

Lecture 1: Convex smooth optimisation

Luca Calatroni CR CNRS, Laboratoire I3S CNRS, UCA, Inria SAM, France

MIVA ERASMUS BIP PhD winter school **Advanced methods for mathematical image analysis** University of Bologna, IT January 18-20 2022

- 1. Introduction
- Notation, preliminaries & basic notions Convexity, strong convexity Lower semi-continuity & coercivity Differentiability and L-smoothness
- Smooth optimisation algorithms
 Gradient descent algorithm
 Convergence proof under PL condition
 Motivation for accelerated algorithms
- 4. Accelerated smooth optimisation algorithms Nesterov acceleration of GD

	WEDNESDAY 18/01	THURSDAY 19/01	FRIDAY 20/01
08:00			
09:00			
10:00			
11:00			
12:00			
13:00	Lunch	Lunch	Lunch
14:30	Comp. Imaging Lab	EXERCISES	Comp.Imaging LAB
15:30	LAB	LAB	EXERCISES
16:30	SEMINAR Automotive	SEMINAR Industrial	SEMINAR Health
17:30			
	Prof. L. Calatroni	Social Dinner	
	Prof. O. Öktem		

Introduction

Motivation

Goal: providing theoretical & practical tools (i.e. algorithms) for solving

for a functional $F : \mathbb{R}^n \to \overline{\mathbb{R}}$ with suitable properties.

- F is smooth \rightarrow gradient descent & variants (this lecture)
- *F* := *f* + *g*, *f* smooth & *g* non-smooth → proximal-gradient algorithms & variants (next lecture)
- $F := f + ||x||_0$ with f smooth \rightarrow which algorithms? (last lecture)

Such minimisation problems often appears in many contexts:

- Inverse problems in signal/image processing: image reconstruction, variable/parameter selection, compressed sensing....
- Statistical/machine learning: empirical risk minimisation, regression...
- **Optimisation per se**: analysis/implementation of fast algorithms for solving large-scale problems...

Given $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ find $x \in \mathbb{R}^n$ s.t. $y = \mathcal{T}(Ax)$ where $m \leq n$ and $\mathcal{T} : \mathbb{R}^m \to \mathbb{R}^m$ models noise degradation.

• Image restoration (denoising, deconvolution, super-resolution)

Given $y \in \mathbb{R}^m, A \in \mathbb{R}^{m imes n}$ find $x \in \mathbb{R}^n$ s.t. $y = \mathcal{T}(Ax)$

where $m \leq n$ and $\mathcal{T} : \mathbb{R}^m \to \mathbb{R}^m$ models noise degradation.

- Image restoration (denoising, deconvolution, super-resolution)
- Image reconstruction (e.g., medical imaging)

Given $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ find $x \in \mathbb{R}^n$ s.t. $y = \mathcal{T}(Ax)$

where $m \leq n$ and $\mathcal{T} : \mathbb{R}^m \to \mathbb{R}^m$ models noise degradation.

- Image restoration (denoising, deconvolution, super-resolution)
- Image reconstruction (e.g., medical imaging)
- Dictionary representation (data analysis, vision)

Given $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ find $x \in \mathbb{R}^n$ s.t. $y = \mathcal{T}(Ax)$ where $m \leq n$ and $\mathcal{T} : \mathbb{R}^m \to \mathbb{R}^m$ models noise degradation.

- Image restoration (denoising, deconvolution, super-resolution)
- Image reconstruction (e.g., medical imaging)
- Dictionary representation (data analysis, vision)

... "naive inversion" not possible for y = Ax + n, $n \sim \mathcal{N}(0, \sigma^2 \text{Id})$:

$$x \equiv A^{-1}(y - n)$$

$$y = Ax + n$$

Inverse filtering approach:

$$x = A^{-1}y = A^{-1}(Ax + n) = x + A^{-1}n$$

Amplification of the noise if A^{-1} is bad conditioned! Need of regularisation! Find an estimate $\mathbb{R}^n \ni x^* \approx x$ by solving

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} F(x) := f(x) + g(x)$$

- f is the data fidelity term, it relates to noise statistics
- *g* is the regularisation term, it encodes *a priori* information expected on the desired solution

Following a Bayesian/MAP approach consider:

$$P(y|Ax; \theta_f)$$
 (likelihood), $P(x; \theta_g)$ (prior)

with $\theta_f, \theta_g > 0$ hyperparameters of the distributions. By Bayes' theorem:

$$x^{*} \in \underset{x}{\operatorname{arg\,max}} P(x|y) = \underset{x}{\operatorname{arg\,max}} \frac{P(y|Ax;\theta_{f})P(x;\theta_{g})}{P(y)}$$

$$\Leftrightarrow x^{*} \in \underset{x}{\operatorname{arg\,min}} - \ln(P(x|y)) = \underset{x}{\operatorname{arg\,min}} - \ln(P(y|Ax;\theta_{f})) - \ln(P(x;\theta_{g})) + \underline{\ln}(P(y))$$

Now, if $P(x; \theta_g) = e^{-\theta_g g(x)}$ and $P(y|Ax; \theta_f) = e^{-\theta_f f(x)}$, then:

$$x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^n} f(x) + \lambda g(x), \qquad \lambda := heta_g / heta_f$$

Note: incorporate the parameter α in either of the two functions, e.g. $g(x) := \lambda g(x)$.

Exemplar problems: smooth optimisation

$$y = Ax + b$$

 Generalised Tikhonov n ~ N(0, σ²Id) (Gaussian noise) and assume x is smooth in some sense (e.g., in terms of an operator L ∈ ℝ^{N×n})

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \ \frac{1}{2} \|Ax - y\|^2 + \lambda \|Lx\|^2$$

Examples: $L = \mathsf{Id} \in \mathbb{R}^{n \times n}$, $L = D \in \mathbb{R}^{2n \times n}$ (discrete gradient) ...

Parameter selection for ℓ_2 - ℓ_2 single-image super-resolution, A = SH, where S is a decimation operator (Pragliola, Calatroni, Lanza, Sgallari, '21-'22)

Exemplar problems: non-smooth optimisation

Assume for simplicity additive white Gaussian noise $\rightarrow f(x) = \frac{1}{2} ||Ax - y||^2$

• Sparsity (Donoho et al., Candès, Romberg, Tao, '06): sparse recovery:

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \ \frac{1}{2} \|Ax - y\|^2 + \lambda \|x\|_1$$

Analysis approach: sparse representation of x in some overcomplete basis (e.g., wavelets, Mallat, '89) represented by $W \in \mathbb{R}^{N \times n}$

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \ \frac{1}{2} \|Ax - y\|^2 + \lambda \|Wx\|_1$$

 Total variation reconstruction: "few gradients" for removing noise oscillations and preserving edges (Rudin, Osher, Fatemi, '92):

$$x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^n} \ \frac{1}{2} \|Ax - y\|^2 + \lambda \|Dx\|_{2,1}$$

with $||Dx||_{2,1} = \sum_{i=1}^{n} \sqrt{(D_h x)_i^2 + (D_v x)_i^2}$ and Dx is the discrete image gradient.

Exemplar problems: non-smooth optimisation (continuation)

It helps in dealing with admissibility constraints:

$$x^* \in \underset{x \in C}{\operatorname{arg\,min}} \quad \frac{1}{2} \|Ax - y\|^2$$

with $C := \bigcap_{m=1}^{M} C_m$ and $C_m \subset \mathbb{R}^n$.

- Non-negativity constraint: $x \ge 0$, $C := \{x \ge 0\}$.
- Box constraint: $x \in [a, b] =: C$
- ...

How to encode it into a variational formulation?

Using the indicator function $\iota : \mathbb{R}^n \to \{0, +\infty\}$

$$\iota_{C_m}(x) := \begin{cases} 0 & \text{if } x \in C_m \\ +\infty & \text{if } x \notin C_m \end{cases}$$

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \ \frac{1}{2} \|Ax - y\|^2 + \sum_{m=1}^M \iota_{C_m}(x)$$

Exemplar problems: ℓ_2 - ℓ_0 optimisation

Arising, e.g., in sparse dictionary representation problems

$$y = Ax + n$$

where $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$ and $m \ll n$. Undetermined system!

To minimise the number of entries of solutions, the natural choice is to consider:

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \ \frac{1}{2} \|Ax - y\|^2 + \lambda \|x\|_0 \quad \text{or} \quad x^* \in \underset{x: \|x\|_0 \le K}{\operatorname{arg\,min}} \ \frac{1}{2} \|Ax - y\|^2$$

$$\|x\|_0 := \# \{x_i, i = 1, \dots, N : x_i \neq 0\}$$

Some standard reference books/surveys:

- R. Tyller Rockafeller, *Convex Analysis*, Princeton University Press, 1970.
- S. Boyd, L. Vandenberghe, *Convex Optimization*, Cambridge University Press, 2004.
- N. Parikh, S. Boyd, *Proximal Algorithms*, Foundations and Trends in Optimization, 2013.
- A. Beck, First-order methods in optimization, Volume 25, MOS-SIAM series on Optimization, 2017.
- A. Chambolle, T. Pock, An introduction to continuous optimization for imaging, Acta Numerica, 2016

S. Salzo, S. Villa, *Proximal Gradient Methods for Machine Learning and Imaging*, Handbook on Harmonic and Applied Analysis, Applied and Numerical Harmonic Analysis, 2021.

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} F(x) := f(x) + g(x)$$

Often the solution x^* cannot be expressed in closed form. We consider efficient iterative solvers for its computation (especially in large scale context!)

- Avoid inversion A^{-1} $(1 \ll m \le n)$
- How to exploit the mathematical structure of the functions involved?
- How to handle constraints?
- How to speed up the efficiency of a first-order algorithm?
- What can be said in the non-convex case?

Notation, preliminaries & basic notions

Notation

- (X, ⟨v, w⟩) = (ℝⁿ, v^Tw) with Euclidean norm || · || as reference Hilbert space. Extensions to general Hilbert setting straightforward.
- $\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\}, \mathbb{R}_+ := \{\alpha \in \mathbb{R} : \alpha \ge 0\}, \mathbb{R}_{++} := \{\alpha \in \mathbb{R} : \alpha > 0\}$
- Closed ball of radius $\delta > 0$ in $x \in X$:

$$B_{\delta}(x) = \{y \in X : \|y - x\| \le \delta\}$$

• Convex set $C \subset X$

$$(\forall x, y \in C) \quad \forall \alpha \in [0, 1] \quad \alpha x + (1 - \alpha)y \in C$$

• Epigraph of a function $f : \mathbb{R} \to \overline{\mathbb{R}}$:

$$\operatorname{epi}(f) = \{(x, t) \in X \times \mathbb{R} : f(x) \leq t\}$$

Proper functions

Minimal property to have well-defined minimisation problems.

Definition (proper function)

```
A function F : \mathbb{R}^n \to \overline{\mathbb{R}} is said proper iff
```

 $\exists x \in \mathbb{R}^n$ such that $F(x) \neq +\infty$.

We define $\mathcal{P} := \{F : \mathbb{R}^n \to \overline{\mathbb{R}} : F \text{ is proper}\}$ and

 $\operatorname{dom}(F) := \{x \in \mathbb{R}^n : F(x) < +\infty\}$

Clearly, $F \in \mathcal{P} \Leftrightarrow \operatorname{dom}(F) \neq \emptyset$.

Global/local minimisers

For $F \in \mathcal{P}$, recall:

- global minimiser: $x^* \in \mathbb{R}^n$: $F(x^*) \leq F(x)$ for every $x \in \mathbb{R}^n$.
- local minimiser: x* ∈ ℝⁿ: there exists δ > 0 and a neighbourhood B_δ(x*) such that F(x*) ≤ F(x) for every x ∈ B_δ(x*).

 $\min_{x \in \mathbb{R}^n} F(x) \quad VS \quad \underset{x \in \mathbb{R}^n}{\arg\min} F(x)$

Global/local minimisers

For $F \in \mathcal{P}$, recall:

- global minimiser: $x^* \in \mathbb{R}^n$: $F(x^*) \leq F(x)$ for every $x \in \mathbb{R}^n$.
- local minimiser: x* ∈ ℝⁿ: there exists δ > 0 and a neighbourhood B_δ(x*) such that F(x*) ≤ F(x) for every x ∈ B_δ(x*).

 $\min_{x \in \mathbb{R}^n} F(x) \quad \text{VS} \quad \underset{x \in \mathbb{R}^n}{\arg \min} F(x)$

Definition (set of minimisers)

The set of (local, global) minimisers of F is denoted by:

arg min $F = \{x^* \in \mathbb{R}^n : x^* \text{ is a minimiser of } F\} \subset \mathbb{R}^n$

Empty? Singleton? (it depends on *F*)

Notation, preliminaries & basic notions

Convexity, strong convexity

Definition (convex function)

 $F \in \mathcal{P}$ is said to be *convex* if:

 $(\forall x, y \in \mathbb{R}^n), \quad (\forall \alpha \in [0, 1]), \quad F(\alpha x + (1 - \alpha)y) \le \alpha F(x) + (1 - \alpha)F(y).$

Moreover, F is strictly convex if the inequality holds when $x, y \in \text{dom}(F), x \neq y$ and $\alpha \in (0, 1)$. We say that $G : \mathbb{R}^n \to [-\infty, +\infty)$ is concave is F = -G is convex. If a function is not convex nor concave we say that is *non-convex*.

Convex/concave function

Convex functions

Definition (convex function)

 $F \in \mathcal{P}$ is said to be *convex* if:

 $(\forall x, y \in \mathbb{R}^n), \quad (\forall \alpha \in [0, 1]), \quad F(\alpha x + (1 - \alpha)y) \le \alpha F(x) + (1 - \alpha)F(y).$

Moreover, F is strictly convex if the inequality holds when $x, y \in \text{dom}(F)$, $x \neq y$ and $\alpha \in (0, 1)$. We say that $G : \mathbb{R}^n \to [-\infty, +\infty)$ is concave is F = -G is convex. If a function is not convex nor concave we say that is *non-convex*.

Convex VS. strictly convex functions

Convex functions

Definition (convex function)

 $F \in \mathcal{P}$ is said to be *convex* if:

 $(\forall x, y \in \mathbb{R}^n), \quad (\forall \alpha \in [0, 1]), \quad F(\alpha x + (1 - \alpha)y) \le \alpha F(x) + (1 - \alpha)F(y).$

Moreover, F is strictly convex if the inequality holds when $x, y \in \text{dom}(F), x \neq y$ and $\alpha \in (0, 1)$. We say that $G : \mathbb{R}^n \to [-\infty, +\infty)$ is concave is F = -G is convex. If a function is not convex nor concave we say that is *non-convex*.

Convex VS. non-convex function

Definition (convex function)

 $F \in \mathcal{P}$ is said to be *convex* if:

 $(\forall x, y \in \mathbb{R}^n), \quad (\forall \alpha \in [0, 1]), \quad F(\alpha x + (1 - \alpha)y) \le \alpha F(x) + (1 - \alpha)F(y).$

Moreover, F is strictly convex if the inequality holds when $x, y \in \text{dom}(F), x \neq y$ and $\alpha \in (0, 1)$. We say that $G : \mathbb{R}^n \to [-\infty, +\infty)$ is concave is F = -G is convex. If a function is not convex nor concave we say that is *non-convex*.

Examples:

• F(x) = ||x|| is convex

 $\|\alpha x + (1 - \alpha)y\| \le \|\alpha x\| + \|(1 - \alpha)y\| = \alpha \|x\| + (1 - \alpha)\|y\| \quad \forall x, y \in \mathbb{R}^n$

- $F(x) = ||x||^2$ is strictly convex
- $F(x) = ||x||_p$, $p \in [1, +\infty)$ are convex

Proposition (epigraph of convex functions is convex set) Let $F \in \mathcal{P}$. Then F is convex if and only if epi(F) is a convex set.

Proposition (operations with convex functions)

Let f and g be two convex functions and let $\beta \in \mathbb{R}_{++}$. Then, the sum f + g is a convex function and the function βf is a convex function.

Definition (strongly convex function)

 $F \in \mathcal{P}$ is said to be *strongly convex* of parameter $\mu > 0$ iff $\forall x, y \in \mathbb{R}^n$ and $\forall \alpha \in [0, 1]$:

$$F(\alpha x + (1 - \alpha)y) \le \alpha F(x) + (1 - \alpha)F(y) - \frac{\mu}{2}(1 - \alpha)\alpha \|x - y\|^2$$

Proposition (characteristion of strongly convex functions)

 $F \in \mathcal{P}$ is μ -strongly convex if and only if $G(\cdot) := F(\cdot) - \frac{\mu}{2} \| \cdot \|^2$ is convex.

Proposition (growth condition around minimisers)

If $F \in \mathcal{P}$ is μ -strongly convex and $x^* \in \arg \min_x F(x)$, then:

$$F(x) - F(x^*) \ge \frac{\mu}{2} ||x - x^*||^2, \quad \forall x \in X.$$

Definition (strongly convex function)

 $F \in \mathcal{P}$ is said to be *strongly convex* of parameter $\mu > 0$ iff $\forall x, y \in \mathbb{R}^n$ and $\forall \alpha \in [0, 1]$:

$$F(\alpha x + (1 - \alpha)y) \le \alpha F(x) + (1 - \alpha)F(y) - \frac{\mu}{2}(1 - \alpha)\alpha \|x - y\|^2$$

Proposition (characteristion of strongly convex functions)

 $F \in \mathcal{P}$ is μ -strongly convex if and only if $G(\cdot) := F(\cdot) - \frac{\mu}{2} \| \cdot \|^2$ is convex.

Proposition (growth condition around minimisers)

If $F \in \mathcal{P}$ is μ -strongly convex and $x^* \in \arg \min_x F(x)$, then:

$$F(x) - F(x^*) \ge \frac{\mu}{2} ||x - x^*||^2, \quad \forall x \in X.$$

strong convexity \Rightarrow strict convexity \Rightarrow convexity

Counterexample (strict convexity \neq strong convexity): $F : \mathbb{R} \to \overline{\mathbb{R}}$, $F(x) = e^x$.

Notation, preliminaries & basic notions

Lower semi-continuity & coercivity

Definition (lower semi-continuity)

Let $F \in \mathcal{P}$. We say that F is *lower semi-continuous* (*l.s.c.*) at the point $x \in \mathbb{R}^n$ iff

$$F(x) \leq \liminf_{y\to x} F(y).$$

Equivalently, for every sequence $(x_k)_{k \in \mathbb{N}}$ with $x_k \to x$:

$$F(x) \leq \liminf_{k \to +\infty} F(x_k) \left(= \lim_{k \to +\infty} \inf \left\{ F(x_j) : j \geq k \right\} \right).$$

If F is l.s.c. at every $x \in \mathbb{R}^n$, we say that the function is l.s.c.

Left: lower l.s.c. Right: where the function is lower l.s.c.?

• The functions

$$F(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x > 0 \end{cases},$$

$$F(x) = \lceil x \rceil = \min \{k \in \mathbb{Z} : x \le k\}$$

are l.s.c. (but not continuous).

• All continuous functions (l.s.c + u.s.c.).

Coercivity

How to ensure that the minimum is not attained at "extreme points" of the domain?

Definition (coercivity)

Let $F \in \mathcal{P}$. We say that F is *coercive* iff

$$\lim_{x\parallel\to+\infty}F(x)=+\infty.$$

Examples:

• $F : \mathbb{R} \to \mathbb{R}_+$, $F(x) = e^x$ is not coercive, but $F : \mathbb{R} \to \mathbb{R}_+$, $F(x) = e^{|x|}$ is.

•
$$F: \mathbb{R}^2 \to \mathbb{R}_+$$
, $F(x, y) = x^2 + y^2$ is coercive.

• $F: \mathbb{R}^2 \to \mathbb{R}_+$, $F(x, y) = x^2 - 2xy + x^2 = (x - y)^2$ is not coercive. Why?

Existence of minimisers

Theorem (existence of minimisers)

If F is proper, l.s.c. and coercive, then the set of minimisers of F is non-empty and compact.

Note: generalises the Bolzano-Weirestrass theorem holding for problems

for compact $C \subset \mathbb{R}^n$ s.t. $C \cap \text{dom}(F) \neq \emptyset$ and continuous F.

Existence of minimisers

Theorem (existence of minimisers)

If F is proper, l.s.c. and coercive, then the set of minimisers of F is non-empty and compact.

Note: generalises the Bolzano-Weirestrass theorem holding for problems

for compact $C \subset \mathbb{R}^n$ s.t. $C \cap \text{dom}(F) \neq \emptyset$ and continuous F.

Theorem (convex case)

If F is proper, coercive and convex, then every local minimiser is a global minimiser.

Definition ($\Gamma_0(\mathbb{R}^n)$)

 $\Gamma_0(X) := \{F : X \to \overline{\mathbb{R}} : F \text{ is proper, convex and } I.s.c.\}$

Remark: $F \in \Gamma_0(X) \not\Rightarrow F$ admits a minimiser. Take e.g. $F(x) = -\log x, x > 0$ and $F(x) = +\infty, x \le 0...$ no coercivity guaranteed!

So far, only existence of minimisers. How to guarantee uniqueness?

Theorem (existence+uniqueness of minimisers)

If F is proper, l.s.c., coercive and strictly convex, then F admits a unique minimiser.

Equivalently, arg min $F = \{x^*\}$, a singleton.

Remark: as strong convexity implies strict convexity, the same holds.

Notation, preliminaries & basic notions

Differentiability and *L*-smoothness

How to provide a characterisation of the minimisers of a function f in terms of a suitable notion of " ∇f "?

Definition (Gâteaux differentiability)

Let $f \in \mathcal{P}$ and let $x \in \text{dom}(f)$. For $v \in \mathbb{R}^n$, we denote the *directional derivative* in x along the direction v as the limit

$$f'(x;v) = f'(x)[v] := \lim_{t \to 0^+} \frac{f(x+tv) - f(x)}{t},$$

when it exists. If there exists $w \in \mathbb{R}^n$ such that:

$$(\forall v \in \mathbb{R}^n) \quad f'(x)[v] = \langle w, v \rangle,$$

then we say that f is Gâteaux differentiable in x and denote by $\nabla f(x) = w$ the Gâteaux derivative (or, simply, the gradient) of f at x. Theorem (Fermat's rule) Let $f \in \Gamma_0(\mathbb{R}^n)$ be differentiable at point x^* . Then: $x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^n} f(x) \iff \nabla f(x^*) = 0.$

Theorem (Fermat's rule)

Let $f \in \Gamma_0(\mathbb{R}^n)$ be differentiable at point x^* . Then:

$$x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^n} f(x) \iff \nabla f(x^*) = 0.$$

Proposition (Differentiability and convexity)

Let $f \in \Gamma_0(\mathbb{R}^n)$. Suppose that f is differentiable on dom(f). Then the following statements are equivalent:

- 1. f is convex;
- 2. $\forall x, y \in \text{dom}(f), f(y) \ge f(x) + \langle \nabla f(x), y x \rangle;$
- 3. $\forall x, y \in \text{dom}(f), \langle \nabla f(x) \nabla f(y), x y \rangle \ge 0.$

Corollary (Differentiability and strong convexity)

Let $f \in \Gamma_0(\mathbb{R}^n)$ and $\mu > 0$. Suppose that f is differentiable on dom(f). Then the following statements are equivalent:

- 1. f is μ -strongly convex;
- 2. $\forall x, y \in \text{dom}(f), f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + \frac{\mu}{2} ||y x||^2;$
- 3. $\forall x, y \in \text{dom}(f), \langle \nabla f(x) \nabla f(y), x y \rangle \ge \mu ||x y||^2.$

Example: let $f(x) = \frac{1}{2} ||Ax - y||^2$, for $A \in \mathbb{R}^{m \times n}$ positive definite, $y \in \mathbb{R}^m$. Then:

$$\nabla f(x) = A^T (Ax - y).$$

Since $A^T A$ is positive definite (i.e., $\lambda_{\min} := \lambda_{\min}(A^T A) > 0$), then:

$$(\forall x, y \in \mathbb{R}^n) \quad \langle \nabla f(x) - \nabla f(y), x - y \rangle = \langle A^T A(x - y), x - y \rangle \ge \lambda_{\min} ||x - y||^2,$$

hence f is λ_{\min} -strongly convex.

Remark: from condition 3., if $x^* \in \arg \min f(x)$, then for all $x \in \operatorname{dom}(f)$:

$$\langle \nabla f(x) - 0, x - x^* \rangle \ge \mu \|x - x^*\|^2 \quad \Rightarrow \quad \boxed{\mu \|x - x^*\| \le \|\nabla f(x)\|}$$

Polyak-Łojasiewicz condition

Proposition (Polyak-Łojasiewicz condition)

Let $f \in \Gamma_0(\mathbb{R}^n)$ and let $\mu > 0$. Suppose that f is differentiable on dom(f), that f is μ -strongly convex and that there exists $x^* \in \arg \min f(x)$. Then:

$$(\forall x \in \operatorname{dom}(f)) \quad f(x) - \min_{x} f(x) \leq \frac{1}{2\mu} \|\nabla f(x)\|^{2}$$
(*)

Proof.

$$\begin{split} \min_{y \in \mathsf{dom}(f)} f(y) &\geq \min_{y \in \mathsf{dom}(f)} \left(f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2 \right) \\ &\geq f(x) + \frac{1}{2\mu} \min_{y \in \mathsf{dom}(f)} \left(\underbrace{\|\mu(y - x) + \nabla f(x)\|^2}_{\geq 0} - \|\nabla f(x)\|^2 \right) \\ &\geq f(x) - \frac{1}{2\mu} \|f(x)\|^2. \end{split}$$

- "Gradient grows as a quadratic function as we increase f". Important condition for achieving fast convergence rates!
- (*) holds also for non-strongly convex functions (e.g., $\frac{1}{2} ||Ax y||^2$ for A not positive definite)

In the framework of first-order optimisation methods, it's important to provide conditions on the growth of functions considered.

Definition (L-smoothness)

Let $f \in \Gamma_0(\mathbb{R}^n)$ be differentiable. We say that f is an *L*-smooth function with constant $L \ge 0$ iff:

$$\exists L \ge 0 : \forall x, y \in \mathbb{R}^n \quad \|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|.$$

Remark: For $f(x) = \frac{1}{2} ||Ax - y||_2^2$, you can check $L = ||A^T A|| \le ||A||^2$.

Theorem (characterisation of *L*-smooth functions)

Let $f : \mathbb{R}^n \to \mathbb{R}$ a convex differentiable function and let L > 0. The following statements are equivalent:

- 1. f is L-smooth
- 2. (descent lemma)

$$(\forall x, y \in \mathbb{R}^n) \quad f(y) - f(x) - \langle \nabla f(x), y - x \rangle \leq \frac{L}{2} ||x - y||^2$$

3.

4.

$$(\forall x, y \in \mathbb{R}^n)$$
 $\frac{1}{2L} \|f(x) - f(y)\|^2 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle$

$$(\forall x, y \in \mathbb{R}^n) \quad \frac{1}{L} \|f(x) - f(y)\|^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle$$

5.

$$(\forall x, y \in \mathbb{R}^n) \quad \langle \nabla f(x) - \nabla f(y), x - y \rangle \leq L ||x - y||^2$$

6. $\frac{L}{2} \| \cdot \|^2 - f(\cdot)$ is convex.

Comparing smoothness and strong convexity

• f is L-smooth if and only if:

$$(\forall x, y \in \mathbb{R}^n) \quad f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||x - y||^2$$

• f is µ-strongly convex if and only if:

$$\forall x, y \in \operatorname{dom}(f), \quad f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2$$

It can be proved that if f is a C^2 function there holds:

$$\mu$$
Id $\leq \nabla^2 f(x) \leq L$ Id, for all x

Smooth optimisation algorithms

Smooth optimisation algorithms

Gradient descent

Gradient descent

Gradient descent (GD) algorithm: ubiquitous in many applications for minimising (non-)convex, differentiable and proper functions $f : \mathbb{R}^n \to \overline{\mathbb{R}}$

Algorithm: Gradient Descent (GD) algorithm

Input: $\tau \in (0, \frac{2}{L}), x^0 \in \mathbb{R}^n$. for $k \ge 0$ do

$$x_{k+1} = x_k - \tau \nabla f(x_k)$$

end for

- Choice of *τ*: important to guarantee convergence (need to be sufficiently small), it relates to *L* (~growth of *f*).
 Example: minimise *f*(*x*) = *x*²/2. GD iteration: *x*_{k+1} = (1 − *τ*)*x*_k, convergence for...?
- Convexity assumption: no dependence on x₀.
- Stopping criterion: relative error $||x_{k+1} x_k|| \le \text{tol or gradient check}$ $||\nabla f(x_{k+1})|| \le \text{tol (approaching 0)}.$

Lemma

For all $k \ge 0$, there holds:

$$au\left(1-rac{ au L}{2}
ight)\left\|f(x_k)
ight\|^2\leq f(x_k)-f(x_{k+1}).$$

Thus, if $\tau < \frac{2}{L}$, then $f(x_{k+1}) \le f(x_k)$, i.e. the GD algorithm is descending.

Proof. Since $x_{k+1} - x_k = -\tau \nabla f(x_k)$, then by the characterisation 2. of *L*-smoothness we have:

$$f(x_{k+1}) \leq f(x_k) - \tau \langle
abla f(x_k),
abla f(x_k)
angle + rac{L}{2} au^2 \|
abla f(x_k) \|^2$$

so the thesis follows.

Theorem (convergence of GD)

Let $(x_k)_k$ the sequence of iterates generated by GD. Then, if $\tau \in (0, 2/L)$ there holds:

$$f(x_k) - f(x^*) \le \frac{\|x^0 - x^*\|^2}{2\tau k} = O\left(\frac{1}{k}\right)$$

Lemma (progress bounds)

For GD iterations with $\tau = 1/L$ there holds:

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2$$

Proof. Using $x_{k+1} - x_k = -\frac{1}{L}\nabla f(x_k)$ we can apply the characterisation 2. to get:

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{L} \|\nabla f(x_k)\|^2 + \frac{L}{2} \|\frac{1}{L} \nabla f(x_k)\|^2 \\ \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2.$$
(1)

We can use this progress bound to show improved rates under Polyak-Łojasiewicz condition (in particular, strongly convex functions).

Smooth optimisation algorithms

Convergence proof under PL condition

Linear convergence of GD under PL condition

Theorem (linear convergence of GD under PL)

Let $(x_k)_k$ the sequence of iterates generated by GD. Then, if $\tau = 1/L$ there holds:

$$f(x_k) - f(x^*) \leq \left(1 - \frac{\mu}{L}\right)^k (f(x_0) - f(x^*)),$$

where, notice, $0 < \mu \leq L$.

Proof. Use the Lemma (progress bound) and the PL inequality:

$$f(x_{k+1}) \leq f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2 \leq f(x_k) - \frac{\mu}{L} (f(x_k) - f(x^*))$$

Subtracting $f(x^*)$ from both sides we get:

$$f(x_{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{L}\right) (f(x_k) - f(x^*)).$$

Applying this recursively gives the thesis since:

$$f(x_{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{L}\right) (f(x_k) - f(x^*)) \le \left(1 - \frac{\mu}{L}\right)^2 (f(x_{k-1}) - f(x^*))$$

$$\le \dots \le \left(1 - \frac{\mu}{L}\right)^k (f(x_0) - f(x^*)).$$

To show $0 < \mu \leq L$, since by descent lemma we have that for all $v \in \mathbb{R}^n$:

$$f(x^*) \leq f(v) - \frac{1}{2L} \|\nabla f(v)\|^2$$

Combining PL with this inequality we get:

$$\frac{1}{2\mu} \left\| \nabla f(v) \right\|^2 \ge f(v) - f(x^*) \ge \frac{1}{2L} \left\| \nabla f(v) \right\|^2 \quad \forall v \in \mathbb{R}^n \Rightarrow \mu \le L$$

Do we practically see this gain in known problems?

$$f(x) = rac{1}{2} \|Ax - y\|^2 + rac{\lambda}{2} \|x\|^2, \quad \lambda > 0$$

f is λ -strongly convex. Convergence factor of the theorem:

$$\frac{\mu}{L} = \frac{\min\left\{ \operatorname{eig}(A^{T}A) \right\} + \lambda}{\max\left\{ \operatorname{eig}(A^{T}A) \right\} + \lambda}$$

- If $\lambda \gg 1$, then $\left(1 \frac{\mu}{L}\right) \rightarrow 0$ hence faster convergence
- If L ≫ μ ("small" PL), then this rate is not very informative, so in practice we observe the rate O(1/k).
- The quantity L/µ is called the *condition number* of f (relates with the condition number of matrix ∇²f when f is C²).

Smooth optimisation algorithms

Motivation for accelerated algorithms

... back to standard GD iteration and O(1/k) convergence rate.

¹Nesterov, 2004, adapted from Chambolle-Pock, 2016

... back to standard GD iteration and O(1/k) convergence rate.

Theorem (worst-case bounds¹)

For $x_0 \in \mathbb{R}^n$, L > 0 and $1 < k \le \frac{1}{2}(n-1)$, there exists a convex, *L*-smooth function *f* s.t. for any first-order algorithm:

$$f(x_k) - f(x^*) \ge \frac{3L ||x_0 - x^*||^2}{32(k+1)^2} = O\left(\frac{1}{(k+1)^2}\right).$$

It would be somehow 'optimal' finding convergence rates close to such lower (inevitable) bound...

How to fill the gap between O(1/k) and $O(1/(k+1)^2)$ for convex functions?

¹Nesterov, 2004, adapted from Chambolle-Pock, 2016

Accelerated smooth optimisation algorithms

Accelerated smooth optimisation algorithms

Nesterov acceleration of GD

Accelerated gradient descent

Idea: add inertia to "shift" the sequence of iterates.

Algorithm: Accelerated Gradient Descent (AGD) algorithm ²

Input:
$$x_0 = x^{-1} \in \mathbb{R}^n$$
, $\tau \in (0, \frac{1}{L}]$, $t_0 = 0$.
for $k \ge 0$ do

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$
$$y_{k+1} = x_k + \frac{t_k - 1}{t_{k+1}}(x_k - x_{k-1})$$
$$x_{k+1} = y_{k+1} - \tau \nabla f(y_{k+1})$$

end for

²Nesterov, 1983

A note on the sequence

Lemma (behaviour of the sequence (t_k))

Let t_0 and the sequence t_k be defined by:

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$

Then $t_k \geq \frac{k+2}{2}$ for all $k \geq 0$. In particular, $t_k \to \infty$.

Proof. by induction. For k = 0 we have $t_0 \ge 1$. Suppose that the claim holds for some k, meaning that $t_k \ge \frac{k+2}{2}$. Want to show:

$$t_{k+1} \ge \frac{k+1+2}{2} = \frac{k+3}{2}$$

Using recursion and $2t_k \ge k + 2$ (induction)

$$t_{k+1} = rac{1+\sqrt{1+4t_k^2}}{2} \geq rac{1+\sqrt{1+(k+2)^2}}{2} \geq rac{1+\sqrt{(k+2)^2}}{2} = rac{k+3}{2}.$$

Remark: any sequence $(t_k)_k$ satisfying $t_{k+1}^2 - t_{k+1} \le t_k^2$, $k \ge 0$ works (Chambolle, Dossal, 2015).

Accelerated convergence result

Theorem (convergence of AGD)³

Let $(x_k)_k$ the sequence of iterates generated by AGD. Then, there holds:

$$f(x_k) - f(x^*) \le rac{2\|x^0 - x^*\|^2}{ au(k+1)^2}$$

Get *faster*, at $O\left(\frac{1}{(k+1)^2}\right)$ to a reasonably accurate approximation of x^* .

 \ldots proof is quite technical. You'll see this in the case of non-smooth problems tomorrow.

³Nesterov, 2004, Chambolle-Pock, 2016

How many iterations are needed for such algorithms to achieve ε -accuracy, i.e.

$f(x_k) - f(x^*) \leq \varepsilon$

- GD: for all $k \ge 0$ such that $k \ge \lceil C/\varepsilon \rceil$
- AGD: for all $k \ge 0$ such that $k \ge \lceil C/\sqrt{\varepsilon} 1 \rceil$
- GD + PL: for all $k \ge 0$ such that $k \ge \lceil C \log (1/\varepsilon) \rceil$

We focus on convex, **smooth** optimisation problems arising in applications (e.g., imaging inverse problems).

- We revised basic notions for having well-posedness of the underlying problem
- We considered GD as a reference first-order algorithm
- We commented on the improved speed achieved by GD whenever the underlying function enjoys *further regularity* (PL + strong convexity)
- We discussed Nesterov acceleration for improving convergence speed in convex cases

How to explore analogous ideas in the structured smooth+non-smooth setting?

Questions?

calatroni@i3s.unice.fr