :=
{
x ′ ∈ Rn : φ(x ′) ≤ inf φ(x) + ε

}

8Salzo, Villa, ’12, Villa, Salzo, Baldassarre, Verri, ’13

37

Inexact proximal evaluations

p = proxg (a)⇔ p = argminx

{
φ(x) := g(x) +

1

2
‖x − a‖2

}
⇔ p − a ∈ ∂g(p)

There are various ways to relax this to incorporate errors8

- Type 1 errors: p̂ ≈ε1 p if

p̂ ∈ ε− argminx φ(x) :=
{
x ′ ∈ Rn : φ(x ′) ≤ inf φ(x) + ε

}
- Type 2 errors: p̂ ≈ε2 p if

p̂ − a ∈ ∂ε2g(p̂) =
{
u ∈ Rn : g(x ′) ≥ g(p̂) + uT (x ′ − p̂)− ε2 ∀x ′

}

8Salzo, Villa, ’12, Villa, Salzo, Baldassarre, Verri, ’13

37

Inexact proximal evaluations

p = proxg (a)⇔ p = argminx

{
φ(x) := g(x) +

1

2
‖x − a‖2

}
⇔ p − a ∈ ∂g(p)

There are various ways to relax this to incorporate errors8

- Type 1 errors: p̂ ≈ε1 p if

p̂ ∈ ε− argminx φ(x) :=
{
x ′ ∈ Rn : φ(x ′) ≤ inf φ(x) + ε

}
- Type 2 errors : p̂ ≈ε2 p if

p̂ − a ∈ ∂ε2g(p̂) =
{
u ∈ Rn : g(x ′) ≥ g(p̂) + uT (x ′ − p̂)− ε2 ∀x ′

}
- Type 3 errors : p̂ ≈ε3 p if p̂ = proxg (a + e), ‖e‖ ≤ ε.

8Salzo, Villa, ’12, Villa, Salzo, Baldassarre, Verri, ’13

37

Inexact proximal evaluations

p = proxg (a)⇔ p = argminx

{
φ(x) := g(x) +

1

2
‖x − a‖2

}
⇔ p − a ∈ ∂g(p)

There are various ways to relax this to incorporate errors8

- Type 1 errors: p̂ ≈ε1 p if

p̂ ∈ ε− argminx φ(x) :=
{
x ′ ∈ Rn : φ(x ′) ≤ inf φ(x) + ε

}
- Type 2 errors : p̂ ≈ε2 p if

p̂ − a ∈ ∂ε2g(p̂) =
{
u ∈ Rn : g(x ′) ≥ g(p̂) + uT (x ′ − p̂)− ε2 ∀x ′

}
- Type 3 errors: p̂ ≈ε3 p if p̂ = proxg (a + e), ‖e‖ ≤ ε.

Theorem (convergence of inexact FISTA)

For τ ≤ 1/L, if εk = O(1/kq) with q > 3/2, then the sequence (xk) of the accelerated inexact

FB algorithm satisfies:

F (xk)− F (x∗) = O

(
1

k2

)
8Salzo, Villa, ’12, Villa, Salzo, Baldassarre, Verri, ’13

37

Extensions

Backtracking strategies for FISTA

FISTA with monotone backtracking9

For f convex and differentiable, define the Bregman “distance””

Df (x , y) := f (x)− f (y)− 〈∇f (y), x − y〉 ≥ 0, ∀x , y ∈ Rn

Popular for mirror descent algorithms and regularisation of inverse problems (Burger,

’16).

Algorithm: FISTA with non-decreasing backtracking

Input: x0 = y0 ∈ Rn , τ0 > 0, t0 = 1, ρ ∈ (0, 1).

for k ≥ 0 do

for i = 0, 1, . . . repeat

τk+1 = ρ
i
τk

xk+1 = proxτk+1g
(yk − τk+1∇f (yk))

tk+1 =
1 +

√
1 + 4t2

k

2

yk+1 = xk+1 +
tk − 1

tk+1

(xk+1 − xk)

until Df (xk+1, yk+1) ≤ ‖xk+1 − yk+1‖2/2τk+1

end for

9Beck, Teboulle, ’09, Chambolle, Pock, ’16

38

Convergence guarantee for FISTA with non-adaptive backtracking

Theorem (FISTA with non-adaptive backtracking)

Let (xk) the sequence of iterates generated by FISTA with non-adaptive

backtracking. Then, for any x∗ ∈ arg min F , there holds:

F (xk)− F (x∗) ≤
2‖x0 − x∗‖2

τρ(k + 1)2

• Basically the same rate as before, just depending on ρ ∈ (0, 1)

• Idea: start in an optimistic way τ0 � 1. If at any step k ≥ 1 the step-size is too

big, it will be decreased up to guarantee decay

39

Non-monotone FISTA backtracking

Algorithm: FISTA with adaptive backtracking

Input: x0 = y0 ∈ Rn , τ0 > 0, t0 = 1, ρ ∈ (0, 1), δ ∈ (0, 1).

for k ≥ 0 do

τ
0
k+1 =

τk

δ
; (*)

for i = 0, 1, . . . repeat

τk+1 = ρ
i
τ

0
k+1

xk+1 = proxτk+1g
(yk − τk+1∇f (yk))

tk+1 =
1 +

√
1 + 4t2

k

2

yk+1 = xk+1 +
tk − 1

tk+1

(xk+1 − xk)

until Df (xk+1, yk+1) ≤ ‖xk+1 − yk+1‖2/2τk+1.

end for

• Only difference: tentative step where you try to increase the previous step-size.

• Practically, you may even add a max number of backtracking iterations imax ≈ 10

40

Convergence guarantee for FISTA with adaptive backtracking)

Theorem (FISTA with adaptive backtracking10)

Let (xk) the sequence of iterates generated by FISTA with non-adaptive

backtracking. Then, for any x∗ ∈ arg min F , there holds:

F (xk)− F (x∗) ≤
2L̄k

k2
‖x0 − x∗‖2 ≤

2L

ρk2
‖x0 − x∗‖2

where
√

L̄k := 1
1
k

∑k
i=1

1√
Li

, Li := 1/τi .

From standard harmonic/arithmetic mean inequalities:

√
L̄k ≤

1

k

k∑
i=1

√
Li ≤

√√√√ 1

k

k∑
i=1

Li ≤

√
L

ρ

• “Local” estimates: you don’t need the dependence on Lf in final rates (which is in principle

unknown), you have acceleration depending on harmonic mean

• Extensions in Rebegoldi, Calatroni’ 22 to inexact proximal algorithms, with scaling.

• For step-size selection strategies in non-convex problems see Ochs, Chen, Brox, Pock, ’14

10Scheinberg, Goldfarb, Bai, ’14, Calatroni, Chambolle, ’19

41

Backtracking performance

In Calatroni, Chambolle, ’19 we considered a variation for strongly convex functions.

42

Backtracking performance

In Calatroni, Chambolle, ’19 we considered a variation for strongly convex functions.

42

Non-convex algorithms

Gradient descent for non-convex functions

Let f be a C2, L-smooth function which is coercive and bounded from below. Using

Taylor expansion with integral form of remainder we have that:

f (xk+1) = f (xk − τ∇f (xk))

= f (xk)− τ〈∇f (xk),∇f (xk)〉+

∫ τ

0
(τ − t)〈∇2f (xk − t∇f (xk))∇f (xk),∇f (xk)〉dt

≤ f (xk)− τ
(

1−
τL

2

)
‖∇f (xk)‖2

as long as ∇2f � LId. Hence, if τ < 2/L, the GD algorithm is decreasing and we can

deduce that subsequences of (xk) converge to some critical point.

43

A glimpse on the use of proximal gradient methods for non-convex problems

Theorem (Convergence of FB for non-convex f)

Let f be proper and L-smooth and g ∈ Γ0(Rn). Let argmin F 6= ∅. Let (xk) be the

sequence generated by the FB algorithm with a constant stepsize L̄ ∈
(

L
2
,+∞

)
.

Then:

• the sequence (F (xk)) is non-increasing and F (xk+1) < F (xk) if and only if xk is

not a stationary point;

• The (generalised) gradient mapping GL : int(dom(f))→ Rn defined by:

GL̄(x) := L̄

(
x − prox 1

L̄
g

(
x −

1

L̄
∇f (x)

))
is such that GL̄(xk)→ 0 as k → +∞

• All limiting points of (xk) are stationary points for the functional F .

• Earlier works by Fukushima, Mine, ’81, Chouzenoux, Pesquet, Repetti, ’14,

Bredies, Lorenz, Reiterer, ’15, Nesterov, ’13.

• For results on accelerated algorithms see, e.g., Ochs, Chen, Brox, Pock, ’14

• General convergence theory under the (non-restrictive) Kurdyka- Lojasiewicz

property (Bolte, Daniilidis, Lewis, ’06, Attouch, Bolte, Svaiter, ’13, Attouch,

Bolte, Redont, Subeyran, ’14)

44

Questions?

calatroni@i3s.unice.fr

44

mailto:calatroni@i3s.unice.fr

	Non-smooth optimisation
	Subgradients
	The proximal operator
	Projected gradient descent

	The proximal gradient algorithm
	Convergence properties

	Acceleration strategies
	FISTA
	Strongly convex FISTA

	Extensions
	Inexact algorithms
	Backtracking strategies for FISTA

	Non-convex algorithms

