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Introduction



Motivation

Goal: providing theoretical & practical tools (i.e. algorithms) for solving

min
x∈Rn

F (x)

for a functional F : Rn → R with suitable properties.

• F is smooth → gradient descent & variants (this lecture)

• F := f + g , f smooth & g non-smooth → proximal-gradient algorithms &

variants (next lecture)

• F := f + ‖x‖0 with f smooth → which algorithms? (last lecture)

Such minimisation problems often appears in many contexts:

• Inverse problems in signal/image processing: image reconstruction,

variable/parameter selection, compressed sensing. . . .

• Statistical/machine learning: empirical risk minimisation, regression. . .

• Optimisation per se: analysis/implementation of fast algorithms for solving

large-scale problems. . .
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Framework: optimisation for inverse problems in imaging

Given y ∈ Rm,A ∈ Rm×n find x ∈ Rn s.t. y = T (Ax)

where m ≤ n and T : Rm → Rm models noise degradation.

• Image restoration (denoising, deconvolution, super-resolution)
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Framework: optimisation for inverse problems in imaging

Given y ∈ Rm,A ∈ Rm×n find x ∈ Rn s.t. y = T (Ax)

where m ≤ n and T : Rm → Rm models noise degradation.

• Image restoration (denoising, deconvolution, super-resolution)

• Image reconstruction (e.g., medical imaging)

• Dictionary representation (data analysis, vision)

. . . “naive inversion” not possible for y = Ax + n, n ∼ N (0, σ2Id):

((((
(((x = A−1(y − n)
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Bad positioning of inverse filtering

y = Ax + n

Inverse filtering approach:

x = A−1y = A−1(Ax + n) = x + A−1n

Amplification of the noise if A−1 is bad conditioned! Need of regularisation!

Find an estimate Rn 3 x∗ ≈ x by solving

x∗ ∈ arg min
x∈Rn

F (x) := f (x) + g(x)

• f is the data fidelity term, it relates to noise statistics

• g is the regularisation term, it encodes a priori information expected on

the desired solution
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Variational regularisation: Bayesian motivation

Following a Bayesian/MAP approach consider:

P(y |Ax ; θf ) (likelihood), P(x ; θg ) (prior)

with θf , θg > 0 hyperparameters of the distributions. By Bayes’ theorem:

x∗ ∈ arg max
x

P(x |y) = arg max
x

P(y |Ax ; θf )P(x ; θg )

P(y)

⇔ x∗ ∈ arg min
x

− ln(P(x |y)) = arg min
x

− ln(P(y |Ax ; θf ))− ln(P(x ; θg )) +���
�ln(P(y))

Now, if P(x ; θg ) = e−θg g(x) and P(y |Ax ; θf ) = e−θf f (x), then:

x∗ ∈ arg min
x∈Rn

f (x) + λg(x), λ := θg/θf

Note: incorporate the parameter α in either of the two functions, e.g. g(x) := λg(x).

6



Exemplar problems: smooth optimisation

y = Ax + b

• Generalised Tikhonov n ∼ N (0, σ2Id) (Gaussian noise) and assume x is

smooth in some sense (e.g., in terms of an operator L ∈ RN×n)

x∗ ∈ arg min
x∈Rn

1

2
‖Ax − y‖2 + λ‖Lx‖2

Examples: L = Id ∈ Rn×n, L = D ∈ R2n×n (discrete gradient) . . .

Parameter selection for `2-`2 single-image super-resolution, A = SH, where S is a

decimation operator (Pragliola, Calatroni, Lanza, Sgallari, ’21-’22) 7



Exemplar problems: non-smooth optimisation

Assume for simplicity additive white Gaussian noise → f (x) = 1
2
‖Ax − y‖2

• Sparsity (Donoho et al., Candès, Romberg, Tao, ’06): sparse recovery:

x∗ ∈ arg min
x∈Rn

1

2
‖Ax − y‖2 + λ‖x‖1

Analysis approach: sparse representation of x in some overcomplete basis (e.g.,

wavelets, Mallat, ’89) represented by W ∈ RN×n

x∗ ∈ arg min
x∈Rn

1

2
‖Ax − y‖2 + λ‖Wx‖1

• Total variation reconstruction: “few gradients” for removing noise oscillations

and preserving edges (Rudin, Osher, Fatemi, ’92):

x∗ ∈ arg min
x∈Rn

1

2
‖Ax − y‖2 + λ‖Dx‖2,1

with ‖Dx‖2,1 =
n∑

i=1

√
(Dhx)2

i + (Dvx)2
i and Dx is the discrete image gradient.

8



Exemplar problems: non-smooth optimisation (continuation)

It helps in dealing with admissibility constraints:

x∗ ∈ arg min
x∈C

1

2
‖Ax − y‖2

with C :=
⋂M

m=1 Cm and Cm ⊂ Rn.

• Non-negativity constraint: x ≥ 0, C := {x ≥ 0}.
• Box constraint: x ∈ [a, b] =: C

• . . .

How to encode it into a variational formulation?

Using the indicator function ι : Rn → {0,+∞}

ιCm (x) :=

{
0 if x ∈ Cm

+∞ if x /∈ Cm

x∗ ∈ arg min
x∈Rn

1

2
‖Ax − y‖2 +

M∑
m=1

ιCm (x)
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Exemplar problems: `2-`0 optimisation

Arising, e.g., in sparse dictionary representation problems

y = Ax + n

where y ∈ Rm, A ∈ Rm×n and x ∈ Rn and m� n. Undetermined system!

To minimise the number of entries of solutions, the natural choice is to consider:

x∗ ∈ arg min
x∈Rn

1

2
‖Ax − y‖2 + λ‖x‖0 or x∗ ∈ arg min

x :‖x‖0≤K

1

2
‖Ax − y‖2

‖x‖0 := # {xi , i = 1, . . . ,N : xi 6= 0}

Molecule localisation in

super-resolution microscopy. 10
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Back to the abstract problem

x∗ ∈ arg min
x∈Rn

F (x) := f (x) + g(x)

Often the solution x∗ cannot be expressed in closed form. We consider efficient

iterative solvers for its computation (especially in large scale context!)

• Avoid inversion A−1 (1� m ≤ n)

• How to exploit the mathematical structure of the functions involved?

• How to handle constraints?

• How to speed up the efficiency of a first-order algorithm?

• What can be said in the non-convex case?
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Notation, preliminaries & basic notions



Notation

• (X , 〈v ,w〉) = (Rn, vTw) with Euclidean norm ‖ · ‖ as reference Hilbert space.

Extensions to general Hilbert setting straightforward.

• R := R ∪ {+∞}, R+ := {α ∈ R : α ≥ 0}, R++ := {α ∈ R : α > 0}

• Closed ball of radius δ > 0 in x ∈ X :

Bδ(x) = {y ∈ X : ‖y − x‖ ≤ δ}

• Convex set C ⊂ X

(∀x , y ∈ C) ∀α ∈ [0, 1] αx + (1− α)y ∈ C

• Epigraph of a function f : R→ R:

epi(f ) = {(x , t) ∈ X × R : f (x) ≤ t}
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Proper functions

Minimal property to have well-defined minimisation problems.

Definition (proper function)

A function F : Rn → R is said proper iff

∃x ∈ Rn such that F (x) 6= +∞.

We define P :=
{
F : Rn → R : F is proper

}
and

dom(F ) := {x ∈ Rn : F (x) < +∞}

Clearly, F ∈ P ⇔ dom(F ) 6= ∅.
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Global/local minimisers

For F ∈ P, recall:

• global minimiser: x∗ ∈ Rn: F (x∗) ≤ F (x) for every x ∈ Rn.

• local minimiser: x∗ ∈ Rn: there exists δ > 0 and a neighbourhood Bδ(x∗) such

that F (x∗) ≤ F (x) for every x ∈ Bδ(x∗).

min
x∈Rn

F (x) VS arg min
x∈Rn

F (x)

Definition (set of minimisers)

The set of (local, global) minimisers of F is denoted by:

arg minF = {x∗ ∈ Rn : x∗ is a minimiser of F} ⊂ Rn

Empty? Singleton? (it depends on F )
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Notation, preliminaries & basic notions

Convexity, strong convexity



Convex functions

Definition (convex function)

F ∈ P is said to be convex if:

(∀x , y ∈ Rn), (∀α ∈ [0, 1]), F (αx + (1− α)y) ≤ αF (x) + (1− α)F (y).

Moreover, F is strictly convex if the inequality holds when x , y ∈ dom(F ), x 6= y

and α ∈ (0, 1). We say that G : Rn → [−∞,+∞) is concave is F = −G is convex.

If a function is not convex nor concave we say that is non-convex.

Convex/concave function
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Convex functions

Definition (convex function)

F ∈ P is said to be convex if:

(∀x , y ∈ Rn), (∀α ∈ [0, 1]), F (αx + (1− α)y) ≤ αF (x) + (1− α)F (y).

Moreover, F is strictly convex if the inequality holds when x , y ∈ dom(F ), x 6= y

and α ∈ (0, 1). We say that G : Rn → [−∞,+∞) is concave is F = −G is convex.

If a function is not convex nor concave we say that is non-convex.

Examples:

• F (x) = ‖x‖ is convex

‖αx + (1− α)y‖ ≤ ‖αx‖+ ‖(1− α)y‖ = α‖x‖+ (1− α)‖y‖ ∀x , y ∈ Rn

• F (x) = ‖x‖2 is strictly convex

• F (x) = ‖x‖p , p ∈ [1,+∞) are convex
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Useful properties

Proposition (epigraph of convex functions is convex set)

Let F ∈ P. Then F is convex if and only if epi(F ) is a convex set.

Proposition (operations with convex functions)

Let f and g be two convex functions and let β ∈ R++. Then, the sum f + g

is a convex function and the function βf is a convex function.
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Strong convexity

Definition (strongly convex function)

F ∈ P is said to be strongly convex of parameter µ > 0 iff ∀x , y ∈ Rn and

∀α ∈ [0, 1]:

F (αx + (1− α)y) ≤ αF (x) + (1− α)F (y)−
µ

2
(1− α)α‖x − y‖2

Proposition (characteristion of strongly convex functions)

F ∈ P is µ-strongly convex if and only if G(·) := F (·)− µ
2
‖ · ‖2 is convex.

Proposition (growth condition around minimisers)

If F ∈ P is µ-strongly convex and x∗ ∈ arg minx F (x), then:

F (x)− F (x∗) ≥
µ

2
‖x − x∗‖2, ∀x ∈ X .

strong convexity ⇒ strict convexity ⇒ convexity

Counterexample (strict convexity 6⇒ strong convexity): F : R→ R, F (x) = ex .
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Notation, preliminaries & basic notions

Lower semi-continuity & coercivity



Lower semi-continuity

Definition (lower semi-continuity)

Let F ∈ P. We say that F is lower semi-continuous (l.s.c.) at the point x ∈ Rn iff

F (x) ≤ lim inf
y→x

F (y).

Equivalently, for every sequence (xk )k∈N with xk → x :

F (x) ≤ lim inf
k→+∞

F (xk )

(
= lim

k→+∞
inf
{
F (xj ) : j ≥ k

})
.

If F is l.s.c. at every x ∈ Rn, we say that the function is l.s.c.

Left: lower l.s.c. Right: where the function is lower l.s.c.?
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Examples of l.s.c. functions

• The functions

F (x) =

0 if x ≤ 0

1 if x > 0
, F (x) = dxe = min {k ∈ Z : x ≤ k}

are l.s.c. (but not continuous).

F (x) = dxe

• All continuous functions (l.s.c + u.s.c.).
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Coercivity

How to ensure that the minimum is not attained at “extreme points” of the domain?

Definition (coercivity)

Let F ∈ P. We say that F is coercive iff

lim
‖x‖→+∞

F (x) = +∞.

Examples:

• F : R→ R+, F (x) = ex is not coercive, but F : R→ R+, F (x) = e|x| is.

• F : R2 → R+, F (x , y) = x2 + y2 is coercive.

• F : R2 → R+, F (x , y) = x2 − 2xy + x2 = (x − y)2 is not coercive. Why?
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Existence of minimisers

Theorem (existence of minimisers)

If F is proper, l.s.c. and coercive, then the set of minimisers of F is non-empty and

compact.

Note: generalises the Bolzano-Weirestrass theorem holding for problems

min
x∈C

F (x)

for compact C ⊂ Rn s.t. C ∩ dom(F ) 6= ∅ and continuous F .

Theorem (convex case)

If F is proper, coercive and convex, then every local minimiser is a global minimiser.

Definition (Γ0(Rn))

Γ0(X ) :=
{
F : X → R : F is proper, convex and l.s.c.

}
Remark: F ∈ Γ0(X ) 6⇒ F admits a minimiser. Take e.g. F (x) = − log x , x > 0 and

F (x) = +∞, x ≤ 0. . . no coercivity guaranteed!
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Uniqueness of minimisers

So far, only existence of minimisers. How to guarantee uniqueness?

Theorem (existence+uniqueness of minimisers)

If F is proper, l.s.c., coercive and strictly convex, then F admits a unique

minimiser.

Equivalently, arg minF = {x∗}, a singleton.

Remark: as strong convexity implies strict convexity, the same holds.

23



Notation, preliminaries & basic notions

Differentiability and L-smoothness



Gâteaux differentiability

How to provide a characterisation of the minimisers of a function f in terms of

a suitable notion of “∇f ”?

Definition (Gâteaux differentiability)

Let f ∈ P and let x ∈ dom(f ). For v ∈ Rn, we denote the directional

derivative in x along the direction v as the limit

f ′(x ; v) = f ′(x)[v ] := lim
t→0+

f (x + tv)− f (x)

t
,

when it exists. If there exists w ∈ Rn such that:

(∀v ∈ Rn) f ′(x)[v ] = 〈w , v〉,

then we say that f is Gâteaux differentiable in x and denote by ∇f (x) = w

the Gâteaux derivative (or, simply, the gradient) of f at x .
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Optimality conditions and relations with convexity

Theorem (Fermat’s rule)

Let f ∈ Γ0(Rn) be differentiable at point x∗. Then:

x∗ ∈ arg min
x∈Rn

f (x) ⇐⇒ ∇f (x∗) = 0.

Proposition (Differentiability and convexity)

Let f ∈ Γ0(Rn). Suppose that f is differentiable on dom(f ). Then the

following statements are equivalent:

1. f is convex;

2. ∀x , y ∈ dom(f ), f (y) ≥ f (x) + 〈∇f (x), y − x〉;

3. ∀x , y ∈ dom(f ), 〈∇f (x)−∇f (y), x − y〉 ≥ 0.
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Differentiability and strong convexity

Corollary (Differentiability and strong convexity)

Let f ∈ Γ0(Rn) and µ > 0. Suppose that f is differentiable on dom(f ). Then the

following statements are equivalent:

1. f is µ-strongly convex;

2. ∀x , y ∈ dom(f ), f (y) ≥ f (x) + 〈∇f (x), y − x〉+ µ
2
‖y − x‖2;

3. ∀x , y ∈ dom(f ), 〈∇f (x)−∇f (y), x − y〉 ≥ µ‖x − y‖2.

Example: let f (x) = 1
2
‖Ax − y‖2, for A ∈ Rm×n positive definite, y ∈ Rm. Then:

∇f (x) = AT (Ax − y).

Since ATA is positive definite (i.e., λmin := λmin(ATA) > 0), then:

(∀x , y ∈ Rn) 〈∇f (x)−∇f (y), x − y〉 = 〈ATA(x − y), x − y〉 ≥ λmin‖x − y‖2,

hence f is λmin-strongly convex.

Remark: from condition 3., if x∗ ∈ arg min f (x), then for all x ∈ dom(f ):

〈∇f (x)− 0, x − x∗〉 ≥ µ‖x − x∗‖2 ⇒ µ‖x − x∗‖ ≤ ‖∇f (x)‖
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Polyak- Lojasiewicz condition

Proposition (Polyak- Lojasiewicz condition)

Let f ∈ Γ0(Rn) and let µ > 0. Suppose that f is differentiable on dom(f ), that f is

µ-strongly convex and that there exists x∗ ∈ arg min f (x). Then:

(∀x ∈ dom(f )) f (x)−min
x

f (x) ≤
1

2µ
‖∇f (x)‖2 (*)

Proof.

min
y∈dom(f )

f (y) ≥ min
y∈dom(f )

(
f (x) + 〈∇f (x), y − x〉+

µ

2
‖y − x‖2

)

≥ f (x) +
1

2µ
min

y∈dom(f )

‖µ(y − x) +∇f (x)‖2︸ ︷︷ ︸
≥0

−‖∇f (x)‖2


≥ f (x)−

1

2µ
‖f (x)‖2.

• “Gradient grows as a quadratic function as we increase f ”. Important condition

for achieving fast convergence rates!

• (∗) holds also for non-strongly convex functions (e.g., 1
2
‖Ax − y‖2 for A not

positive definite)
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Lipschitz smoothness (L-smoothness)

In the framework of first-order optimisation methods, it’s important to provide

conditions on the growth of functions considered.

Definition (L-smoothness)

Let f ∈ Γ0(Rn) be differentiable. We say that f is an L-smooth function with

constant L ≥ 0 iff:

∃L ≥ 0 : ∀x , y ∈ Rn ‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖.

Remark: For f (x) = 1
2
‖Ax − y‖2

2, you can check L = ‖ATA‖ ≤ ‖A‖2.
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Characterisations of L-smoothness

Theorem (characterisation of L-smooth functions)

Let f : Rn → R a convex differentiable function and let L > 0. The following

statements are equivalent:

1. f is L-smooth

2. (descent lemma)

(∀x , y ∈ Rn) f (y)− f (x)− 〈∇f (x), y − x〉 ≤
L

2
‖x − y‖2

3.

(∀x , y ∈ Rn)
1

2L
‖f (x)− f (y)‖2 ≤ f (y)− f (x)− 〈∇f (x), y − x〉

4.

(∀x , y ∈ Rn)
1

L
‖f (x)− f (y)‖2 ≤ 〈∇f (x)−∇f (y), x − y〉

5.

(∀x , y ∈ Rn) 〈∇f (x)−∇f (y), x − y〉 ≤ L‖x − y‖2

6. L
2
‖ · ‖2 − f (·) is convex.
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Comparing smoothness and strong convexity

• f is L-smooth if and only if:

(∀x , y ∈ Rn) f (y) ≤ f (x) + 〈∇f (x), y − x〉+
L

2
‖x − y‖2

• f is µ-strongly convex if and only if:

∀x , y ∈ dom(f ), f (y) ≥ f (x) + 〈∇f (x), y − x〉+
µ

2
‖y − x‖2

It can be proved that if f is a C2 function there holds:

µId � ∇2f (x) � LId, for all x

30



Smooth optimisation algorithms



Smooth optimisation algorithms

Gradient descent



Gradient descent

Gradient descent (GD) algorithm: ubiquitous in many applications for

minimising (non-)convex, differentiable and proper functions f : Rn → R

Algorithm: Gradient Descent (GD) algorithm

Input: τ ∈
(
0, 2

L

)
, x0 ∈ Rn.

for k ≥ 0 do

xk+1 = xk − τ∇f (xk)

end for

• Choice of τ : important to guarantee convergence (need to be sufficiently

small), it relates to L (∼growth of f ).

Example: minimise f (x) = x2/2. GD iteration: xk+1 = (1 − τ)xk , convergence for. . . ?

• Convexity assumption: no dependence on x0.

• Stopping criterion: relative error ‖xk+1 − xk‖ ≤ tol or gradient check

‖∇f (xk+1)‖ ≤ tol (approaching 0).
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Understanding the step-size upper bound

Lemma

For all k ≥ 0, there holds:

τ

(
1− τL

2

)
‖f (xk)‖2 ≤ f (xk)− f (xk+1).

Thus, if τ < 2
L

, then f (xk+1) ≤ f (xk), i.e. the GD algorithm is descending.

Proof. Since xk+1 − xk = −τ∇f (xk), then by the characterisation 2. of

L-smoothness we have:

f (xk+1) ≤ f (xk)− τ〈∇f (xk),∇f (xk)〉+
L

2
τ 2‖∇f (xk)‖2,

so the thesis follows.
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Convergence of GD algorithm

Theorem (convergence of GD)

Let (xk )k the sequence of iterates generated by GD. Then, if τ ∈ (0, 2/L) there

holds:

f (xk )− f (x∗) ≤
‖x0 − x∗‖2

2τk
= O

(
1

k

)

Lemma (progress bounds)

For GD iterations with τ = 1/L there holds:

f (xk+1) ≤ f (xk )−
1

2L
‖∇f (xk )‖2

Proof. Using xk+1 − xk = − 1
L
∇f (xk ) we can apply the characterisation 2. to get:

f (xk+1) ≤ f (xk )−
1

L
‖∇f (xk )‖2 +

L

2
‖

1

L
∇f (xk )‖2

≤ f (xk )−
1

2L
‖∇f (xk )‖2. (1)

We can use this progress bound to show improved rates under Polyak- Lojasiewicz

condition (in particular, strongly convex functions).
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Convergence proof under PL condition



Linear convergence of GD under PL condition

Theorem (linear convergence of GD under PL)

Let (xk )k the sequence of iterates generated by GD. Then, if τ = 1/L there holds:

f (xk )− f (x∗) ≤
(

1−
µ

L

)k
(f (x0)− f (x∗)),

where, notice, 0 < µ ≤ L.

Proof. Use the Lemma (progress bound) and the PL inequality:

f (xk+1) ≤ f (xk )−
1

2L
‖∇f (xk )‖2 ≤ f (xk )−

µ

L
(f (xk )− f (x∗)).

Subtracting f (x∗) from both sides we get:

f (xk+1)− f (x∗) ≤
(

1−
µ

L

)
(f (xk )− f (x∗)).

Applying this recursively gives the thesis since:

f (xk+1)− f (x∗) ≤
(

1−
µ

L

)
(f (xk )− f (x∗)) ≤

(
1−

µ

L

)2
(f (xk−1)− f (x∗))

≤ . . . ≤
(

1−
µ

L

)k
(f (x0)− f (x∗)).

To show 0 < µ ≤ L, since by descent lemma we have that for all v ∈ Rn :

f (x∗) ≤ f (v)−
1

2L
‖∇f (v)‖2

.

Combining PL with this inequality we get:

1

2µ
‖∇f (v)‖2 ≥ f (v)− f (x∗) ≥

1

2L
‖∇f (v)‖2 ∀v ∈ Rn ⇒ µ ≤ L
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A practical example

Do we practically see this gain in known problems?

f (x) =
1

2
‖Ax − y‖2 +

λ

2
‖x‖2, λ > 0

f is λ-strongly convex. Convergence factor of the theorem:

µ

L
=

min
{

eig(ATA)
}

+ λ

max {eig(ATA)}+ λ

• If λ� 1, then
(
1− µ

L

)
→ 0 hence faster convergence

• If L� µ (“small” PL), then this rate is not very informative, so in

practice we observe the rate O(1/k).

• The quantity L/µ is called the condition number of f (relates with the

condition number of matrix ∇2f when f is C 2).
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Lower bounds for smooth optimisation

. . . back to standard GD iteration and O(1/k) convergence rate.

Theorem (worst-case bounds1)

For x0 ∈ Rn, L > 0 and 1 < k ≤ 1
2

(n − 1), there exists a convex, L-smooth function

f s.t. for any first-order algorithm:

f (xk )− f (x∗) ≥
3L‖x0 − x∗‖2

32(k + 1)2
= O

(
1

(k + 1)2

)
.

It would be somehow ‘optimal’ finding convergence rates close to such lower

(inevitable) bound. . .

How to fill the gap between O(1/k) and O(1/(k + 1)2) for convex functions?

1Nesterov, 2004, adapted from Chambolle-Pock, 2016
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Accelerated gradient descent

Idea: add inertia to “shift” the sequence of iterates.

xk−1
xk

xk+1
−∇f (xk )

xk−1
xk

xk+1

yk+1

−∇f (yk+1)

Algorithm: Accelerated Gradient Descent (AGD) algorithm 2

Input: x0 = x−1 ∈ Rn, τ ∈
(
0, 1

L

]
, t0 = 0.

for k ≥ 0 do

tk+1 =
1 +

√
1 + 4t2

k

2

yk+1 = xk +
tk − 1

tk+1
(xk − xk−1)

xk+1 = yk+1 − τ∇f (yk+1)

end for

2Nesterov, 1983
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A note on the sequence

Lemma (behaviour of the sequence (tk))

Let t0 and the sequence tk be defined by:

tk+1 =
1 +

√
1 + 4t2

k

2
.

Then tk ≥ k+2
2

for all k ≥ 0. In particular, tk →∞.

Proof: by induction. For k = 0 we have t0 ≥ 1. Suppose that the claim holds for

some k, meaning that tk ≥ k+2
2

. Want to show:

tk+1 ≥
k + 1 + 2

2
=

k + 3

2
.

Using recursion and 2tk ≥ k + 2 (induction)

tk+1 =
1 +

√
1 + 4t2

k

2
≥

1 +
√

1 + (k + 2)2

2
≥

1 +
√

(k + 2)2

2
=

k + 3

2
.

Remark: any sequence (tk )k satisfying t2
k+1 − tk+1 ≤ t2

k , k ≥ 0 works (Chambolle,

Dossal, 2015).
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Accelerated convergence result

Theorem (convergence of AGD)3

Let (xk)k the sequence of iterates generated by AGD. Then, there holds:

f (xk)− f (x∗) ≤ 2‖x0 − x∗‖2

τ(k + 1)2
.

Get faster, at O
(

1
(k+1)2

)
to a reasonably accurate approximation of x∗.

. . . proof is quite technical. You’ll see this in the case of non-smooth problems

tomorrow.

3Nesterov, 2004, Chambolle-Pock, 2016
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Accuracy view point

How many iterations are needed for such algorithms to achieve ε-accuracy, i.e.

f (xk)− f (x∗) ≤ ε

• GD: for all k ≥ 0 such that k ≥ dC/εe

• AGD: for all k ≥ 0 such that k ≥ dC/
√
ε− 1e

• GD + PL: for all k ≥ 0 such that k ≥ dC log (1/ε)e
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Conclusions

We focus on convex, smooth optimisation problems arising in applications

(e.g., imaging inverse problems).

• We revised basic notions for having well-posedness of the underlying

problem

• We considered GD as a reference first-order algorithm

• We commented on the improved speed achieved by GD whenever the

underlying function enjoys further regularity (PL + strong convexity)

• We discussed Nesterov acceleration for improving convergence speed in

convex cases

How to explore analogous ideas in the structured smooth+non-smooth setting?
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Questions?

calatroni@i3s.unice.fr
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