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PROVIDED MATERIAL:

● Slides (LEC_A1, LEC_A2, LEC_B)

● Matlab source codes

● Repository of relevant related articles
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OUTLINE:

TVp-Lq variational models for Image Restoration and Inpainting:

•  Specific models of interest (motivations and properties):

•  TV-L2, TIK-L1, TV-L1 models iterative solution by ADMM

•  TIK-L2 model direct solution by Discrete Fourier Transform (DFT)

• Variational Methods for Inverse Imaging Problems:

• Some popular variational models; the large and important class of

•  Numerical solution of the models:

• TIK-L2 , TV-L2 , TIK-L1 , TV-L1 (unconstrained) models

•  Automatic selection of the regularization parameter (discrepancy):

•  Experimentation (Matlab)

•  The constrained TV-L2 model, numerically solved by ADMM

• Inverse Imaging Problems: 

•  Examples and definitions; Image Restoration and Inpainting
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GOALS:

• Give students an idea on variational methods for the solution of 

inverse problems in imaging, with focus on the popular (and effective),

non-differentiable TV regularizer

• Give students a preliminary idea of the popular Alternating Direction

Method of Multipliers (ADMM) iterative optimization approach applied

to the numerical solution of non-smooth variational models

• Share with students a source code (Matlab) which makes it possible

to rigorously compare (in a qualitative/quantitative way) the 

performance of different variational models for the solution of image 

restoration and inpainting inverse problems for different test images 

corrupted by different degradation factors



Some Inverse Problems in Imaging
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❑ De-Noising

❑ De-Blurring 

❑ In-Painting 

❑ De-Mosaicing

❑ Computed Tomography 

❑ Super-Resolution

And more …



Some Inverse Problems in Imaging
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❑ De-Noising

❑ De-Blurring 

❑ In-Painting 

❑ De-Mosaicing

❑ Computed Tomography  

❑ Super-Resolution

❑ Segmentation

❑ and more …



Goal: Restore degraded (blurred and noisy)  images

forward (degradation) backward (estimation)

Image Restoration Inverse Problem

Rocca di Bertinoro  
(Forlì – Cesena)



Goal: Restore degraded («masked» and noisy)  images

forward (degradation) backward (estimation)

Image Inpainting Inverse Problem



10

General Image Formation Model

Inverse Imaging Problems: Definitions

=  ,  where :( ( ))y xN

 = typically deterministic degradation operator, with: ( ) ( ) x Ax

  identity or nonlinear operator,  linear operator( )  A

( ) typically randomic noise operator N
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General Image Formation Model

Inverse Imaging Problems: Definitions

=  ,  where :( ( ))y xN

 = typically deterministic degradation operator, with: ( ) ( ) x Ax

  identity or nonlinear operator,  linear operator( )  A

( ) typically randomic noise operator N

The inverse problem is called linear/nonlinear depending on φ(.) 
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Inverse Imaging Problems: Definitions

 = typically deterministic degradation operator, with: ( ) ( ) x Ax

  identity or nonlinear operator,  linear operator( )  A

( ) typically randomic noise operator N

Example: Image Denoising

  and  identity operators( )  A

General Image Formation Model

=  ,  where :( ( ))y xN

LINEAR inverse problem= ( )y xN
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Inverse Imaging Problems: Definitions

 = typically deterministic degradation operator, with: ( ) ( ) x Ax

  identity or nonlinear operator,  linear operator( )  A

( ) typically randomic noise operator N

Example: Image Restoration (deblurring + denoising)

   = identity operator,  blurring operator( )  A K

General Image Formation Model

=  ,  where :( ( ))y xN

LINEAR inverse problem= ( )y KxN
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Inverse Imaging Problems: Definitions

 = typically deterministic degradation operator, with: ( ) ( ) x Ax

  identity or nonlinear operator,  linear operator( )  A

( ) typically randomic noise operator N

Example: Image Inpainting

   = identity operator,  selection (masking) operator( )  A S

General Image Formation Model

=  ,  where :( ( ))y xN

LINEAR inverse problem= ( )y SxN



The IMAGE RESTORATION and INPAINTING

INVERSE PROBLEMS
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Goal: Given b and k (non-blind), and some information on the 
noise distribution, recover u          Inverse Problem

Image Restoration

=  +
Observed   

image 
(known)

Original 
image     

(unknown)

Point Spread 
Function 

(known/unknown)

Realization  
of Random 

Noise 
(unknown)

b u k n
2D discrete 
convolution

additive            
noise

Note: blur is not necessarily space-invariant (convolution operator) and noise is 
not necessarily additive (e.g. multiplicative, Poisson,…)
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Continuous degradation model:

Observed degraded image

2( ) ( )( ) ( ) ( ) ( ) ( ) , ,b x k u x n x k x y u y dy n x x y=  + = − +  

Blur kernel (PSF):  linear space-invariant blur

Original image Noise (additive) image

, , ,d d db K u n u b n K = +  

Blur matrix

compact (rectangular) domain

Discrete degradation model (w x h image → d = w h  pixels):

Image Restoration

images are vectorized (d-entries column vectors)
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( ) ( )( ) ( )b x k u x n x=  +

b K u n+=

Continuous model:

Discrete model:

with blur matrix K:    block Toeplitz with Toeplitz blocks,
block circulant with circulant blocks, …
huge dimension, sparse

severely ill-conditioned         regularization

BCs

2x

, , ,d d du b n K  

Image Restoration
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( ) ( )( ) ( )b x k u x n x=  +

b K u n+=

Continuous model:

Discrete model:

2x

, , ,d d du b n K  

BLUR DEGRADATION:  DETERMINISTIC NATURE

NOISE DEGRADATION:    PROBABILISTIC NATURE

In practice, blur and noise models can be known a priori or 
inferred before restoration ...

Image Restoration



Camera motion Scene motion

Blur can be the same

Blur is different

5 / 25

Two causes for motion blur:

Blur models:  space–invariant/variant

Bologna,  18/02/2015                         Variational Image Restoration Alessandro Lanza

depending on 3d scene geometry
We will consider space-invariant blurs

(blur as a 2D Convolution)



5 / 25

Blur models:  Point-Spread Functions

PSFs with sharp edges:

PSFs with smooth transitions:
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Boundary conditions

Zero-Dirichlet Reflective (Neumann hom.)Periodic

Anti-reflective 
(S.Serra-Capizzano, 
M. Donatelli, et al.)

Synthetic
(Y. Wai, J. Nagy)
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Boundary conditions

Zero-Dirichlet Reflective (Neumann hom.)Periodic

Anti-reflective 
(S.Serra-Capizzano, 
M. Donatelli, et al.)

Synthetic
(Y. Wai, J. Nagy)
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2D DFT 
(by FFT)



Goal: Given b and M, and some information on the noise 
distribution, recover u          Inverse Problem

Image Inpainting

= ʘ +
Observed   

image 
(known)

Binary Inpainting 
mask          

(known)

Original    
image 

(unknown)

Realization  
of Random 

Noise 
(unknown)

b M u n
Hadamard 

matrix product
additive            

noise

Note: noise is not necessarily additive (e.g. multiplicative, Poisson,…)



Image Inpainting

= ʘ +
Observed   

image 
(known)

Original 
image     

(unknown)

Binary Inpainting 
mask 

(known)

Realization  
of Random 

Noise 
(unknown)

b u M n M n=
Hadamard 

matrix product
additive            

noise

Goal: Given b and M, and some information on the noise 
distribution, recover u          Inverse Problem

Note: noise is not necessarily additive (e.g. multiplicative, Poisson,…)
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Continuous degradation model:

Observed degraded image

( ) 2( ) ( ) ( ) ( ) ( ) ( ) ( ),b x m x u x n x m x u x n x x= + = +  

Binary Inpainting mask function (characteristic function)

Original image Noise (additive) image

( ) , , , ,d d db S u n S u n u b n n S = + = +  

compact (rectangular) domain

Discrete degradation model (w x h image → d = w h  pixels):

Image Inpainting

Binary Inpainting mask
(selection) matrix

images are vectorized (d-entries column vectors)
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Continuous degradation model:

Observed degraded image

( ) 2( ) ( ) ( ) ( ) ( ) ( ) ( ),b x m x u x n x m x u x n x x= + = +  

Binary Inpainting mask function (characteristic function)

Original image Noise (additive) image

( ) , , , ,d d db S u n S u n u b n n S = + = +  

compact (rectangular) domain

Discrete degradation model (w x h image → d = w h  pixels):

Image Inpainting

1( , , )  with  0  if the i-th pixel belongs to the "inpainting set", 1 otherwised iS diag s s s= =
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Original    salt and pepper     speckle      Gaussian add.  Gaussian mult.

Noise models
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Some important noise models

( )
2

2

1
( | , ) exp

22

x
p x


 

 

 −
 = −
 
 

σ is also called noise level

White noise:   the covariance matrix for n is a scaled identity, Cov(n) = σ2 I. 

This is true if all the elements ni of n are uncorrelated and from the same distribution.

 vectorized image,  ( )  i-th entrys

iAu Au 

    mean

 standard deviation ++

Additive White Gaussian Noise (AWGN): (0, )iN G 

Additive noises: ( )  , 1, 2, ,i ii
b Au n i s+ =
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1
3 , 3

2 3( | , )

0 3 , 3

for x
p x

for x

   
 

   

   − +  
= 
   − +

 

    mean

 standard deviation ++

Additive White Gaussian Noise (AWGN):

Additive White Uniform Noise (AWUN) (0, )iN U 

(0, )iN G 

Additive noises: ( )  , 1, 2, ,i ii
b Au n i s+ =

Some important noise models
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Additive White Gaussian Noise (AWGN):

Additive White Uniform Noise (AWUN)

Additive White Laplacian Noise (AWLN)

1
( | , ) exp 2

2

x
p x


 



 −
= − 

 

(0, )iN U 

(0, )iN G 

(0, )iN L 

    mean

 standard deviation ++

Additive noises: ( )  , 1, 2, ,i ii
b Au n i s+ =

Some important noise models



Additive White GG Noise (AWGGN) (0, , )iN GG  

Generalized Gaussian

Additive White Gaussian Noise (AWGN):

Additive White Uniform Noise (AWUN)

Additive White Laplacian Noise (AWLN)

(0, )iN U 

(0, )iN G 

(0, )iN L 

Additive noises: ( )  , 1, 2, ,i ii
b Au n i s+ =

Some important noise models
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(1/ )
( | , , ) exp ,

2 (1/ ) (3 / )

x
p x





 
    

   

 − 
 = − =
  
 

    mean

 scale parameter ++

 shape parameter ++

or 

Some important noise models

Additive noises: ( )  , 1, 2, ,i ii
b Au n i s+ =

Additive White GG Noise (AWGGN) (0, , )iN GG  

Additive White Gaussian Noise (AWGN):

Additive White Uniform Noise (AWUN)

Additive White Laplacian Noise (AWLN)

(0, )iN U 

(0, )iN G 

(0, )iN L 
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  Gamma function:

1

0

( ) ,x tx t e dt x

+

− −

++ = 

(1/ )
( | , , ) exp ,

2 (1/ ) (3 / )

x
p x





 
    

   

 − 
 = − =
  
 

Some important noise models

Additive noises: ( )  , 1, 2, ,i ii
b Au n i s+ =

Additive White GG Noise (AWGGN) (0, , )iN GG  

Additive White Gaussian Noise (AWGN):

Additive White Uniform Noise (AWUN)

Additive White Laplacian Noise (AWLN)

(0, )iN U 

(0, )iN G 

(0, )iN L 
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2 :   G( , )  =

:   U( , )  → +

1:   L( , )  =

(1/ )
( | , , ) exp ,

2 (1/ ) (3 / )

x
p x





 
    

   

 − 
 = − =
  
 

Additive noises: ( )  , 1, 2, ,i ii
b Au n i s+ =

Additive White GG Noise (AWGGN) (0, , )iN GG  

Additive White Gaussian Noise (AWGN):

Additive White Uniform Noise (AWUN)

Additive White Laplacian Noise (AWLN)

(0, )iN U 

(0, )iN G 

(0, )iN L 

Some important noise models
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(0, ) (0, , 2)iN G GG =

(0, ) (0, , )iN U GG = +

(0, ) (0, ,1)iN L GG =

Some important noise models

Additive noises: ( )  , 1, 2, ,i ii
b Au n i s+ =
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Multiplicative noises:

Multiplicative White Gaussian Noise (MWGN): (1, )iN G 

Multiplicative White Uniform Noise (MWUN) (1, )iN U 

Multiplicative White Laplacian Noise (MWLN) (1, )iN L 

( )  , 1, 2, ,i ii
b Au n i s =

Multiplicative White GG Noise (MWGGN) (1, , )iN GG  

or 

Some important noise models
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(1, ) (1, , 2)iN G GG =

(1, ) (1, , )iN U GG = +

(1, ) (1, ,1)iN L GG =

Some important noise models

Multiplicative noises: ( )  , 1, 2, ,i ii
b Au n i s =
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Impulsive noises:
( )

0

0\

i

i

i

n if i
b

Au if i

  
= 

 

Impulsive Salt and Pepper Noise (ISPN):

 0,255 , P( 0) P( 255) 0.5i i in n n = = = =

Impulsive Random-Valued (IRVN):

(127.5,127.5 / 3)iN U uniformly distributed in [0,255]

Some important noise models



VARIATIONAL METHODS

for INVERSE PROBLEMS

41



42 Hong Kong Siam 2014 14:03

Variational models for inverse problems

Solution image by minimization of an energy function(al)           

(inverse problem casted as an optimization problem):

42

 
d

*

u R or u V

u arg min J( u; ) R( u ) F( u;b, A ) 
 

 = +

Fidelity term: a priori information on 

the data acquisition model, in 

particular noise (additive or 

multiplicative, pdf, spectrum, ...)

Regularization term: a priori 

information on the original image 

(regularity, sparsity, ...)
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Regularization parameter: positive scalar, which 

allows to set the (desired) tradeoff between 

regularization and fidelity to the abserved data

vector space:       

discrete setting
function space:   

continuous setting
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 
d

*

u R or u V

u arg min J( u; ) R( u ) F( u;b,K ) 
 

 = +

Fidelity term: a priori information on 

the data acquisition model, in 

particular noise (additive or 

multiplicative, pdf, spectrum, ...)

Regularization term: a priori 

information on the original image 

(regularity, sparsity, ...)
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Regularization parameter: positive scalar, which 

allows to set the (desired) tradeoff between 

regularization and fidelity to the abserved data

vector space:       

discrete setting
function space:   

continuous setting

Variational models for inverse problems

Solution image by minimization of an energy function(al)           

(inverse problem casted as an optimization problem):
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Popular regularization functions/terms:

Popular fidelity functions/terms:

1 q

q
F( u;b, A ) Au b

q
= −

q=1:  Additive White Laplacian noise (AWLN)

q=2:   Additive White Gaussian noise (AWGN)

                

                             

                            

)   

2

2 2 2

Tikhonov

TV

TV

1 Perona - Malik

i i

i i

p
i i p

i i

( s ) g

( s ) g

( s ) g

( s ) ln( g /







  

=

=

=

= +

( )( )
2

1

d

i i
i

R( u ) g ( u ) : u
=

= = 

Popular TV-L2 (ROF) variational model (nonsmooth, convex) for AWGN:

( )
2

22
1

1

2d

d
*

i
u R i

u arg min J( u ) u K u b
 =

 
= =  + − 

 


Popular Variational Models

TV ( u )

semi-norm
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TV 
regularization

Tikhonov
regularization

Edge-enhanched regularization
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TV regularization

Tikhonov
regularization

Edge-enhanched regularization



47 Hong Kong Siam 2014 14:03

TV-L2 (ROF) model: 
regularization parameter

Noisy (b, μ=0)    μ = 0.0001 μ = 0.001 μ = 0.01 μ = 0.1 μ = 1    

47Workshop on Optimization in Image Processing, Harward 2016

Experiment for the case of only denoising (no blur, K is the identity matrix) for 1D signals:

restoration residual  r := K u – b  ( or  r := b – K u )

( )
2

22
1

1

2d

d
*

i
u i

u arg min J( u; ) u K u b 
 =

 
= =  + − 

 


TV ( u )

regularization parameter increases → restoration residual norm increases



TV-L2 (ROF) 

48

    



WE ARE INTERESTED 

in TWO SPECIFIC LINEAR INVERSE PROBLEMS:

IMAGE RESTORATION and INPAINTING,

and in a SPECIFIC CLASS of NOISES:

ADDITIVE, I.I.D, GG-DISTRIBUTED,

with particular focus on Gaussian and Laplacian noises

. . .
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TVp- Lq VARIATIONAL MODELS for IMAGE REST. / INP.

We are interested in the image rest./inp. inverse problems (A square blur or selection matrix)

and (mainly) interested in cases q = 2, q = 1 for the fidelity term, corresponding to additive

i.i.d. Gaussian and Laplacian noises, respectively, and in cases p = 2, p = 1 for the

regularization term, yielding the so-called Tikhonov (TIK) and Total Variation (TV)

regularizers. Namely, we consider the four following (popular, convex) variational models for

image restoration:

TVTIK

TV-L2/L1 variational models

TIK-L2/L1 variational models

L2/1

( )

*

2
1

                  arg min ( ; ),     with:

1
( ; ) ,   , , 0

du

d
p q

qi
i

u J u

J u u Au b p q
p q




 



=



=  + − 

( )
2 2 or 1*

2 or 12
1

1
arg min ( ; )

2 2 or 1d

d

i
u i

u J u u Au b



 =

 
 =  + − 

 


( )
2 or 1*

2 or 12
1

arg min ( ; )
2 or 1d

d

i
u i

u J u u Au b



 =

 
 =  + − 

 




51

TIK/TV - L2/L1 MODELS:  discrete gradient operator 

TVTIK

TV-L2/L1

TIK-L2/L1

L 2 / 1

2: ,d dh

v

D
D

D
 =  

 
Introducing matrix , d d

h vD D with coefficient matrices of linear 

finite difference operators discretizing horizontal and vertical partial derivates of a given 

(w x h = d)-pixels image, respectively, then, the models can be equivalently written as:

variational models

variational models

2 2 or 1*

2 2 or 1

1
arg min ( ; )

2 2 or 1du

u J u Du Au b





 
 = + − 

 

( ) ( )
2 2 2 or 1* ( ) ( )

2 or 1
1

arg min ( ; )
2 or 1d

d
h v

i i
u i

u J u D u D u Au b



 =

 
 = + + − 

 


ker( ) ker( ) {0 }dD A =Standard (and, in practice, reasonable) assumption:
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TIK/TV - L2/L1 MODELS:  solution existence/uniqueness

• all functions J continuous, coercive, convex → local minimizers are global, minimizers exist

• TIK-L2, TIK-L1, TV-L2 admit a unique solution (global minimizer)

• TV-L1 admits a compact convex set of solutions (global minimizers)

2 2*

2 2

1
arg min ( ; )

2 2du

u J u Du Au b





 
= = + − 

 

2*

2 1

1
arg min ( ; )

2du
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d
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u i

u J u D u D u Au b



 =

 
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u J u D u D u Au b 
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 
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 


2,   ,   A ,   ,   ker( ) ker( ) {0 }
hd d d d d

d

v

D
b D D A

D
  

++

 
   =   = 

 
where:

TIK - L2

TIK - L1

TV - L2

TV - L1

→ adjust notations

It guarantees 

coercivity of 

all functions J
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TIK/TV - L2/L1 MODELS:  regularity (differentiability)

2 2*
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TIK - L2

TIK - L1

TV - L2

TV - L1

For all models but the TIK-L2 the cost function J is non-differentiable, due to the regularizer

and/or to the fidelity term: differentiable non-differentiable

2,   ,   A ,   ,   ker( ) ker( ) {0 }
hd d d d d

d

v

D
b D D A

D
  

++

 
   =   = 

 
where:
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TIK/TV - L2/L1 MODELS:  numerical solution

We are going to see how to solve numerically the models of interest by means of

two state-of-the-art effective iterative methods:

• ADMM (Alternating Direction Method of Multipliers)

• QMM (Quadratic Majorization-Minimization approach)

ADMM solves directly the original models, also if they aren’t differentiable, whereas

QMM requires differentiability → the original models will be slightly changed (or

«smoothed») into very similar differentiable models that, then, can be solved by QMM

Solutions by ADMM and QMM of the simplest among the four models, i.e. the TIK-L2

quadratic model, coincide, in the sense that they reduce to solving the same linear system

Outline: • Direct solution    of  TIK-L2 model by DFT or CG / other direct methods

• Iterative solution of  TV-L2, TIK-L1, TV-L1 models by ADMM

• Iterative solution of  TV-L2, TIK-L1, TV-L1 models by QMM



“DIRECT”, EFFICIENT

- by using the 2D Discrete Fourier Transform (DFT),           

implemented by the 2D Fast Fourier Transform (FFT), 

for image restoration, the iterative (Preconditioned)     

Conjugate Gradient (CG) method or some direct method           

for image inpainting -

numerical solution of the

(unconstrained)  

TIK-L2 (quadratic) model

55



Direct solution of the  TIK-L2 model

2 2 2*

2 2 2

1 1
arg min ( ; )

2 2 2d
h v

u

u J u D u D u Au b





 
= = + + − 

 

1
( ; ) ,     with :   

2

T T T T T d d

h h v vJ u u H u v u c H D D D D A A  = − + = + + 

2

2
,      

2

T dv A b c b


 +=  = 

The cost function J is convex quadratic, and takes the equivalent standard form:

The matrix H, which represents the (constant) Hessian matrix of J, is positive definite,

hence J is strongly convex and admits a unique global minimizer which can be obtained by

imposing the first-order optimality conditions for J, namely:

( )*  solution of :   ( ) 0 T T T T

d h h v vu J u H u v D D D D A A u A b  =  =  + + =

Since H is positive definite, it has full rank → the linear system admits a unique solution u*.

However, the linear system is commonly of huge size (d x d, with d number of pixels).

Can we solve it efficiently, possibly avoiding to form (and store) explicitly the matrix H ?

can you  

prove it?

YES, IN BOTH THE RESTORATION AND INPAINTING CASES ...
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( )*  unique solution of :     T T T T

h h v vu D D D D K K u K b + + =

Substituting factorizations above in the linear system:

are convolution matrices, and we are assuming periodic boundary conditions 

for image u, thus they can be diagonalized (in     ) by the 2D Discrete Fourier Transform (DFT):

, , d d

h vD D K 

* * *, , ,    with :    , , , ,d d

h h v v h vD F D F D F D F K F K F F D D K = = = 

* * * *conjugate transpose of  ,    (  unitary),   , direct, inverse 2D DFT matrices,dF F F F F F I F F F= =

( ) ( ) ( ),1 , ,1 , 1and       diag , , , diag , , , diag , ,  .h h h d v v v d dD D D D D D K K K= = =

( ) ( )
2 2 2

* * * * *    h h v v h vD D D D K K F u K F b D D K F u K F b   + + =  + + =

( ) ( )
1 1

2 2 2 2 2 2
* * *

h v h vF u D D K K F b u F D D K K F b   
− −

 = + +  = + +

real, diagonal, full rank matrix

Direct solution of the  TIK-L2 model: restoration
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u J u D u D u K u b
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
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( )
1

2 2 2
* * *

h vu F D D K K F b 
− 

= + + 
 

( ) ( )
2 2 2

* *real ifft2 . fft2(b)   ./  diag h vu K D D K 
  =   + +  

  

How can we compute these terms in Matlab? We will see ...
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( )*  unique solution of :     T T T T

h h v vu D D D D K K u K b + + =

2 2 2*

2 2 2

1 1
arg min ( ; )

2 2 2d
h v

u

u J u D u D u K u b





 
= = + + − 

 

Direct solution of the  TIK-L2 model: restoration
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( )
1

2 2 2
* * *

h vu F D D K K F b 
− 

= + + 
 

( ) ( )
2 2 2

* *real ifft2 . fft2(b)   ./  diag h vu K D D K 
  =   + +  

  

How can we compute these terms in Matlab? We will see ...

( )*  unique solution of :     T T T T

h h v vu D D D D K K u K b + + =

2 2 2*

2 2 2

1 1
arg min ( ; )

2 2 2d
h v

u

u J u D u D u K u b





 
= = + + − 

 

Direct solution of the  TIK-L2 model: restoration

BY USING 2D FFT, COMPUTATIONAL COMPLEXITY  is  O(d log d) ... VERY FAST !!



( )*  unique solution of :     T T T T

h h v vu D D D D S S u S b + + =

It is thus convenient to solve the system by using the Conjugate Gradient method,

eventually preconditioned, or some direct method for sparse systems.

S is a diagonal binary matrix, hence S = ST = STS ; moreover, STb = b ; the problem thus reads

Direct solution of the  TIK-L2 model: inpainting
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2 2 2*

2 2 2

1 1
arg min ( ; )

2 2 2d
h v

u

u J u D u D u S u b





 
= = + + − 

 

The finite difference matrices Dh, Dv discretizing the horizontal/vertical partial first-order

derivatives are very sparse, then the coefficient matrix of the linear system above is very

sparse, as well as symmetric and positive definite.

Moreover, Dh
T, Dh, Dv

T, Dv, S, can be very efficiently implemented as operators without forming

explicitly the matrices.

( )T T

h h v vD D D D S u b + + =


