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Life is not smooth. . .

In many applications the function g in

min
x∈Rn

{F (x) := f (x) + g(x)} ,

is different from 0. Typically, g is convex, but non differentiable so its

gradient (and henceforth the one of F ) cannot be defined in a standard way.

Note: take implicit gradient-descent for suitable τ > 0:

xk+1 = xk − τ∇f (xk+1) ⇔ ∇f (xk+1) +
xk+1 − xk

τ
= 0,

So if xk+1 exists, it is a critical point of the function:

x 7→ f (x) +
‖xk − x‖2

2τ

If f ∈ Γ0(Rn) (not necessarily smooth!), xk+1 is indeed the unique critical point of

this function. . .

non-smoothness encoded via “implicit” updates?
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Non-smooth optimisation



Non-smooth optimisation

Subgradients



A preliminary observation

One can show that if f : Rn → R is differentiable:

f is convex ⇔ (∀x , y ∈ Rn) f (y) ≥ f (x) +∇f (x)T (y − x)︸ ︷︷ ︸
=:φ(y ;x)

• the function φ(·; x) is an affine lower bound/estimator of f (·)
• the tangent to f at any x ∈ dom(f ) is below f at all points.

Recall: If f is µ-strongly convex, then, analogously, f has a quadratic lower bound

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖x − y‖2, ∀x , y ∈ Rn.
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Subgradients and subdifferential

Definition (Subgradients and subdifferential)

Let g ∈ P be convex. Then, a vector p ∈ Rn is a subgradient of g at point

x ∈ dom(g) iff:

g(y) ≥ g(x) + pT (y − x), ∀y ∈ Rn

If x /∈ dom(g), we set ∂g(x) = ∅. The set of all subgradients at a point x ∈ Rn is

called the subdifferential of g in x , and it is the denoted by:

∂g(x) = {p ∈ Rn : p is a subgradient of g at point x}

Interpretation:

• p ∈ ∂g(x) if and only if φ(y ; x) = g(x) + pT (y − x) is a lower affine bound for g .

• ∂g(x) collects all the slopes of the tangent lines through x .
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Remarks

In general, ∂g(·) : Rn → 2R
n

is not a singleton

Multiple subgradients at a non-differentiable point x0.

Example: g : R→ R, g(x) = |x |.

∂g(x) =


{1} if x > 0

{−1} if x < 0

[−1, 1] if x = 0.

Proposition (subdifferential at differentiable points)

If g is convex and differentiable in x ∈ dom(g), then:

∂g(x) = {∇g(x)} .
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Subdifferential of norm

Compute ∂‖x‖ for all x ∈ Rn.

• g(x) = ‖x‖ is differentiable for all x 6= 0. There, ∂‖x‖ = x
‖x‖ .

• The point of interest (non-differentiability) is 0

In x = 0 subgradients p ∈ Rn verify:

‖y‖ ≥ 0 + pT (y − 0) = pT y ∀y ∈ Rn

Take the maximum on both sides for all y : ‖y‖ ≤ 1, you get:

1 = max
y :‖y‖≤1

‖y‖ ≥ max
y :‖y‖≤1

pT y = ‖p‖

Contrarily, if ‖p‖ ≤ 1, then by Cauchy-Schwarz inequality there holds:

pT y ≤ ‖p‖‖y‖ ≤ ‖y‖

Hence, we proved p ∈ ∂‖0‖ if and only if ‖p‖ ≤ 1. Hence

∂‖0‖ = {p ∈ Rn : ‖p‖ ≤ 1} = B1(0) ⇒ ∂‖x‖ =

{
x
‖x‖ x 6= 0

B1(0) x = 0.
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Calculus rules: separable functions

Often, the n-dimensional function you deal with, can be nicely expressed as the sum of

1D components. For instance, think of:

• norms ‖x‖pp , p ≥ 1: ‖x‖pp =
∑n

i=1|xi |p . . .

• sum of norms, e.g. g(x) = ‖x‖1 + λ
2
‖x‖2

2 =
∑n

i=1

(
|xi |+ λ|xi |2

)
.

• . . .

Definition (separable function)

Let g ∈ P be convex. We say that g is separable if there exist proper, univariate

convex functions gi : R→ R such that

g(x) =
n∑

i=1

gi (xi ), ∀x ∈ Rn.

Proposition (subdifferential of separable functions)

Let g ∈ P be convex and separable. Then, for all x ∈ dom(g):

∂g(x) = (∂gi (xi ))ni=1 = (∂g1(x1))× . . .× (∂gn(xn)).
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Calculus rules: sum and multiplication by scalar

Proposition (Moreau-Rockafellar)

Let g,g2 : Rn → R be two proper convex functions. Then:

∂g1(x) + ∂g2(x) ⊂ ∂ (g1(·) + g2(·)) (x).

Moreover, if int(dom(g1)) ∩ int(dom(g2)) 6= ∅, then for all x ∈ Rn:

∂g1(x) + ∂g2(x) = ∂ (g1(·) + g2(·)) (x).

For λ ∈ R++, there holds:

∂ (λf ) (x) = λ∂f (x), ∀x ∈ Rn.

Example: ∂(g1(·) + g2(·))(x) may differ indeed from ∂g1(x) + ∂g2(x)! In R take:

g1(x) :=

{
0 if x ≤ 0

+∞ if x > 0.
g2(x) :=

{
+∞ if x < 0

−
√
x if x ≥ 0.

We have:

∂g1(x) =


0 if x < 0

[0,+∞) if x = 0

∅ if x > 0

∂g2(x) =

∅ if x ≤ 0

− 1
2
√

x
if x > 0.

Hence, ∂g1(x) + ∂g2(x) = ∅ for all x ∈ R. However, g1(x) + g2(x) = ι0(x) and ∂ι0(0) = R.
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Composite subgradients and chain rule

Proposition

Let f ∈ Γ0(Rn) be differentiable at x ∈ Rn and let g ∈ Γ0(Rn), then:

∂(f + g)(x) = {∇f (x)}+ ∂g(x).

Proposition

Let L ∈ RN×n and g : RN → R̄ a proper convex function. Then:

(∀x ∈ Rn) LT∂g(Lx) ⊂ ∂(g ◦ L)(x).

Moreover, if int(dom(g) ∩ R(L) 6= ∅, then:

(∀x ∈ Rn) LT∂g(Lx) = ∂(g ◦ L)(x).
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Optimality conditions

Analogous to Fermat’s rule in non-smooth case.

Theorem (optimality conditions in non-smooth, convex case)

Let g ∈ Γ0(Rn). Then:

x∗ ∈ arg min
x∈Rn

g(x) ⇐⇒ 0 ∈ ∂g(x∗).

Interpretation:

• If the vector 0 ∈ Rn belongs to ∂g(x∗) (“flat plot”), then x∗ is a minimiser.

• If g is differentiable, the result reads 0 = ∇g(x∗) (Fermat’s rule).
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Stationary points

If f , g ∈ Γ0(Rn) and f is smooth

arg min
x∈Rn

{F (x) := f (x) + g(x)}

x∗ ∈ arg min
x∈Rn

F (x)⇔ 0 ∈ ∂F (x∗) = ∂f (x∗)︸ ︷︷ ︸
f is smooth

+∂g(x∗) = {∇f (x∗)}+ ∂g(x∗)

Definition (stationary point)

A point x∗ ∈ Rn verifying:

0 ∈ {∇f (x∗)}+ ∂g(x∗) ⇔ −∇f (x∗) ∈ ∂g(x∗)

is said to be a stationary point of the composite functional F := f + g .
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Non-smooth optimisation

The proximal operator



The proximal operator: definition

Crucial tool for the development of non-smooth optimisation algorithms. Relations

with activation functions in the context of deep networks (Combettes, Pesquet, ’20).

Definition

Let g ∈ P. Then, the proximal operator of g with parameter γ > 0 is defined as the

multi-valued map proxγg : Rn → 2R
n

defined for all x ∈ Rn:

proxγg (x) := arg min
y∈Rn

g(y) +
1

2γ
‖y − x‖2︸ ︷︷ ︸

=:h(y ;x)

With no further conditions on g , proxγg (x) is a multivalued set and there may exist

x̂ ∈ Rn s.t. proxγg (x̂) = ∅.

Proposition (uniqueness of the proximal point)

If g ∈ Γ0(Rn), then proxγg (x) exists and it is unique for all x ∈ Rn.

“Proof”: For all x ∈ Rn, the function h(·; x) is 1
γ

-strongly (hence strictly) convex,

hence it admits a unique minimiser.
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Graphical interpretation

Thin black lines: level lines of g . Thick black lines: boundary of domain. Blue points:

evaluation points are moved to the red points in the minimisation with an amount

depending on γ. Note: points are moved to the minimum of the function.
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Relation with subdifferentials

For γ > 0 and x ∈ Rn, let z := proxγg (x). We have:

z := proxγg (x) ⇔ z = arg min
y∈Rn

g(y) +
1

2γ
‖y − x‖2

(optimality) ⇔ 0 ∈ ∂g(z) +
1

γ
(z − x)

(rearranging) ⇔ x ∈ z + γ∂g(z)

(using operators) ⇔ x ∈ (Id + γ∂g)(z)

(uniqueness) ⇔ z = (Id + γ∂g)−1(x)

For those of you who are familiar with convex analysis. . .

Remark1

z = proxγg (x) is given by the resolvent of the maximal monotone operator γ∂g

evaluated at x .

1Minty, (1962), Bauschke-Combettes, (2010). Chambolle-Pock, (2016)
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Firm non-expansiveness of the proximal operator

Proposition (firm non-expansiveness)

Let g ∈ Γ0(Rn). Then:

(∀x ∈ Rn) ‖proxg (x)− proxg (y)‖2 ≤ 〈x − y , proxg (x)− proxg (y)〉

Proof: There holds:

x − proxg (x) ∈ ∂f (proxg (x)), y − proxg (y) ∈ ∂f (proxg (y)).

By definition of subdifferential:

f (proxg (y)) ≥ f (proxg (x)) + 〈x − proxg (x), proxg (y)− proxg (x)〉,

and similarly inverting x and y . Summing:

��
��f (proxg (y)) +���

�f (proxg (x))

≥��
��f (proxg (y)) +���

�f (proxg (x)) + 〈y − f (proxg (y))− x + f (proxg (x)), f (proxg (x))− f (proxg (y))〉.

This implies non-expansiveness since:

‖proxg (x)−proxg (y)‖�2 ≤ 〈x−y , proxg (x)−proxg (y)〉 ≤ ‖x−y‖
(((

((((
((

‖proxg (x)− proxg (y)‖
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Computation of proximal operators: indicator function

Example: Let C ⊂ Rn be a closed and convex set. Recall indicator function of C as:

ιC (x) :=

{
0 if x ∈ C

+∞ if x /∈ C

The function ιC (x) is proper, convex and l.s.c.

proxγιC (x) = arg min
y∈Rn

ιC (y) +
1

2γ
‖y − x‖2 = arg min

y∈C

1

2γ
‖y − x‖2 = PC (x),

i.e. the projection of x onto C (the closest point y ∈ C to x).

The notion of prox for functions g more general than ιC is the reason why the prox

operator is often referred to as generalised projection.
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Computation of proximal operators: `1 norm

Example: Let g(x) = |x | and γ > 0:

w = proxγg (x) = arg min
y∈R

|y |+
1

2γ
(y − x)2

By optimality:

γp + w − x = 0, p ∈ ∂|w | ⇔ w = x − γp, p ∈ ∂|w |

Recalling the expression of ∂| · |, one finds the definition of the soft-thresholding

function

w = proxγg (x) =


x − γ if x > γ

x + γ if x < −γ
0 if − γ ≤ x ≤ γ

= Tγ(x) := sign(x) max {|x | − γ, 0}
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A non-convex example: the `0 pseudo-norm

Example: Take

g(x) = λ|x |0 :=

{
λ if x 6= 0

0 if x = 0

We want to compute:

proxλ|·|0 (z) = arg min
y∈R

h(y) :=
1

2λ
(y − z)2 + |y |0

• if y = 0, then h(0) = 1
2λ

z2

• if y 6= 0, then the minimum is reached at y∗ = z, and h(y∗) = 1

By comparison we get:

h(0) =
1

2λ
z2 ≤ h(y∗) = 1⇔ z2 ≤ 2λ⇔ −

√
2λ < z <

√
2λ

Therefore:

Soft VS. hard thresholding.

H√2λ(z) := proxλ|·|0 (z) =


0 if |z| <

√
2λ

z if |z| >
√

2λ

{0, z} if |z| =
√

2λ
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Computation of proximal points: properties

Proposition (proximal operator of separable functions)

Let g ∈ Γ0(Rn) be separable, i.e. g(x) =
∑n

i=1 gi (xi ) for functions gi ∈ Γ0(R).

Then for γ > 0

proxγg (x) =
(
proxγg1

(x1), . . . , proxγgn (xn)
)
,

• g(x) = λ‖x‖1, then proxλ‖·‖1
(x) = (Tλ(xi ))ni=1 = Tλ(x).

• g(x) = λ‖x‖0, then:

proxλ‖·‖0
= H√2λ(x1)× . . .×H√2λ(xn).

Proposition (proximal operators of rescaled and perturbed functions)

Let g ∈ Γ0(Rn) and λ 6= 0. Define h1(x) := λg(x/λ). Then, for γ ∈ R++:

proxγh1
(x) = λprox γ

λ
g (x/λ).

Let h2(x) := αg(x) + β
2
‖x‖2, for α, β ∈ R++. Then, for γ ∈ R++:

proxγh2
(x) = prox αγ

1+βγ
g

(
x

1 + βγ

)
.

Let h3(x) := g(Wx) where W ∈ Rm×n is orthogonal, WTW = Id . Then, for

γ ∈ R++:

proxγh3
(x) = WT proxγg (Wx).

19



Computation of proximal points in general cases

Important remark

Having formulas for closed-form expressions of proximal points is very handy.

Otherwise, a minimisation problem needs to be solved!

However, general regularisers do not have this property!

For more examples of easily-proximable function, see, e.g.:

• Beck, First-order methods in optimization 2006 (Chapter 6): many examples of

proximal operators

• Parikh, Boyd, Proximal algorithms, 2013

• http://proximity-operator.net/index.html

In the lab class, we will make use of easily proximable (aka simple) functions. For

non-proximable functions (e.g. TV) alternative strategies/algorithms should be found:

• Fenchel duality

• Smoothing

• Other algorithms (e.g., ADMM: Alessandro Lanza’s computational imaging lab)

20
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Non-smooth optimisation

Projected gradient descent



Towards forward-bacwkard splitting: projected gradient descent

For differentiable f ∈ Γ0(Rn) and convex, closed C ∈ Rn:

arg min
x∈C

f (x) = arg min
x∈Rn

f (x) + ιC (x)

Algorithm: Projected Gradient Descent (PGD) algorithm

Input: τ ∈
(
0, 1

L

]
, x0 ∈ Rn.

for k ≥ 0 do

xk+ 1
2

= xk − τ∇f (xk )

xk+1 = PC (xk+ 1
2

) = arg min
y∈C

1

2
‖y − xk+ 1

2
‖2

= arg min
y∈Rn

ιC (y) +
1

2
‖y − xk+ 1

2
‖2 = proxιC (xk+ 1

2
)

end for

• First: gradient step, next projection step

• Starting point for generalisation to more general convex, non-differentiable

functions g . . .
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Towards forward-backward splitting: explicit/implict GD

Let f , g ∈ Γ0(Rn) and let f be smooth. Want to solve:

arg min
x∈Rn

f (x) + g(x)

Consider for x0 ∈ Rn, suitable τ > 0 and k ≥ 0, the following iterative scheme:

xk+1 ∈ xk − τ∇f (xk )− τ∂g(xk+1) ⇔ (Id + τ∂g(·))(xk+1) ∈ xk − τ∇f (xk )

xk+1 ∈ (Id + τ∂g(·))−1(xk − τ∇f (xk )) ⇔ xk+1 = proxτg (xk − τ∇f (xk ))

• Explicit GD on the smooth part f

• Implicit GD on the non-smooth part g

22



The proximal gradient algorithm



Framework: recap

arg min
x∈Rn

{F (x) := f (x) + g(x)} ,

• f ∈ Γ0(Rn) is differentiable with L-Lipschitz continuous gradient

∃L > 0, (∀x , y ∈ Rn) ‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖

• g ∈ Γ0(Rn) is typically non-smooth but (assume) easily-proximable!

Examples: g(x) = ιC (x), g(x) = ‖x‖1, g(x) = ‖x‖1 + ι≥0(x), g(x) = ‖x‖1 + λ
2
‖x‖2

2,

g(x) = ‖Wx‖1 with W orthogonal. . .

Algorithm: Forward-backward splitting (FB/FBS) algorithm2

Input: x0 ∈ Rn, τ ∈
(
0, 1

L

]
.

for k ≥ 0 do

xk+1 = proxτg (xk − τ∇f (xk ))

end for

2Combettes, Wajs, 2005, Combettes, Pesquet, 2007
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Remarks

• Step-size τ : still depending on the inverse of L, as for GD. If L is

unknown/difficult to compute, backtracking strategies can be used, τ = τk with

suitable update rules.

• If g is easily proximable: no inner minimisation. Otherwise: need to solve a

nested minimisation problem up to some accuracy (inexact algorithms).

• Computational cost/complexity: evaluation of ∇f may be costly (matrix/vector

products), number of iterations before convergence depends on τ .

* Too small τ : unnecessary too many iterations

* Too big τ : risk of moving to a point z for which F (z) > F (xk ). . .

24



Particular cases

• If g ≡ 0: smooth-optimisation problem. FBS reduces to GD.

• If g(x) = ιC (x) for closed and convex C → PGD.

• If g(x) = λ‖Wx‖1 for λ > 0 and orthogonal W ∈ RN×n (Wavelet basis. . . )

min
x∈Rn

f (x) + λ‖Wx‖1,

then the algorithm takes the structure of the Iterative Soft-Thresholding

Algorithm (ISTA)

Iterative Soft Thresholding Algorithm (ISTA)3

The FB iteration takes the form:

xk+1 = WTTτλ(Wxk − τW∇f (xk )),

where Tτλ(·) is the soft-thresholding operator:

Tτλ(z) = (Tτλ(zj ))j=1,...,n =
( [
|zj | − λτ

]
+

sign(zj )
)
j=1,...,n

3Daubechies, Defrise, De Mol, 2004
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The proximal gradient algorithm

Convergence properties



Convergence of FB iterations

Theorem (convergence of FB)4

Let (xk )k the sequence of iterates generated by FB. Then, if τ ∈ (0, 1/L], there

holds:

F (xk )− F (x∗) ≤
‖x0 − x∗‖2

2τk
.

If, additionally, f or g are strongly convex with parameters µf , µg > 0 with

µ := µf + µg , then:

F (xk )− F (x∗) +
1 + τµg

2τ
‖xk − x∗‖2 ≤ ωk (1 + τµg )‖x0 − x∗‖2

2τ
,

with ω = 1−τµf
1+τµg

< 1.

Same O(1/k)/O(ωk ) rates as for GD! Alternative way of seeing this: for ε > 0, the

iterates to get an ε-solution, i.e. xk s.t.:

F (xk )− F (x∗) ≤ ε

is k ≥ dC/εe and k ≥ dC log(1/ε)e.

4Chambolle-Pock, 2016
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Towards the proof: a generalised descent lemma

For all k ≥ and τ ∈ (0, 1/L] let:

xk+1 = Tτ (xk ) := proxτg (xk − τ∇f (xk ))

Generalised descent lemma

Let µ := µf + µg ≥ 0. Then, for all x ∈ Rn, there holds:

F (xk+1) + (1 + τµg )
‖x − xk+1‖2

2τ
≤ F (x) + (1− τµf )

‖x − xk‖2

2τ

Proof: By definition xk+1 solves:

xk+1 = arg min
x

g(x) + f (xk ) + 〈∇f (xk ), x − xk〉 +
‖x − xk‖2

2τ

By strong convexity there holds:

F (x)︷ ︸︸ ︷
f (x) + g(x) +(1− τµf )

‖x − xk‖2

2τ

s.c. of f︷︸︸︷
≥ f (xk ) + 〈∇f (xk ), x − xk〉 +

‖x − xk‖2

2τ
+ g(x)

minimality and µg + 1
τ

s.c.︷︸︸︷
≥ f (xk ) + g(xk+1) + 〈∇f (xk ), xk+1 − xk〉 +

‖xk+1 − xk‖2

2τ
+ (1 + τµg )

‖x − xk+1‖2

2τ

≥ . . .

Since f is L-Lipschitz there holds: f (xk ) + 〈∇f (xk ), xk+1 − xk〉 ≥ f (xk+1)− L
2
‖xk+1 − xk‖2, hence:

. . . ≥ F (xk+1) + (1 + τµg )
‖x − xk+1‖2

2τ
+

(
1

2τ
−

L

2

)
︸ ︷︷ ︸
≥0

‖xk+1 − xk‖
2
.
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Convergence of FB: proof

Proof: Apply the generalised descent lemma for x = xk , get:

F (xk+1) ≤ F (xk+1) + (1 + τµg )
‖xk − xk+1‖2

2τ
≤ F (xk ),

so F is decreasing. Define ω := 1−τµf
1+τµg

≤ 1, apply again the generalised descent

lemma, which for k = 0, . . . ,K − 1 can be multiplied by ω−k−1 and summed:

K∑
k=1

ω−K (F (xk )− F (x)) +
K∑

k=1

ω−k 1 + τµg

2τ
‖x−xk‖2 ≤

K−1∑
k=0

ω−k−1 1− τµf
2τ

‖x−xk‖2.

After cancellations, and using that F (xk ) ≥ F (xK ), for all k = 0, . . . ,K , we get:

ω−K

(
K−1∑
k=0

ωk

)
(F (xK )− F (x)) + ω−K 1 + τµg

2τ
‖x − xK‖2 ≤

1 + τµg

2τ
‖x − x0‖2.

• µ = 0, ω = 1: we deduce the result observing that
∑K−1

k=0 ωk =
∑K−1

k=0 1 = K .

• µ > 0, ω < 1: we deduce the linear rate by multiplying by ωK and observing that∑K−1
k=0 ωk = 1−ωK

1−ω ≥ 1.
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Analysis of the forward-backward algorithm: convergence of the sequence

We focus on the simple convex case (i.e. µ = 0). For µ > 0 this holds a fortiori.

Proposition (Fejér monotonicity)

Let (xk ) be the sequence generated by the FB algorithm with a constant stepsize τ ∈ (0, 1/L]. Then, for any

x∗ ∈ arg min F , there holds:

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.

Lemma (convergence under Fejér monotonicity)

Let (xk ) ⊂ Rn be a sequence and let: D := {x̃ : x̃ is a limiting pont of (xk )} . Let S s.t. D ⊆ S . If (xk ) is

Fejér monotone for all elements x∗ ∈ S , then it converges to a point in D.

Theorem (convergence of the iterates of FB)

Let (xk ) be the sequence generated by the FB algorithm with a constant step-size

τ ∈ (0, 1/L]. Then, xk → x∗, where x∗ ∈ arg minF .

Proof: Let x̃ be a limit point of (xk ). Then, there exists a subsequence (xkj
) such that xkj

→ x̃ . Then, since

F (xkj
)− F (x∗)→ 0, for j → +∞.

and F is l.s.c., we deduce:

F (x̃) ≤ lim inf
j→+∞

F (xkj
) = F (x∗).

By minimality, x̃ ∈ arg min F . By now defining S := argmin F and applying the Lemma the thesis follows since all

limiting points are elements of S .
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Acceleration strategies



Acceleration strategies

FISTA



Accelerated proximal gradient algorithm

Idea: add inertia to “shift” the sequence of iterates.

xk−1
xk

xk+1
−∇f (xk )

xk−1
xk

xk+1

yk+1

−∇f (yk+1)

Algorithm: Fast Iterative Soft-Thresholding Algorithm (FISTA)5

Input: x0 = y0 ∈ Rn, τ ∈
(

0, 1
L

]
, t0 = 1.

for k ≥ 0 do

xk+1 = proxτg (yk − τ∇f (yk ))

tk+1 =
1 +

√
1 + 4t2

k

2

yk+1 = xk+1 +
tk − 1

tk+1

(xk+1 − xk )

end for

5Nesterov, 2004 (APGD), Beck, Teboulle, 2009 (general g)
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Properties of the parameter sequence

Proposition

Let {tk} be the sequence defined by t0 = 1 and tk+1 =
1+
√

1+4t2
k

2
for k ≥ 0. Then:

tk ≥
k + 2

3
∀k ≥ 0.

Proof: By induction. For k = 0:, obviously there holds: t0 = 1 ≥ 0+2
2

= 1. Suppose

the claim holds for some k > 0. Using the recursion:

tk+1 =
1 +

√
1 + 4t2

k

2
≥

1 +
√

1 + (k + 2)2

2
≥

1 +
√

(k + 2)2

2
=

k + 3

2
.

Alternative choices: The sequence {tk} can alternatively be chosen so as to satisfy

the following two properties holding for all k ≥ 0:

• tk ≥ k+2
2

• t2
k+1 − tk+1 ≤ t2

k .

For instance, the choice tk = k+2
2

satisfies both properties (Chambolle, Dossal, ’15).
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Convergence of FISTA

Theorem (Accelerated convergence of FISTA)

Let (xk ) the sequence of iterates generated by FISTA with τ ∈ (0, 1/L]. Then, for

any x∗ ∈ arg min F , there holds:

F (xk )− F (x∗) ≤
2‖x0 − x∗‖2

τ(k + 1)2

Proof: you will see this in the exercise class tomorrow with τ = 1/L.

Accuracy viewpoint: w.r.t. to the vanilla FB algorithm, an ε-accurate solution, i.e.:

F (xk )− F (x∗) ≤ ε
is obtained for k ≥ dC/

√
ε− 1e.
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Acceleration strategies

Strongly convex FISTA



A strongly convex variant of FISTA

Assume now that f is strongly convex with µf > 0. Consider the algorithm:

Algorithm: Strongly convex FISTA - V-FISTA 6

Input: x0 = y0 ∈ Rn, τ = 1
L , and κ := L

µf
.

for k ≥ 0 do

xk+1 = prox 1
L
g

(yk −
1

L
∇f (yk ))

yk+1 = xk+1 +

(√
κ− 1
√
κ + 1

)
(xk+1 − xk )

end for

Note: constant inertial parameter defined in terms of κ ≥ 1.

. . . Both L and µf are required (difficult to estimate in practice)!

6Beck, ’17, Chambolle, Pock ’16, Calatroni, Chambolle, ’19 (adaptive backtracking), Rebegoldi,

Calatroni, ’21 (variable scaling)
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Convergence rates for strongly convex FISTA

Theorem (convergence of strongly convex FISTA7)

Let (xk ) be the sequence of iterates generated by the strongly convex variant of the

FISTA algorithm. Then, there holds:

F (xk )− F (x∗) ≤
(

1−
1
√
κ

)k (
F (x0)− F (x∗) +

µf

2
‖x0 − x∗‖2

)
,

Proof: you will see this in the exercise classes.

• In Chambolle, Pock, ’16, Calatroni, Chambolle, ’19, Rebegoldi, Calatroni ’22:

strongly convex variant of FISTA allowing strong convexity both in f and in g

(better in g !)

• In Aujol, Dossal, Labarriere, Rondebierre, ’21: FISTA algorithm under PL

condition for f with an automatic estimate of the strong convexity parameter µf

7Beck, ’17
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The FISTA club

• Convergence of iterates: OK for FB (based on monotonicity arguments), proved

for FISTA in Chambolle, Dossal, ’15;

• Monotone variants: MFISTA (Beck, Teboulle, ’09)

• Non-Euclidean, inexact variants:, Schmidt, Roux and Bach, ’11, Villa, Salzo,

Baldassarre, Verri, ’13, Bonettini, Rebegoldi, Ruggiero, ’19

• Strongly convex, inexact and scaled: SAGE-FISTA (Rebegoldi, Calatroni, ’22)

• Adaptive backtracking for estimating τ ‘on-the-fly’: Scheinberg, Goldfarb, Bai,

’14, Calatroni, Chambolle, ’19, Florea, Vorobyov, ’20

• Restarting schemes: heuristic (O’Donoghue, Candès, ’15), rigorous (Alamo et

al., ’19, Aujol, Dossal, Labarriere, Rondepierre et al., ’21)

• ODE interpretation: interpretation as discretised dynamical systems (with

different inertial/friction/damping terms) Su, Boyd, Candès, ’14, lot of works by

Attouch, Cabot, Chbani, Peypouquet

• Learned versions: LISTA (Gregor, Le Cunn, 2010)

• Faster-FISTA, Adaptive FISTA. . .
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Conclusions

We discussed the use of proximal-based algorithms for convex structured

(smooth+non-smooth) optimisation problems in the form:

arg min
x

f (x) + g(x)

• We revised basic tools of convex analysis for generalising derivatives to

non-smooth functions

• We defined, characterised and looked at some fundamental properties of the

proximal operator

• We defined the forward-backward (aka proximal gradient method) generalising

the GD algorithm to the structured case and show a general convergence result

for strongly convex functions

• We discussed acceleration strategies à la Nesterov: FISTA and its strongly covex

variants
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Extensions

Inexact algorithms



Inexact proximal evaluations

p = proxg (a)⇔ p = argminx

{
φ(x) := g(x) +

1

2
‖x − a‖2

}
⇔ p − a ∈ ∂g(p)
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Inexact proximal evaluations

p = proxg (a)⇔ p = argminx

{
φ(x) := g(x) +

1

2
‖x − a‖2

}
⇔ p − a ∈ ∂g(p)

There are various ways to relax this to incorporate errors8

- Type 1 errors : p̂ ≈ε1 p if

p̂ ∈ ε− argminx φ(x) :=
{
x ′ ∈ Rn : φ(x ′) ≤ inf φ(x) + ε

}

8Salzo, Villa, ’12, Villa, Salzo, Baldassarre, Verri, ’13
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2
‖x − a‖2

}
⇔ p − a ∈ ∂g(p)
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- Type 1 errors: p̂ ≈ε1 p if

p̂ ∈ ε− argminx φ(x) :=
{
x ′ ∈ Rn : φ(x ′) ≤ inf φ(x) + ε

}
- Type 2 errors: p̂ ≈ε2 p if

p̂ − a ∈ ∂ε2g(p̂) =
{
u ∈ Rn : g(x ′) ≥ g(p̂) + uT (x ′ − p̂)− ε2 ∀x ′

}

8Salzo, Villa, ’12, Villa, Salzo, Baldassarre, Verri, ’13
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Inexact proximal evaluations

p = proxg (a)⇔ p = argminx

{
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1

2
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{
x ′ ∈ Rn : φ(x ′) ≤ inf φ(x) + ε

}
- Type 2 errors : p̂ ≈ε2 p if

p̂ − a ∈ ∂ε2g(p̂) =
{
u ∈ Rn : g(x ′) ≥ g(p̂) + uT (x ′ − p̂)− ε2 ∀x ′

}
- Type 3 errors : p̂ ≈ε3 p if p̂ = proxg (a + e), ‖e‖ ≤ ε.

8Salzo, Villa, ’12, Villa, Salzo, Baldassarre, Verri, ’13
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Inexact proximal evaluations

p = proxg (a)⇔ p = argminx

{
φ(x) := g(x) +

1

2
‖x − a‖2

}
⇔ p − a ∈ ∂g(p)

There are various ways to relax this to incorporate errors8

- Type 1 errors: p̂ ≈ε1 p if

p̂ ∈ ε− argminx φ(x) :=
{
x ′ ∈ Rn : φ(x ′) ≤ inf φ(x) + ε

}
- Type 2 errors : p̂ ≈ε2 p if

p̂ − a ∈ ∂ε2g(p̂) =
{
u ∈ Rn : g(x ′) ≥ g(p̂) + uT (x ′ − p̂)− ε2 ∀x ′

}
- Type 3 errors: p̂ ≈ε3 p if p̂ = proxg (a + e), ‖e‖ ≤ ε.

Theorem (convergence of inexact FISTA)

For τ ≤ 1/L, if εk = O(1/kq) with q > 3/2, then the sequence (xk ) of the accelerated inexact

FB algorithm satisfies:

F (xk )− F (x∗) = O

(
1

k2

)
8Salzo, Villa, ’12, Villa, Salzo, Baldassarre, Verri, ’13
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Extensions

Backtracking strategies for FISTA



FISTA with monotone backtracking9

For f convex and differentiable, define the Bregman “distance””

Df (x , y) := f (x)− f (y)− 〈∇f (y), x − y〉 ≥ 0, ∀x , y ∈ Rn

Popular for mirror descent algorithms and regularisation of inverse problems (Burger,

’16).

Algorithm: FISTA with non-decreasing backtracking

Input: x0 = y0 ∈ Rn , τ0 > 0, t0 = 1, ρ ∈ (0, 1).

for k ≥ 0 do

for i = 0, 1, . . . repeat

τk+1 = ρ
i
τk

xk+1 = proxτk+1g
(yk − τk+1∇f (yk ))

tk+1 =
1 +

√
1 + 4t2

k

2

yk+1 = xk+1 +
tk − 1

tk+1

(xk+1 − xk )

until Df (xk+1, yk+1) ≤ ‖xk+1 − yk+1‖2/2τk+1

end for

9Beck, Teboulle, ’09, Chambolle, Pock, ’16
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Convergence guarantee for FISTA with non-adaptive backtracking

Theorem (FISTA with non-adaptive backtracking)

Let (xk ) the sequence of iterates generated by FISTA with non-adaptive

backtracking. Then, for any x∗ ∈ arg min F , there holds:

F (xk )− F (x∗) ≤
2‖x0 − x∗‖2

τρ(k + 1)2

• Basically the same rate as before, just depending on ρ ∈ (0, 1)

• Idea: start in an optimistic way τ0 � 1. If at any step k ≥ 1 the step-size is too

big, it will be decreased up to guarantee decay
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Non-monotone FISTA backtracking

Algorithm: FISTA with adaptive backtracking

Input: x0 = y0 ∈ Rn , τ0 > 0, t0 = 1, ρ ∈ (0, 1), δ ∈ (0, 1).

for k ≥ 0 do

τ
0
k+1 =

τk

δ
; (*)

for i = 0, 1, . . . repeat

τk+1 = ρ
i
τ

0
k+1

xk+1 = proxτk+1g
(yk − τk+1∇f (yk ))

tk+1 =
1 +

√
1 + 4t2

k

2

yk+1 = xk+1 +
tk − 1

tk+1

(xk+1 − xk )

until Df (xk+1, yk+1) ≤ ‖xk+1 − yk+1‖2/2τk+1.

end for

• Only difference: tentative step where you try to increase the previous step-size.

• Practically, you may even add a max number of backtracking iterations imax ≈ 10
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Convergence guarantee for FISTA with adaptive backtracking)

Theorem (FISTA with adaptive backtracking10)

Let (xk ) the sequence of iterates generated by FISTA with non-adaptive

backtracking. Then, for any x∗ ∈ arg min F , there holds:

F (xk )− F (x∗) ≤
2L̄k

k2
‖x0 − x∗‖2 ≤

2L

ρk2
‖x0 − x∗‖2

where
√

L̄k := 1
1
k

∑k
i=1

1√
Li

, Li := 1/τi .

From standard harmonic/arithmetic mean inequalities:

√
L̄k ≤

1

k

k∑
i=1

√
Li ≤

√√√√ 1

k

k∑
i=1

Li ≤

√
L

ρ

• “Local” estimates: you don’t need the dependence on Lf in final rates (which is in principle

unknown), you have acceleration depending on harmonic mean

• Extensions in Rebegoldi, Calatroni’ 22 to inexact proximal algorithms, with scaling.

• For step-size selection strategies in non-convex problems see Ochs, Chen, Brox, Pock, ’14

10Scheinberg, Goldfarb, Bai, ’14, Calatroni, Chambolle, ’19
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Backtracking performance

In Calatroni, Chambolle, ’19 we considered a variation for strongly convex functions.
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Backtracking performance

In Calatroni, Chambolle, ’19 we considered a variation for strongly convex functions.
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Non-convex algorithms



Gradient descent for non-convex functions

Let f be a C2, L-smooth function which is coercive and bounded from below. Using

Taylor expansion with integral form of remainder we have that:

f (xk+1) = f (xk − τ∇f (xk ))

= f (xk )− τ〈∇f (xk ),∇f (xk )〉+

∫ τ

0
(τ − t)〈∇2f (xk − t∇f (xk ))∇f (xk ),∇f (xk )〉dt

≤ f (xk )− τ
(

1−
τL

2

)
‖∇f (xk )‖2

as long as ∇2f � LId. Hence, if τ < 2/L, the GD algorithm is decreasing and we can

deduce that subsequences of (xk ) converge to some critical point.
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A glimpse on the use of proximal gradient methods for non-convex problems

Theorem (Convergence of FB for non-convex f )

Let f be proper and L-smooth and g ∈ Γ0(Rn). Let argmin F 6= ∅. Let (xk ) be the

sequence generated by the FB algorithm with a constant stepsize L̄ ∈
(

L
2
,+∞

)
.

Then:

• the sequence (F (xk )) is non-increasing and F (xk+1) < F (xk ) if and only if xk is

not a stationary point;

• The (generalised) gradient mapping GL : int(dom(f ))→ Rn defined by:

GL̄(x) := L̄

(
x − prox 1

L̄
g

(
x −

1

L̄
∇f (x)

))
is such that GL̄(xk )→ 0 as k → +∞

• All limiting points of (xk ) are stationary points for the functional F .

• Earlier works by Fukushima, Mine, ’81, Chouzenoux, Pesquet, Repetti, ’14,

Bredies, Lorenz, Reiterer, ’15, Nesterov, ’13.

• For results on accelerated algorithms see, e.g., Ochs, Chen, Brox, Pock, ’14

• General convergence theory under the (non-restrictive) Kurdyka- Lojasiewicz

property (Bolte, Daniilidis, Lewis, ’06, Attouch, Bolte, Svaiter, ’13, Attouch,

Bolte, Redont, Subeyran, ’14)
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Questions?

calatroni@i3s.unice.fr
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