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Abstract A new majorization–minimization framework for �p–�q image restoration
is presented. The solution is sought in a generalized Krylov subspace that is build
up during the solution process. Proof of convergence to a stationary point of the
minimized �p–�q functional is provided for both convex and nonconvex problems.
Computed examples illustrate that high-quality restorations can be determined with a
modest number of iterations and that the storage requirement of the method is not very
large. A comparison with related methods shows the competitiveness of the method
proposed.
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1 Introduction

This paper is concerned with the efficient computation of approximate solutions of
�p–�q optimization problems of the form

min
x∈Rn

J (x), J (x) := Φfid(x) + μΦreg(x), (1)

where Φfid(x) is referred to as the fidelity term, Φreg(x) as the regularization term, and
μ > 0 is a regularization parameter that controls the trade-off between these terms.
The fidelity and regularization terms are defined by

Φfid(x) := 1

p
‖Ax − b‖p

p = 1

p

r∑

i=1

φp((Ax − b)i ) (2)

and

Φreg(x) := 1

q
‖Lx‖qq = 1

q

s∑

j=1

φq((Lx) j ), (3)

respectively, with the function φz : R → R+ ∪ {+∞} given by

φz(t) := |t |z, z ∈ R, (4)

where 0 < p, q ≤ 2, A ∈ R
r×n , b ∈ R

r , x ∈ R
n , and L ∈ R

s×n . We note that the
model (1)–(4) is convex and smooth when 1 < p, q ≤ 2, and nonconvex nonsmooth
when 0 < p < 1 or 0 < q < 1.

Minimization problems of the form (1)–(4) arise in a wide variety of applications
and have been studied in several different research areas, including numerical linear
algebra [1,28], image restoration [5,14,24], pattern recognition [7,16], and compres-
sive sensing [3–5,8,17]. Different choices of the parameters p andq and of the matrices
A and L yield a variety of popular models that have been applied successfully in many
fields. For instance, the model (1)–(4) with p = 2, 0 < q ≤ 1, r < n, and L the iden-
tity matrix has been used to compute sparse solutions of undetermined linear systems
of equations, while the model with p = 2, 0 < q ≤ 1, and A a sampling operator has
been applied to compressive sensing; see, e.g., Candes et al. [3,4] for a discussion of
the latter.

In this paper we are interested in the application of the model (1)–(4) to image
restoration. In this context, the entries of the vector x are the pixel values of the
unknown true image that we would like to determine, while the available noise- and
possibly blur-contaminated image is represented by the vector b. Typically, both x and
b are column-major representations of the corresponding two-dimensional images and
are of the same size (that is, r = n); however, this is not a requirement of the proposed
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method. The matrix A is the identity operator in image denoising problems and a
blurring operator when the available image is contaminated by blur. Blurring operators
generally are severely ill-conditioned and may be singular. Due to the ill-conditioning
of A and the presence of noise in b, minimization of only the fidelity term in (1)
typically yields a meaningless computed solution of very large norm. The presence
of the regularization term makes it possible to determine an accurate approximation
of the unknown true image. The matrix L ∈ R

s×n generally is chosen as a discrete
gradient operator. For instance, we may let

L:=
[
L1
L2

]
,

where L1, L2 ∈ R
(s/2)×n are first order difference operators along the horizontal and

vertical directions, respectively.
We refer to the image restoration model (1)–(4) as anisotropic, because the penal-

ization of Lx depends on the orientation of the image represented by x . This differs
from the isotropic model, considered in, e.g., [2,13], where the penalization of Lx is
independent of the orientation of the image. Specifically, in the isotropic model the
penalty terms φq(‖(Lx) j‖2), j = 1, · · · , s/2, are used, where

(Lx) j :=
[

(L1x) j
(L2x) j

]
∈ R

2, j = 1, . . . , s/2.

One of the most popular and effective approaches for the solution of the �p–�q
minimization problem defined in (1)–(4) in the general case 0 < p, q ≤ 2 is the itera-
tively reweighted norm (IRN) algorithm [23], also known as the iteratively reweighted
least-squares (IRLS) algorithm [26]. This solution approach is shown to be equiva-
lent to the (multiplicative) half-quadratic method [5] and to the gradient linearization
iterative procedure [20]. The IRN method consists of iteratively solving a sequence of
penalized weighted least-squares problems that differ from each other only by diag-
onal weighting matrices. Each one of these least-squares problem is solved by the
conjugate gradient (CG) algorithm.

Based on the observation that the weighting matrices generated by the IRN method
do not change very quickly during the iterations, the GKSpq approach has been recently
proposed in [13]. It represents an extension from the case p, q = 2 to the case 0 <

p, q ≤ 2 of the GKS method in [12]. Instead of generating a new Krylov subspace
at each iteration with the CG method as in the IRN scheme [23], the GKSpq method
solves a sequence of reweighted least-squares problems using generalized Krylov
subspaces of increasing (and low) dimension. Computed examples in [13] illustrate
that this approach may require significantly fewer matrix–vector product evaluations
than the IRN scheme.

The idea of this paper is to solve �p–�q problems of the form (1)–(4) for 0 <

p, q ≤ 2 by coupling the efficient GKS-based minimization procedure proposed in
[12] and used in [13] with the robust majorize-minimize (MM) optimization strategy
[11]. The resulting approach will be referred to as MM-GKS. The MM strategy applied
to the solution of (1)–(4) consists of replacing the original, possibly nonconvex, �p–�q
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problem by a sequence of simpler convex problems. Specifically, the kth iteration of
the standard MM approach relies on two main computational steps: a majorization
step which generates a surrogate convex function that majorizes (i.e., bounds above)
the �p–�q functional, and a minimization step which determines a minimizer of this
majorant function:

• Majorization: Generate a majorant M(x, x (k)) for J (x) near x (k).

• Minimization: Compute the next iterate by solving

x (k+1) = arg min
x∈Rn

M(x, x (k)). (5)

Commonly used majorants proposed in the literature include quadratic [23,26],
piecewise affine [4,28] and convex-nonconvex [15] functions, which correspond to the
so-called �2, �1 and CNC majorization strategies. In general, the tighter the majorant
is to the objective functional, the fewer iterations are needed for the MM approach to
converge, but the higher is the computational cost for carrying out the minimization
in (5) at each iteration. A comparison of the performance of methods based on these
different majorization strategies is a research problem in its own right. Moreover, the
usage of �1 and CNC majorants is limited to more specific classes of objectives than
the quadratic ones.

In this paper, we consider quadratic majorants such that (5) takes the form of a
regularized linear least-squares problem, which allows for application of general-
ized Krylov subspaces. In particular, we consider two different—and to some extent
opposite—quadratic majorization strategies, which will be referred to as adaptive and
fixed. Accordingly, two versions of the MM-GKS approach will be proposed and
compared, referred to as AMM-GKS (adaptive), and FMM-GKS (fixed). We are par-
ticularly (but not only) interested in the robust and efficient solution of the �p–�q
model (1)–(4) in its nonconvex (and nonsmooth) regime, that is for min{p, q} < 1. In
fact, it is well known that image restoration methods based on the use of nonconvex
functions Φfid and/or Φreg hold the potential for yielding restorations of high quality
with sharp edges and homogeneous regions; see, e.g., [5,13,20] for illustrations.

Summarizing, the key contributions of this paper are the following:

(a) Presentation of a new unified formulation of MM methods for �p–�q optimization
problems of the form (1)–(4) in the general case 0 < p, q ≤ 2. Our formula-
tion presents a common framework for adaptive and fixed quadratic majorization
strategies.

(b) Development of an efficient algorithm for minimizing the (convex) surrogate
function in (5), named FMM-GKS strategy.

(c) Analysis of convergence of the discussed MM-GKS methods: we demonstrate
that both the AMM-GKS and the FMM-GKS algorithms converge to a stationary
point of the �p–�q objective functional in (1)–(4) for any 0 < p, q ≤ 2.

We remark that the AMM-GKS method is mathematically and numerically equiva-
lent to the GKSpq method proposed in [13]. Our derivation in the present paper, based
on the MM approach, is new.
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This paper is organized as follows. Sections 2 and 3 discuss in detail the majoriza-
tion and minimization steps of the proposed MM-GKS approach applied to the �p–�q
problem (1)–(4). More precisely, Sect. 2 describes the strategy used to generate adap-
tive or fixed quadratic majorants, whereas Sect. 3 expresses the minimization steps as
penalized least-squares problems. The efficient solution of these problems by a suitable
implementation of the GKS strategy is considered in Sect. 4. The overall MM-GKS
algorithm is summarized in Sect. 5, where the computational cost of both the adaptive
and fixed MM strategies is discussed. Convergence of the MM-GKS approach is ana-
lyzed in Sect. 6. Numerical examples are presented in Sect. 7 and concluding remarks
can be found in Sect. 8.

1.1 Related work

We conclude this section with some comments on alternative approaches to the solu-
tion of the minimization problem (1)–(4). In the special case of p = q = 2, the
minimization problem (1)–(4) is a Tikhonov-regularized linear least-squares problem
with regularization matrix L . An efficient iterative algorithm, based on the frame-
work developed by Voss [25] for the solution of nonlinear eigenvalue problems, for
the solution of large-scale Tikhonov regularization problems with automatic selec-
tion of the regularization parameter μ is proposed in [12]. This method determines
successive orthogonal projections onto generalized Krylov subspaces of increasing
(and low) dimension. We refer to this kind of solution approach as generalized Krylov
subspace (GKS) methods. Candes et al. [4] introduced the iteratively reweighted �1
(IRL1) method to solve the problem (1)–(4) when L = I and p = 2. The aim of
this work is to approximate the “0-norm” regularization term. Ramlau and Zarzer [21]
describe how, when p = 2 in (2) and 0 < q < 1 in (3), the minimization problem
(1) can be transformed into a nonlinear system of equations, which can be solved by a
Newton method. The concave–convex procedure described in, e.g., [10,27], is based
on expressing the functional (1) as the sum of a convex and a concave function. A
solution can be computed with the aid of a majorization–minimization method. The
concave–convex procedure can be applied to a variety of optimization problems. A
careful comparison of these approaches is outside the scope of the present paper. Here
we only note that the fixed majorization–minimization approach of this paper is com-
petitive with the adaptive majorization–minimization described in [13], which in turn
is faster than the popular IRN method proposed in [23]. The latter method is related
to the attractive half-quadratic algorithm recently discussed in [5].

2 The majorization step

This section introduces fixed and adaptive majorants for the �p–�q functional J (x)
defined by (1)–(4). We are particularly interested in quadratic majorants, for which
we give the following definition.

Definition 1 Let G(x) : Rn → R be a continuously differentiable function. Then the
function Q(x, v) : Rn ×R

n → R is said to be a quadratic tangent majorant for G(x)
if and only if for any v ∈ R

n all the following conditions hold:
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Fig. 1 Plots of the penalty function φz(t) defined in (4) for some different z-values (a), and of the associated
smoothed functions φz,ε(t) defined in (6) with ε = 0.1 (b)

(c1) Q(x, v) is quadratic in x,

(c2) Q(v, v) = G(v),

(c3) ∇xQ(v, v) = ∇xG(v),

(c4) Q(x, v) ≥ G(x) ∀ x ∈ R
n,

where ∇x denotes the gradient with respect to the variable x .

Since the fidelity and regularization terms of J (x) consist of the sum of r terms
with the function φp and s terms with the function φq , respectively, majorization of
J (x) reduces to finding majorants for the functions φp and φq , that is, in general,
for functions φz in (4) with z ∈ ] 0, 2 ]. Note that if p ∈ ] 0, 1 ] (or q ∈ ] 0, 1 ]), then
the functional J (x) in (1)–(4) is nonsmooth and all the occurrences of φp (or φq ) in
J (x) are nonsmooth functions both of their scalar arguments (Ax − b)i (or (Lx) j )
and of the optimization variable x . This follows from the definition of φz in (4) and is
illustrated by the plots of Fig. 1a: if z ∈ ] 1, 2 ], then φz is smooth and convex, whereas
φz is nonsmooth and convex for z = 1, and nonsmooth and nonconvex for z ∈ ] 0, 1 [ .

According to Definition 1, in particular condition (c3), quadratic majorization is
possible only for continuously differentiable functions J (x). Therefore the �p–�q
functional J (x) in (1)–(4) admits a quadratic tangent majorant for p, q ∈ ] 1, 2 ], but
not for p ∈ ] 0, 1 ] and/or q ∈ ] 0, 1 ]. For this reason, one commonly smooths the
penalty function φz to make it differentiable also for z ∈ ]0, 1]. A popular smoothed
version of φz is given by

φz,ε(t) :=
(√

t2 + ε2
)z

with

{
ε > 0 for z ∈]0, 1],
ε = 0 for z ∈]1, 2]. (6)

To allow quadratic majorization, we thus turn the possibly nonsmooth original �p–�q
minimization problem (1)–(4) into the following smoothed minimization problem
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min
x∈Rn

Jε(x), Jε(x) := 1

p

r∑

i=1

φp,ε((Ax − b)i ) + μ

q

s∑

j=1

φq,ε((Lx) j ), (7)

where a common value ε > 0 of the smoothing parameter is used for the penalty
functions in the fidelity and regularization terms. In the remainder of this section, we
first discuss how to majorize the one-variable scalar penalty function φz,ε(t) defined
by (6), and then present candidate majorants for the smoothed �p–�q functional Jε(x)
in (7).

2.1 Majorization of the smoothed penalty function φz,ε

The penalty function φz,ε defined by (6) is continuously differentiable with derivative

φ′
z,ε(t) = zt

(√
t2 + ε2

)z−2 = ztφz−2,ε(t).

Figure 1a, b show the original and smoothed penalty functions φz and φz,ε, respectively,
for the parameter z in the interval ] 0, 2 ] of interest in this paper. Note that the function
φz is not smoothed when z ∈] 1, 2 ], i.e., φz,ε coincides with φz in this case. The
following proposition describes the family of all possible quadratic majorants for
φz,ε .

Proposition 1 Let φz,ε(t) : R → R+ be the smoothed penalty function defined by
(6) with z ∈ ] 0, 2 ]. Then any function mz,ε(t, v) : R × R → R+ belonging to the
av-parameterized family determined by

mz,ε(t, v) := av (t − bv)
2 + cv (8)

with

av∈[av,+∞[, av = φ′
z,ε(v)

2v
= z

2
φz−2,ε(v), (9)

bv = v − φ′
z,ε(v)

2av

= v
(
1 − av/av

)
, (10)

cv = φz,ε(v) −
(
φ′
z,ε(v)

)2

4av

= φz,ε(v) − v2 av
2/av, (11)

is a quadratic tangent majorant for φz,ε(t), i.e., according to Definition 1:

mz,ε(v, v) = φz,ε(v) ∀ v ∈ R, (12)

m′
z,ε(v, v) = φ′

z,ε(v) ∀ v ∈ R, (13)

mz,ε(t, v) ≥ φz,ε(t) ∀ v ∈ R, ∀ t ∈ R. (14)
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Proof Substituting t by v in (8), with av , bv , cv defined in (9)–(11) gives

mz,ε(v, v) = av

(
���v − v + vav/av

)2 + φz,ε(v) − v2av
2/av

= ������
av v2av

2/a2
v + φz,ε(v) −����

v2av
2/av

= φz,ε(v),

which shows (12). The first-order derivative of the majorant function mz,ε in (8) with
respect to t evaluated at v is given by

m′
z,ε(v, v) = 2av(v − bv) = 2av

(
vav/av

) = 2vav

= �2v
z

�2
φz−2,ε(v) = φ′

z,ε(v).

This shows (13).
To complete the proof, it suffices to demonstrate that (14) holds if for any v ∈ R

we take the quadratic majorant (i.e., the parabola) that has the maximum possible
aperture, that is if we take av = av with av defined in (9). Let m(A)

z,ε (t, v) denote the
majorant obtained in this way, where the superscript A will be justified below. We
notice that all the other parabolas defined by av > av in (9) have a smaller aperture

and, hence, are majorants for m(A)
z,ε (t, v). It is immediate to verify that replacing av by

av in (10) yields bv = 0, that is m(A)
z,ε (t, v) is an even function of the variable t . Since

φz,ε(t) is even as well, to prove (14) it suffices to demonstrate that, for any v > 0,
m(A)

z,ε (t, v) is a majorant for φz,ε(t) for any t > 0. Moreover, since both m(A)
z,ε (t, v) and

φz,ε(t) are continuously differentiable functions, we can write

m(A)
z,ε (t, v) = m(A)

z,ε (v, v) +
∫ t

v

m
′(A)
z,ε (τ, v) dτ, (15)

φz,ε(t) = φz,ε(v) +
∫ t

v

φ′
z,ε(τ ) dτ. (16)

Subtracting (16) from (15) and recalling (12), we obtain

m(A)
z,ε (t, v) − φz,ε(t) =

∫ t

v

(m
′(A)
z,ε (τ, v) − φ′

z,ε(τ )) dτ

=
∫ t

v

(2av τ − φ′
z,ε(τ )) dτ

=
∫ t

v

(
φ′
z,ε(v)

v
τ − φ′

z,ε(τ )

)
dτ

=
∫ t

v

τ

(
φ′
z,ε(v)

v
− φ′

z,ε(τ )

τ

)
dτ

= z
∫ t

v

τ (φz−2,ε(v) − φz−2,ε(τ ))dτ . (17)
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Fig. 2 Plots of some quadratic majorants mz,ε(t, v) at v = 0.7 for φz,ε(t) (solid red graph) (a), and plots

of the adaptive quadratic majorants m(A)
z,ε (t, v) defined by (19) (solid black graph) and of the fixed quadratic

majorants m(F)
z,ε (t, v) defined by (21) (dashed blue graph) for the majorization points v = 0.7 (b), v = 0.3

(c), v = 0.15 (d)

Now rewriting (17), taking the limits of integration into account, yields

m(A)
z,ε (t, v) − φz,ε(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z
∫ t

v

τ (φz−2,ε(v) − φz−2,ε(τ ))dτ if t > v,

0 if t = v,

z
∫ v

t
τ (φz−2,ε(τ ) − φz−2,ε(v))dτ if t < v.

(18)

Since z ∈] 0, 2 ], it follows that the function

φz−2,ε(t) = 1
(
t2 + ε2

)1−z/2

is monotonically decreasing in t for t > 0 for any fixed ε ≥ 0. Hence, the integrands in
(18) are nonnegative for any τ in their domains of integration with t, v > 0. Therefore,
the two integrals in (18) are nonnegative and m(A)

z,ε (t, v) is a majorant for φz,ε(t).

Figure 2a displays several majorants at v = 0.7 for the nonconvex smoothed penalty
function φz,ε with z = 0.3 and ε = 0.1, which is depicted in solid red. The solid black
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curve in Fig. 2a shows the maximum-aperture majorant parabola m(A)
z,ε (t, v) obtained

by setting av = av in (8) with av defined in (9), while the dotted black curves display
three majorant parabolas at the same point v = 0.7 with av > av . The following
definition introduces two important alternative quadratic majorization strategies.

Definition 2 (Adaptive and fixed quadratic majorants) Let φz,ε(t) be the smoothed
penalty function defined in (6) with z ∈ ] 0, 2 ] and let mz,ε(t, v) be the family of
associated quadratic tangent majorants defined in (8)–(11).

– If for every v ∈ R, the parameter av is chosen as the lower limit of the admissible
interval given in (9), that is av = av , then the quadratic majorant (8) takes the
adaptive form:

m(A)
z,ε (t, v) = avt

2 + φz,ε(v) − v2av

= z

2
φz−2,ε(v)t2 + φz,ε(v) − v2 z

2
φz−2,ε(v)

︸ ︷︷ ︸
independent o f t

. (19)

– If for every v ∈ R the parameter av is chosen independently of v as follows

av = āz,ε, āz,ε = max
v∈R av =, max

v∈R

(
φ′
z,ε(v)

2v

)
= z

2
εz−2, (20)

then the quadratic majorant (8) takes the fixed form:

m(F)
z,ε (t, v) = āz,ε(t − v(1 − av/āz,ε))

2 + φz,ε(v) − v2av
2/āz,ε

= āz,ε(t
2 − 2v(1 − av/āz,εt)

+φz,ε(v) + v2(āz,ε(1 − av/āz,ε)
2 − av

2/āz,ε)

= āz,εt
2 − 2 v(āz,ε − av)t + φz,ε(v) − v2(2av − āz,ε)

= z

2
(εz−2t2 − 2 v(εz−2 − φz−2,ε(v))t)

+φz,ε(v) − v2 z

2
(2φz−2,ε(v) − εz−2)

︸ ︷︷ ︸
independent o f t

. (21)

The last equality in (20) follows from the fact that the maximum is achieved at
v = 0. Therefore, among all possible adaptive majorants (one for each majorization
point v ∈ R), the one that is tangent to the penalty function φz,ε(t) at t = 0 has the
smallest aperture. This can be observed in Fig. 2b–d, where we show the adaptive and
fixed quadratic majorants m(A)

z,ε (t, v) and m(F)
z,ε (t, v) for the same nonconvex smoothed

penalty function φz,ε(t) of Fig. 2a for different majorization points v. One can notice
that both majorants m(A)

z,ε (t, v) and m(F)
z,ε (t, v) vary with v. However, m(F)

z,ε (t, v) only
translates with fixed aperture, whereas m(A)

z,ε (t, v) also adapts its aperture, hence the
names fixed and adaptive.
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2.2 Majorization of the smoothed � p − �q functional

Based on the results in the previous section, we introduce candidate quadratic majo-
rants for the smoothed �p–�q functional Jε(x) in (7). More precisely, at each iteration
k, we seek to construct a quadratic function Q(x, x (k)) that is a tangent majorant for
Jε(x) near the previously computed iterate x (k), so that the new iterate x (k+1) can be
sought by minimizing Q(x, x (k)). Introduce the majorization points for the penalty
functions φp,ε and φq,ε of the fidelity and regularization terms of Jε(x), respectively:

v
(k)
i := (

Ax (k) − b
)
i , i = 1, . . . , r, (22)

u(k)
j := (

Lx (k))
j , j = 1, . . . , s. (23)

The scalars v
(k)
i and u(k)

j should be considered constants, since the previous iterate

x (k) is fixed. We can now construct the quadratic majorant Q(x, x (k)) for Jε(x) in (7)
by replacing all penalty functions φp,ε and φq,ε by their associated quadratic tangent

majorants at the points v
(k)
i and u(k)

j , and in (22) and (23) using the formulas of
Definition 2. In the following subsections, we derive expressions for the adaptive and
fixed quadratic majorants used in the computed examples.

2.2.1 Adaptive quadratic majorants

Replacing the functions φp,ε and φq,ε in (7) by the associated adaptive quadratic

majorants defined in (19) at the points v
(k)
i and u(k)

j given in (22) and (23), respectively,

we obtain the following adaptive quadratic majorant Q(A)(x, x (k)) for Jε(x) at the
point x (k):

Q(A)(x, x (k)) = 1

p

r∑

i=1

m(A)
p,ε((Ax − b)i , v

(k)
i )+μ

q

s∑

j=1

m(A)
q,ε ((Lx) j , u

(k)
j )

= 1

2

r∑

i=1

φp−2,ε(v
(k)
i )(Ax − b)2

i +
μ

2

s∑

j=1

φq−2,ε(u
(k)
j )(Lx)2

j + c,

(24)

where we collect all terms that are independent of x in the term c.
Define the vectors w

(k)
fid ∈ R

r and w
(k)
reg ∈ R

s of majorization weights for the fidelity
and regularization terms, respectively, as follows:

w
(k)
fid = φp−2,ε(v

(k)) = ((v(k))2 + ε2)p/2−1, (25)

w(k)
reg = φq−2,ε(u

(k)) = ((u(k))2 + ε2)q/2−1, (26)

where all the operations in (25), (26) are component-wise and the last equalities in
(25), (26) follow from the definition of the smoothed penalty function φz,ε in (6).
Introduce the diagonal matrices
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W (k)
fid = diag(w

(k)
fid ) ∈ R

r×r , W (k)
reg = diag(w(k)

reg) ∈ R
s×s .

They allow us to express the adaptive quadratic majorant in (24) in the following
compact form:

Q(A)(x, x (k)) = 1

2
‖(W (k)

fid )1/2(Ax − b)‖2
2 + μ

2
‖(W (k)

reg )1/2Lx‖2
2 + c. (27)

2.2.2 Fixed quadratic majorants

Replacing the functions φp,ε and φq,ε in (7) by the associated fixed quadratic majorants

defined in (21) at the points v
(k)
i and u(k)

j given in (22) and (23), respectively, we obtain

the following fixed quadratic majorant Q(F)(x, x (k)) for Jε(x) at the point x (k):

Q(F)(x, x (k)) = 1

p

r∑

i=1

m(F)
p,ε ((Ax − b)i , v

(k)
i ) + μ

q

s∑

j=1

m(F)
q,ε ((Lx) j , u

(k)
j )

= ε p−2

2

r∑

i=1

[
(Ax − b)2

i − 2v
(k)
i

(
1 − φp−2,ε(v

(k)
i )

ε p−2

)
(Ax − b)i

]

+μεq−2

2

s∑

j=1

[
(Lx)2

j − 2u(k)
j

(
1 − φq−2,ε(u

(k)
j )

εq−2

)
(Lx) j

]
+ c,

(28)

where similarly as above, we collect all terms that are independent of x in the term
c. Define the two vectors w

(k)
fid ∈ R

r and w
(k)
reg ∈ R

s of majorization weights for the
fidelity and regularization terms by:

w
(k)
fid = v(k)

(
1 − φp−2,ε(v

(k))

ε p−2

)
= v(k)

⎛

⎝1 −
(

(v(k))2 + ε2

ε2

)p/2−1
⎞

⎠ , (29)

w(k)
reg = u(k)

(
1 − φq−2,ε(u(k))

εq−2

)
= u(k)

⎛

⎝1 −
(

(u(k))2 + ε2

ε2

)q/2−1
⎞

⎠ . (30)

It follows that the fixed quadratic majorant (28) can be expressed in the compact form:

Q(F)(x, x (k)) = ε p−2

2
(‖Ax − b‖2

2 − 2〈w(k)
fid , Ax〉)

+μεq−2

2
(‖Lx‖2

2 − 2〈w(k)
reg, Lx〉) + c. (31)
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3 The minimization step

Recalling the definitions (27) and (31) of the adaptive and fixed quadratic majorants
Q(A)(x, x (k)) and Q(F)(x, x (k)), respectively, the minimization steps in the kth itera-
tion of the adaptive and fixed MM-GKS approaches can be written as

x (k+1) = arg min
x∈Rn

[ ∥∥∥∥
(
W (k)

fid

)1/2
(Ax − b)

∥∥∥∥
2

2
+ μ

∥∥∥∥
(
W (k)

reg

)1/2
Lx

∥∥∥∥
2

2

]
(32)

and

x (k+1) = arg min
x∈Rn

[
‖Ax − b‖2

2 − 2
〈
w

(k)
fid , Ax

〉
+ η

(
‖Lx‖2

2 − 2
〈
w(k)

reg, Lx
〉 )]

, (33)

respectively, where the constant terms and the factor 1/2 have been omitted in both
(32) and (33), and where we have introduced the constant

η := μ
εq−2

ε p−2

in (33). The optimization problems (32) and (33) are regularized (or penalized) least-
squares problems. Introduce the n × n matrices

T (A)
(
Wfid,Wreg

) := ATWfidA + μLTWregL, (34)

T (F) := AT A + ηLT L . (35)

The normal equations associated with the adaptive and fixed quadratic minimization
problems (32) and (33) can be written as

T (A)
(
W (k)

fid ,W (k)
reg

)
x = ATW (k)

fid b, (36)

T (F)x = AT
(
b + w

(k)
fid

)
+ ηLTw(k)

reg. (37)

Note that the matrix T (F) of the normal equations (37) associated with the fixed
majorization strategy does not depend on the majorization weights, that is, it is fixed
during the MM-GKS iterations. We will see in the next section how this property
allows for efficient solution.

The linear systems of Eqs. (36) and (37) have unique solutions if the matrices T (A)

and T (F) are nonsingular for all iterations, that is, if the following conditions hold for
all k:

Ker(ATW (k)
fid A)∩ Ker(LTW (k)

reg L) = {0}, (38)

Ker(AT A)∩ Ker(LT L) = {0}, (39)
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where Ker(M) denotes the null space of the matrix M . We notice that the constants
μ in (34) and η in (35) are positive. Since the majorization weights are positive as
well, the diagonal matrices W (k)

fid and W (k)
reg are positive definite. Therefore, condition

(38) is equivalent to condition (39). The latter condition is typically satisfied for image
restoration problems, because A represents a blurring operator, which is a low-pass
filter, while the regularization matrix L usually is a difference operator and, hence, is
a high-pass filter.

4 Efficient solution of the normal equations

When (39) holds, the matrices T (A) and T (F) in (34), (35) are symmetric positive
definite. They generally also are structured and quite sparse, depending on the size
of the blur kernel. Therefore, the normal equations (36), (37) can be solved quite
efficiently iteratively by the conjugate gradient (CG) method.

The popular IRN approach [23] consists of an adaptive quadratic majorization step
and a CG-based minimization step: at each (outer) iteration k = 0, 1, . . . of the MM
iterative procedure (5), the new iterate x (k+1) is obtained by applying the CG method
to solve the normal equations in (36) with the matrix T (A) defined in (34) and the
adaptive majorization weights given in (25), (26). For each k, the CG method generates
a new Krylov subspace, because the matrix T (A) varies with k due to adaptivity of the
majorization weights.

The basic idea behind the GKSpq approach described in [13] is to determine gen-
eralized Krylov subspaces of increasing (and not very large) dimension instead of
determining several (standard) Krylov subspaces. We use generalized Krylov sub-
spaces also in the method proposed in the present paper. They are constructed as
follows. First, an initial user-chosen Krylov subspace V0 ⊂ R

n is generated. Similarly
as in [12], we define the subspace V0 = Kl(AT A, AT b) for some l ≤ 5. Let the
columns of the matrix V0 ∈ R

n×l form an orthonormal basis for the space V0.
Let Vk denote the generalized Krylov subspace at step k of our solution method.

It is of dimension k + l. Let the columns of the matrix Vk form an orthonormal
basis for this subspace. We will now describe how the columns are determined. Let
x (k+1) = Vk y(k+1) denote the solution of (36) restricted to the subspaceVk . The vector
y(k+1) is computed by solving the reduced least-squares problem

min
y∈Rk+l

∥∥∥∥

[ (
Wfid

)1/2
AVk

μ1/2
(
Wreg

)1/2
LVk

]
y −

[ (
Wfid

)1/2
b

0

] ∥∥∥∥
2

2

. (40)

Similarly, the solution x (k+1) = Vk y(k+1) of (37) restricted to Vk is computed by
determining the solution y(k+1) of the least-squares problem

min
y∈Rk+l

∥∥∥∥

[
AVk

η1/2LVk

]
y −

[
b + w

(k)
fid

η1/2w
(k)
reg

] ∥∥∥∥
2

2

. (41)
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4.1 GKS for the fixed case

Let Vk ∈ R
n×d , d = k + l � n, and introduce the QR factorizations

AVk = QARA with QA ∈ R
r×d , RA ∈ R

d×d ,

LVk = QL RL with QL ∈ R
s×d , RL ∈ R

d×d ,

where the matrices QA and QL have orthonormal columns and the matrices RA and
RL are upper triangular. Substituting these factorizations into (41) yields the low-
dimensional minimization problem

min
y∈Rk+l

∥∥∥∥

[
RA

η1/2RL

]
y −

[
QT

A(b + w
(k)
fid )

η1/2QT
Lw

(k)
reg

] ∥∥∥∥
2

2

(42)

with the associated normal equations

(RT
A RA + ηRT

L RL)y = RT
AQ

T
A(b + w

(k)
fid ) + ηRT

L Q
T
Lw(k)

reg.

The residual r (k+1) of (37) can be computed according to

r (k+1) = T (F)x (k+1) − AT (b + w
(k)
fid ) − ηLTw(k)

reg

= AT (AV y(k+1) − b − w
(k)
fid ) + ηLT (LV y(k+1) − w(k)

reg). (43)

Following Voss [25], the subspace Vk is expanded to Vk+1 by adding a new basis
vector vnew to Vk , with the latter chosen as the normalized residual r (k+1). Thus,

vnew := r (k+1)

‖r (k+1)‖2
, Vk+1 := [Vk, vnew].

To enforce orthogonality in the presence of round-off errors, the residual r (k+1) is
reorthogonalized against Vk before normalization.

When the new vector vnew is added to the solution subspace, the matrices AVk and
LVk are updated to obtain AVk+1 and LVk+1, respectively. We can implement these
updates as follows

AVk+1 := [AVk, Avnew], LVk+1 := [LVk, Lvnew].

This requires the evaluation of the matrix–vector products Avnew and Lvnew. Then the
QR factorizations AVk = QARA and LVk = QL RL are updated according to

A[Vk, vnew] = [QA, q̃A,k+1]
[
RK rK ,k+1
0 τK ,k+1

]
,

L[Vk, vnew] = [QL , q̃L ,k+1]
[
RL rL ,k+1
0 ιL ,k+1

]
;
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see Daniel et al. [6] for a detailed discussion on updating and downdating of the QR
factorization. The new vectors in the above factorizations are obtained by

rA,k+1 = QT
A(Avnew), qA,k+1 = Avnew − rA,k+1,

τA,k+1 = ‖qA,k+1‖, q̃A,k+1 = qA,k+1/τA,k+1,

rL ,k+1 = QT
L (Lvnew), qL ,k+1 = Lvnew − rL ,k+1, (44)

ιL ,k+1 = ‖qL ,k+1‖, q̃L ,k+1 = qL ,k+1/ιL ,k+1.

4.2 GKS for the adaptive case

Let Vk ∈ R
n×d , d = k + l � n, and introduce the QR factorizations

W 1/2
fid AVk = QARA with QA ∈ R

r×d , RA ∈ R
d×d , (45)

W 1/2
reg LVk = QL RL with QL ∈ R

s×d , RL ∈ R
d×d . (46)

Thus, the matrices QA and QL have orthonormal columns and the matrices RA and
RL are upper triangular. Substituting these factorizations into (40) yields the low-
dimensional minimization problem

min
y∈Rk+l

∥∥∥∥

[
RA

μ1/2RL

]
y −

[
QT

AW
1/2
fid b

0

] ∥∥∥∥
2

2

(47)

with the associated normal equations

(
RT
A RA + μRT

L RL
)
y = RT

AQ
T
AWfidb.

Recalling the definition (34) of the matrix T (A)(WR,WF ) and using the fact that
x (k+1) = Vk y(k+1), the residual r (k+1) of (36) can be computed according to

r (k+1) = T (Wfid,Wreg) x
(k+1) − ATWfidb

= (ATWfidA + μLTWregL) x (k+1) − ATWfidb

= ATWfid(AVk y
(k+1) − b) + μLTWreg(LVk y

(k+1)) . (48)

The subspace Vk is then expanded to Vk+1 in the same fashion as above, that is by
adding the new unit vector vnew obtained by normalizing the residual r (k+1) in (48).

5 The MM-GKS algorithm

Algorithm 1 shows the main steps of the MM-GKS iterative method. Both the adaptive
and fixed approaches are described by Algorithm 1, but clearly they have been imple-
mented as separated algorithms that we will denote by AMM-GKS and FMM-GKS,
respectively.
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Algorithm 1 Main computational steps of the proposed MM-GKS method for the
solution of the (smoothed) �p–�q optimization problem in (6), (7)

inputs: A ∈ R
r×n , L ∈ R

s×n s.t. (39) holds, b ∈ R
r , 0 < p, q ≤ 2, μ > 0

output: approximate solution x∗ of (6), (7)

1. Initialization: • set x(0) = b

• generate the initial subspace: V0 ∈ R
n×l s.t. V T

0 V0 = I

2. for k = 0, 1, . . . until convergence do

• Majorization:

3. • generate the quadratic majorant Q(A)(x, x(k)) (or Q(F)(x, x(k)))

by computing the weights w
(k)
fid , w

(k)
reg in (25), (26) (or (29), (30))

• Minimization:

4a. • compute (or update) the QR factorizations by (45)–(46) (or (45))

4b. • compute the solution y(k+1) of reduced problem (47) (or (42))

• GKS update:

5a. • compute the residual r (k+1) of (36) by (48) (or of (37) by (43))

5b. • compute the new basis vector vnew by normalizing r (k+1)

5c. • enlarge the GKS and update matrices AV and LV :

Vk+1 = [
Vk , vnew

]
, AVk+1 = [

AVk , Avnew
]
, LVk+1 = [

LVk , Lvnew
]

6. end for

7. Compute the approximate solution x∗ = Vk y
(k+1)

The solution of the minimization step is determined in a generalized Krylov sub-
space. We comment on a few details of the algorithm starting with the computational
cost. An orthonormal basis for the initial solution subspace V0 = Kl(AT A, AT b) is
determined by carrying out l steps of Golub–Kahan bidiagonalization of the matrix
A with initial vector b. This requires the evaluation of l − 1 matrix–vector products
(MVPs) with the matrix A and l MVPs with AT . The matrix AT A does not have
to be formed. The computation of an orthonormal basis for Kl(AT A, AT b) is fairly
inexpensive when l is small. For efficiency reasons, we store and update the matrices
AVk and LVk during the iterations.

We choose the initial approximate solution x0 = b in Algorithm 1. It therefore
would appear natural to let the initial Krylov subspace be Kl(AT A, AT r0) with r0 =
b − Ax0 instead of Kl(AT A, AT b). However, numerical experiments show that the
latter subspace generally gives more accurate approximations of the desired image in
fewer iterations than the former. We therefore define the initial Krylov subspace V0 as
described.
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The cost of the majorization Step 3 reduces to the computation of the vec-
tors of majorization weights w

(k)
fid and w

(k)
reg which is negligible. In fact, the vectors

AVk y(k+1) − b and LVk y(k+1) already have been computed in (48) when evaluating
the residual r (k+1) in the previous iteration and are reused. Concerning the mini-
mization step, the cost in Step 4b for solving the normal equations projected into
the generalized Krylov subspace Vk , is negligible for k � n, which is always the
case.

The main computational difference between the AMM-GKS and FMM-GKS algo-
rithms is in Step 4a of Algorithm 1. In the AMM-GKS algorithm, the computation
of the QR factorizations (45), (46) demands about 2r(k + l)2 and 2s(k + l)2 arith-
metic floating point operations (flops), respectively. The FMM-GKS algorithm does
not require the recomputation of the QR factorizations. Instead, these factorizations
are updated according to (45). The cost is dominated by two MVPs, one with the
matrix QT

A ∈ R
(l+k)×r and one with the matrix QT

L ∈ R
(l+k)×s . The computa-

tional effort is negligible in comparison with the MVPs required in Step 4a of AMM-
GKS.

As far as the GKS updating step is concerned, the computational effort required
to determine the residual in Step 5a is dominated by one MVP with each one of the
matrices AT and LT for both the AMM-GKS and FMM-GKS algorithms. The cost
of Step 5b is clearly negligible, whereas the updates of the matrices AVk and LVk in
Step 5c requires two MVPs, one with A and one with L .

In summary, the overall computational cost for k iterations of the AMM-GKS and
FMM-GKS algorithms is dominated by the work required to evaluate 4k MVPs with
matrices A, AT , L , and LT , and for the AMM-GKS algorithm in addition to the
computations required for Step 4a. The latter computations are not required by the
FMM-GKS algorithm.

6 Convergence analysis

In this section we analyze the convergence of the MM-GKS approach, whose main
steps are given in Algorithm 1, in both its adaptive and fixed forms. The presented
results extend the convergence analysis carried out in [13], which was limited to the
AMM-GKS method and to the convex case 1 ≤ p, q ≤ 2.

First, we notice that for securing that the MM-GKS approach does not break down,
we have to require that at each iteration k the solutions y(k+1) of the reduced least-
squares problems (40) or (41) exist and are unique. We therefore assume that condition
(39) is satisfied; cf. the discussion at the end of Sect. 3.

Using the MM formulation, our MM-GKS approach can be written as follows:

x (k+1) =

⎧
⎪⎨

⎪⎩

arg min
x∈Vk

Q(x, x (k)) for k = 0, 1, . . . , n − l − 1,

arg min
x∈Rn

Q(x, x (k)) for k = n − l, n − l + 1, . . . ,
(49)

where l ≥ 1 is the dimension of the user-specified initial subspace V0, Vk is the
generalized Krylov subspace used at iteration k, and Q(x, x (k)) is either the adaptive
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quadratic majorant Q(A)(x, x (k)) or the fixed quadratic majorant Q(F)(x, x (k)). To
justify (49), we recall that the subspace Vk , in which in the kth iteration the MM-GKS
algorithm computes the new approximate solution x (k+1), is of dimension l+k. Hence,
from iteration n− l and onwards, the subspace Vk is equivalent to the whole space Rn

and cannot be enlarged further.
In the following, we denote by {x (k)}k≥1 the sequence of iterates generated by the

MM-GKS algorithm applied to the minimization of the smoothed �p–�q functional
defined in (6), (7) with 0 < p, q ≤ 2. Properties of the sequence of values Jε(x (k)),
k = 0, 1, . . ., are described by the following theorem, whose proof can be found in
[13].

Theorem 2 Let condition (39) hold. Then, for any initial guess x (0) ∈ R
n, the

sequence {Jε(x (k))}k≥0 is monotonically nonincreasing and convergent.

In the remainder of this section, we analyze the behavior of the sequence of iterates
{x (k)}k≥1.

Proposition 3 For any initial guess x (0) ∈ R
n and for any k ≥ 0, the majorization

error function E(x, x (k)), defined by

E(x, x (k)) := Q(x, x (k)) − Jε(x), (50)

has the following properties:

E(x, x (k)) ∈ C1(Rn), (51)

E(x, x (k)) ≥ 0 ∀x ∈ R
n, (52)

E(x (k), x (k)) = 0, (53)

∇xE(x (k), x (k)) = 0, (54)

∇xE(x (k+1), x (k)) = −∇xJε(x
(k+1)). (55)

Moreover, ∇xE(x, x (k)) is L-Lipschitz continuous, i.e., there exists a constant L > 0
such that

∥∥∇xE(x1, x
(k)) − ∇xE(x2, x

(k))
∥∥

2 ≤ L‖x1 − x2‖2 ∀x1, x2 ∈ R
n . (56)

Proof Property (51) follows immediately from the definition of the majorization error
function (50), and from Q(x, x (k)) and Jε(x) being continuously differentiable func-
tions of x . Properties (52)–(54) follow from definition (50) and from Q(x, x (k)) being
a quadratic tangent majorant for Jε(x) at x (k) according to Definition 1. Turning to
property (55), we obtain from definition (50) that

∇xE(x (k+1), x (k)) = ∇xQ(x (k+1), x (k)) − ∇xJε(x
(k+1)). (57)
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Since Q(x, x (k)) is a strictly convex quadratic function of x and x (k+1) represents its
global minimizer, ∇xQ(x (k+1), x (k)) = 0, and (55) is a consequence of (57). Finally,
property (56) follows from the gradients of the functions Q(x, x (k)) and Jε(x) being
L-Lipschitz continuous.

Definition 3 A convex (not necessarily differentiable) function f (x) is said to be δ-
strongly convex if and only if there exists a constant δ > 0, called the modulus of
strong convexity of f , such that the function f (x) − δ

2 ‖x‖2
2 is convex.

The following result is shown in [18,19].

Lemma 4 Let f (x) : Rn → R be a δ-strongly convex function, and let x∗ ∈ R
n be a

minimizer of f (x). Then

δ

2
‖x − x∗‖2

2 ≤ f (x) − f (x∗) ∀x ∈ R
n . (58)

Theorem 5 Let condition (39) hold. Then, for any initial guess x (0) ∈ R
n, the

sequence {x (k)}k≥1 converges to a stationary point of Jε(x). Thus,

a. lim
k→∞ ‖ x (k+1) − x (k)‖2 = 0,

b. lim
k→∞ ∇xJε(x

(k)) = 0.

Proof Let us consider the quadratic majorant function Q(x, x (k)) generated by the
MM-GKS approach at iteration k. Notice that the global minimizer ofQ(x, x (k)) is the
next iterate x (k+1) of the MM-GKS algorithm. Since Q(x, x (k)) is δ-strongly convex,
we can apply Lemma 4. In particular, inequality (58) with the function Q( · , x (k)) in
place of f ( · ) and x (k+1) in place of x∗ yields

δ

2
‖x − x (k+1)‖2

2 ≤ Q(x, x (k)) − Q(x (k+1), x (k)) ∀x ∈ R
n, ∀k. (59)

Substituting the iterate x (k) for x in (59), we obtain

δ

2
‖x (k) − x (k+1)‖2

2 ≤ Q(x (k), x (k)) − Q(x (k+1), x (k)) (60)

= Jε(x
(k)) +������E(x (k), x (k)) − Jε(x

(k+1)) − E(x (k+1), x (k)) (61)

≤ Jε(x
(k)) − Jε(x

(k+1)) ∀k. (62)

Properties (53) and (52) of the majorization error function allowed us to cancel out
the term in (61) and to bound (61) by (62).
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Summing the inequalities (60)–(62) over k yields

∞∑

k=0

‖ x (k+1) − x (k)‖2
2 ≤ 2

δ

∞∑

k=0

[
Jε(x

(k)) − Jε(x
(k+1))

]

= 2

δ

(Jε(x
(0))����Jε(x

(1))︸ ︷︷ ︸
k=0

+ ����Jε(x
(1)) − ����Jε(x

(2))︸ ︷︷ ︸
k=1

+ · · · )

= 2

δ
(Jε(x

(0)) − J ∗
ε ), (63)

where J ∗
ε denotes the limit point of the sequence {Jε(x (k))}k≥0, which is monotoni-

cally nonincreasing and convergent according to Theorem 2. Hence, Jε(x (0))−J ∗
ε is

a finite nonnegative number. It follows that the series on the left-hand side of inequality
(63) is convergent. We conclude that statement a. holds.

Regarding the gradient of the smoothed �p–�q functional Jε(x), we obtain

∥∥∇xJε(x
(k+1))

∥∥
2 = ∥∥∇xE(x (k+1), x (k))

∥∥
2 (64)

= ∥∥∇xE(x (k+1), x (k)) − ∇xE(x (k), x (k))
∥∥

2 (65)

≤ L
∥∥x (k+1) − x (k)

∥∥
2 ∀k, (66)

where (64)–(66) follow from properties (55)–(56) of the majorization error function,
respectively. Since the elements of the sequence

{‖x (k+1) − x (k)‖2
}
k≥0 converge

to zero as k increases, it follows from (64)–(66) that the elements of the sequence{‖∇Jε(x (k+1))‖2
}
k≥0 also converge to zero. This shows statement b. ��

Corollary 6 Let condition (39) hold. Then, in case that p ≥ 1 and q ≥ 1, for any
initial guess x (0) ∈ R

n, the sequence
{
x (k)

}
k≥0 converges towards the unique global

minimizer of the smoothed �p–�q functional defined in (7).

Proof The proof is immediate by recalling that when p, q ≥ 1, the smoothed �p–�q
functional in (7) is strictly convex and, therefore, admits a unique stationary point at
its global minimizer.

An analysis of the behavior of
{
x (k)

}
for k ≤ n− l is beyond the scope of this paper

and will be considered in future work. In the following section we will provide some
empirical evidence of the theoretical results shown above.

7 Numerical examples

We compare the performances of the adaptive MM method (AMM-GKS) and the fixed
MM method (FMM-GKS) described by Algorithm 1 with the IRN algorithm when
applied to the restoration of two gray-scale test images cameraman and QRcode
depicted in Figs. 3a and 5a. These images are synthetically corrupted by blur and noise.
They are represented by arrays of 256×256 pixels stored column-wise in vectors inRn

with n = 65,536. Let x̄ ∈ R
n represent the original blur- and noise-free image. This
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image is assumed not to be available. A block Toeplitz with Toeplitz blocks blurring
matrix A ∈ R

n×n is generated with the function blur from [9]. This function has the
parameters band and σ , that determine the bandwidth of each Toeplitz block in A and
the standard deviation of the underlying Gaussian point spread function, respectively.
The blurred image Ax̄ is corrupted by impulsive noise to obtain the image b ∈ R

n . This
image is assumed to be known. It is our aim to determine an as accurate as possible
approximation x∗ of x̄ , given A and b, by using the �p–�q model (7). We recall that
the AMM-GKS method is equivalent to the GKSpq method described in [13].

Quantitative and qualitative measures of accuracy and efficiency are investigated.
The accuracy is measured by the signal-to-noise ratio (SNR) defined by

SNR(x∗, x̄) := 10 log10
‖x̄ − E(x̄)‖2

2

‖x∗ − x̄‖2
2

(dB),

where E(x̄) denotes the mean gray-level of the uncontaminated image x̄ . This quantity
provides a quantitative measure of the quality of the restored image: a large SNR-
value indicates that x∗ is an accurate approximation of x̄ . Computational efficiency
is measured in terms of the total computational time and the total number of matrix–
vector product (MVP) evaluations required by the algorithms to reach convergence.
The (outer) iterations of the three algorithms considered are terminated as soon as one
of the following stopping criteria is satisfied:

1. The relative change of the computed approximate solution x (k) drops below a
user-specified threshold, i.e., we terminate the iterations as soon as

‖x (k+2) − x (k)‖2/‖x (k)‖2 < 10−4.

2. The number of (outer) iterations is 1000.

Results for the IRN algorithm are computed by using the freely available imple-
mentation in the NUMIPAD library [22]. We chose the regularization parameter
empirically to give the most accurate restorations, i.e., restorations with the high-
est SNR-values. To allow for a fair comparison, for each restoration example, we
chose the same regularization parameter for all the algorithms. The AMM-GKS and
FMM-GKS algorithms use the initial search space V0 = K1(AT A, AT b). The exam-
ples were run on an Intel®Core™i3 Quad-Core 2.27 GHz computer with 4 GB of
RAM, using Windows 7 OS and 64 bits arithmetic. All computations are carried out
in MATLAB with about 15 significant decimal digits.

Example 1 We consider the restoration of a contaminated test imagecameraman that
has been degraded by Gaussian blur with different values of the parameters band and
σ , and by salt-and-pepper noise of different intensity. Recall that salt-and-pepper noise
corrupts images by changing a given percentage of pixels into either the minimum or
maximum possible gray-level-value with equal probability. The other pixels are left
unchanged. We consider the �p–�1 restoration model (7) for 0 < p ≤ 1. Specifically,
we consider the two models �1–�1 and �0.7–�1. The �1-norm for the fidelity term is
a standard choice for the restoration of images that are corrupted by salt-and-pepper
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Fig. 3 Example 1. Restoration results (c, d) obtained by the FMM-GKS algorithm applied to the
cameraman image (a) that has been contaminated by Gaussian blur with band = 7 and σ = 2.0,
and salt-and-pepper noise corrupting 20% of the pixels (b)

noise, see [5], since it forces sparsity of the residual while keeping the functional
convex. The �0.7-norm induces sparsity better, but leads to a nonconvex optimization
problem. We are interested in comparing the three algorithms in terms of restoration
quality and computational effort required for the computation of the approximate
solutions of the �1–�1 and �0.7–�1 models.

Figure 3 shows the restorations determined by the FMM-GKS algorithm when
applied to the test image. The degraded image in Fig. 3b was obtained from the
original blur- and noise-free image in Fig. 3a, by first applying Gaussian blur with
parameters band = 7 and σ = 2.0, and then corrupting 20% of the pixels by salt-
and-pepper noise. Figure 3c, d depict restorations obtained by the FMM-GKS method
when solving the �1 − �1 and �0.7–�1 models, respectively. The latter model yields a
significantly more accurate restoration than the former both in terms of visual quality
and SNR-value.

Table 1 reports quantitative results of the performance of the IRN, AMM-GKS,
and FMM-GKS algorithms when applied to the �1–�1 and �0.7–�1 models for differ-
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Table 1 Example 1

Blur Noise Efficiency: time (iterations, MVPs) Accuracy: SNR

Band σ % μ IRN AMM FMM IRN AMM FMM

�1 − �1

7 2.0 10 0.004 235.66 144.20 40.35 13.86 13.91 13.98

(36,7368) (168,672) (197,788)

20 0.010 115.00 71.20 33.38 13.21 13.22 13.22

(40,3484) (125,500) (177,708)

30 0.020 101.79 53.71 35.75 12.56 12.56 12.55

(48,3004) (111,1464) (177,708)

9 2.5 10 0.004 303.12 163.08 42.83 13.00 12.99 12.98

(39,6182) (177,708) (202,808)

20 0.005 291.40 155.69 44.63 12.01 12.01 12.05

(42,5892) (174,696) (203,812)

30 0.020 180.29 65.89 29.23 11.64 11.65 11.69

(55,3586) (123,492) (162,648)

�0.7–�1

7 2.0 10 0.004 273.11 327.59 65.69 16.31 16.31 16.31

(31,8658) (225,900) (251,1004)

20 0.007 214.51 216.74 55.26 15.34 15.34 15.33

(34,6768) (192,768) (245,980)

30 0.013 165.11 136.22 74.48 14.71 14.70 14.67

(36,5164) (165,660) (293,1172)

9 2.5 10 0.004 497.87 427.96 70.49 15.20 15.19 15.15

(34,10292) (256,1024) (274,1096)

20 0.006 430.04 300.07 69.08 14.29 14.28 14.26

(37,8838) (224,896) (265,1060)

30 0.010 365.49 224.34 67.20 13.47 13.47 13.43

(41,7450) (201,804) (266,1064)

Comparison of the IRN, AMM-GKS, and FMM-GKS algorithms applied to the �1 −�1 and �0.7–�1 models
for restoration of the cameraman test images corrupted by Gaussian blur and salt-and-pepper noise

ent Gaussian blurs, defined by the parameters band and σ , and for salt-and-pepper
noise, defined by the percentage of corrupted pixels. The fourth column of Table 1
reports the value of the regularization parameter μ used. Efficiency results in terms of
computational time (in seconds), number of (outer) iterations, and number of MVPs
required by the algorithms to reach convergence are reported in columns 5–7, while
the accuracy in terms of SNR-values is shown in columns 8–10.

Table 1 shows the MM-GKS approaches to typically require significantly fewer
MVP evaluations and less computing time than the IRN algorithm. The AMM-GKS
method requires fewer iterations (and consequently fewer MVPs) than the FMM-
GKS method. This depends on the fact that the adaptive majorants used by AMM-
GKS are tighter approximations of the �p–�q functional than the fixed majorants of
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FMM-GKS. However, an iteration with the AMM-GKS method is more demanding
computationally than an iteration with the FMM-GKS method. This is mainly due
to the necessity to refactor the reduced least-squares problem at each iteration. The
benefit of the FMM-GKS method is illustrated by the lower computational times
required than by the AMM-GKS method. Table 1 shows the nonconvex �0.7–�1 model
to give restorations of higher quality than the convex �1–�1 model.

Finally, Fig. 4 shows the convergence of the FMM-GKS algorithm when applied
to the convex �1–�1 and the nonconvex �0.7–�1 models for the restoration of the
cameraman image perturbed by Gaussian blur with parameters band = 9, σ =
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Fig. 4 Example 1. Empirical convergence plots for the FMM-GKS algorithm applied to the restoration of
the cameraman test image

Table 2 Example 2

p q μ SNR

1.0 1.0 0.06 25.61

0.3 1.0 0.20 31.91

0.1 1.0 0.50 32.28

0.1 0.8 0.35 32.72

0.1 0.5 0.05 34.83

SNR-values obtained by the FMM-GKS algorithm for different values of p and q when restoring the
QRcode test image corrupted by Gaussian blur defined by band = 5 and σ = 2.0, and 20% salt-and-pepper
noise
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2.5, and salt-and-pepper noise that corrupts 30% of the pixels. The two examples
correspond to the last rows of Table 1. The graphs shown in the first and second row
of Fig. 4 display, respectively, the quantities Jε(x (k)) and log10(‖x (k) − x (k−1)‖2) as
functions of the iteration number k. These graphs illustrate the theoretical convergence

Fig. 5 Example 2. Restoration results obtained by the FMM-GKS algorithm applied to a QRcode image
that has been contaminated by Gaussian blur with band = 5 and σ = 2.0, and salt-and-pepper noise
corrupting 20% of the pixels
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results presented in Sect. 6. The two sequences of functional values Jε(x (k)), k =
0, 1, . . . , shown in the first row of Fig. 4 are monotonically nonincreasing and seem
to converge, thus confirming the theoretical results of Theorem 2. Moreover, the two
graphs reported in the second row of Fig. 4 indicate that the iterates x (k), k = 0, 1, . . .,
converge, thus illustrating Theorem 5.

Example 2 We focus on the FMM-GKS method, which is the most efficient method
according to Example 1. We are interested in investigating the usefulness of the method
when applied to nonconvex models defined by p- and q-values smaller than unity.
Table 2 reports SNR-values obtained by the FMM-GKS method when applied to the
�p–�q models for different choices of p and q. The improvement in the quality of the
restoration in terms of SNR-values that can be achieved by letting p be smaller than
one (than when p is one) already has been pointed out in Example 1 and can also be
observed in this example. The last two rows of Table 2 illustrate that when the image
has sparse gradients, nonconvex regularization improves the quality of the restoration.

Figure 5 shows restorations obtained by the FMM-GKS algorithm when applied
to the test image QRcode. The degraded image in Fig. 5b was obtained from the
original blur- and noise-free image in Fig. 5a, by first applying Gaussian blur with
parameters band = 5 and σ = 2.0, and then corrupting 20% of the pixels by salt-
and-pepper noise. Figure 5c, d depict restorations obtained by using the FMM-GKS
method to solve the �1–�1 and �0.1 − �0.5 models. Figure 5e, f display the error
images, which have been obtained by subtracting the original image in Fig. 5a from
the computed restorations. Ideally, the error image vanishes. The nonconvex model
�0.1 − �0.5 yields a significantly more accurate restoration than the convex �1–�1
model both in terms of visual quality and SNR-values. The SNR-values, as well as
the regularization parameter μ used for the restorations are displayed in Table 2.

8 Conclusions

We presented a novel approach for the solution of �p–�q models applied to image
restoration. Combining the majorize-minimize optimization framework with general-
ized Krylov subspace methods, we derived MM-GKS methods that allow fast solution
of the �p–�q problem, especially in the nonsmooth and nonconvex case. Computed
examples demonstrate that the MM-GKS approach, in both its adaptive and fixed
versions, yields high-quality restorations with less computational effort than the state-
of-the-art IRN algorithm.
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