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Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for
ROF, Vectorial TV, and High Order Models∗

Chunlin Wu† and Xue-Cheng Tai† ‡

Abstract. In image processing, the Rudin–Osher–Fatemi (ROF) model [L. Rudin, S. Osher, and E. Fatemi,
Phys. D, 60 (1992), pp. 259–268] based on total variation (TV) minimization has proven to be very
useful. So far many researchers have contributed to designing fast numerical schemes and overcoming
the nondifferentiability of the model. Methods considered to be particularly efficient for the ROF
model include the Chan–Golub–Mulet (CGM) primal-dual method [T.F. Chan, G.H. Golub, and P.
Mulet, SIAM J. Sci. Comput., 20 (1999), pp. 1964–1977], Chambolle’s dual method [A. Chambolle,
J. Math. Imaging Vis., 20 (2004), pp. 89–97], the splitting and quadratic penalty-based method [Y.
Wang, J. Yang, W. Yin, and Y. Zhang, SIAM J. Imaging Sci., 1 (2008), pp. 248–272], and the split
Bregman iteration [T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2 (2009), pp. 323–343], as
well as the augmented Lagrangian method [X.C. Tai and C. Wu, Lecture Notes in Comput. Sci.
5567, Springer-Verlag, Berlin, 2009, pp. 502–513]. In this paper, we first review the augmented
Lagrangian method for the ROF model and then provide some convergence analysis and extensions
to vectorial TV and high order models. All the algorithms and analysis will be presented in the
discrete setting, which is much clearer for practical implementation than the continuous setting as in
Tai and Wu, above. We also present, in the discrete setting, the connections between the augmented
Lagrangian method, the dual methods, and the split Bregman iteration. Using our extensions and
observations, we can easily figure out CGM and the split Bregman iteration for vectorial TV and
high order models, which, to the best of our knowledge, have not been presented in the literature.
Numerical examples demonstrate the efficiency and accuracy of our method, especially in the image
deblurring case.
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1. Introduction. Image restoration such as denoising and deblurring are the most funda-
mental tasks in image processing. It is important but difficult to preserve image structures
(such as edges) in image restoration. Recently, the Rudin–Osher–Fatemi (ROF) model [34]
has been demonstrated to be very successful. It immediately attracted much attention and
has been extended to high order models [18, 46, 29, 30, 26, 36] and vectorial models for color
image restoration [35, 4, 6, 17]; see [15] for an overview.

However, the numerical computation of the ROF model suffers from difficulties related
to its nonlinearity and nondifferentiability. In [34], the authors proposed a time marching

∗Received by the editors August 10, 2009; accepted for publication (in revised form) May 3, 2010; published
electronically July 22, 2010. This research was supported by MOE (Ministry of Education) Tier II project T207N2202
and IDM project NRF2007IDM-IDM002-010, as well as by SUG 20/07.

http://www.siam.org/journals/siims/3-3/76755.html
†Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological

University, Singapore (clwu@ntu.edu.sg, xctai@ntu.edu.sg).
‡Department of Mathematics, University of Bergen, N-5020 Bergen, Norway.

300

D
ow

nl
oa

de
d 

05
/0

9/
17

 to
 1

37
.2

04
.1

50
.1

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siims/3-3/76755.html
mailto:clwu@ntu.edu.sg
mailto:xctai@ntu.edu.sg


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AUGMENTED LAGRANGIAN METHOD FOR ROF MODEL 301

strategy for the associated Euler–Lagrange equation. This method is slow due to the constraint
on stability conditions about the time step size. To find fast algorithms has been an active
research area.

There are several methods that have proven to be particularly efficient for image restora-
tion problems based on the ROF model. One class of approaches is dual methods and primal-
dual methods [16, 11, 12, 49], which are based on the dual or primal-dual formulations of the
ROF model. The other is based on variable-splitting and equality constrained optimization,
e.g., the approach proposed in [41, 40, 43], which uses an alternative minimization of the
quadratic-penalized cost functional for the equality constrained problem, and the method in
[27], where splitting is applied to the data fidelity term, the split Bregman iteration [45, 24],
as well as the augmented Lagrangian method [39]. In this paper, we extend the results in [39].
We will first review the augmented Lagrangian method to solve the ROF model, and then pro-
vide some convergence analysis, followed by extensions to vectorial total variation (TV) and
high order models. All the algorithms and analysis will be presented in the discrete setting,
which is much clearer for practical implementation than the description in the continuous
setting as in [39]. We also present, in this discrete setting, the discrete analogue of the result
in [39] that the augmented Lagrangian method, the dual methods, and the split Bregman
iteration are just different iterative schemes for solving the same system based on the aug-
mented Lagrangian saddle function. Some connections between Chan–Golub–Mulet method
(CGM) and Chambolle’s dual method for the ROF model were noted in [49]. The equivalence
between the augmented Lagrangian method and Bregman (split Bregman) method was also
noted in [45, 37, 22]. For the sake of completeness, here we give the whole discrete analogue
of the result in [39], including how CGM and Chambolle’s dual method are connected to the
augmented Lagrangian method, and an explanation of the equivalence between the augmented
Lagrangian method and the split Bregman iteration. Using our extensions and observations,
we can easily figure out CGM, Chambolle’s dual method, and the split Bregman iteration
for vectorial TV and high order models. To the best of our knowledge, CGM and the split
Bregman iteration for vectorial TV and high order models are still missing in the literature.

The paper is organized as follows. In the next section, we give basic notation. In section 3,
we present the ROF model and some existing solvers, in the discrete setting. The augmented
Lagrangian method will be given in section 4 with some convergence analysis. In section 5, we
present connections between the proposed method and CGM and Chambolle’s dual method
as well as the split Bregman iteration. Our approach and observations are then extended to
vectorial TV in section 6 and high order models in section 7. After providing some numerical
experiments and comparisons in section 8, we conclude the paper in section 9.

2. Basic notation. Without loss of generality, we represent a grayscale image as an N×N
matrix. The Euclidean space R

N×N is denoted as V . The discrete gradient operator is a
mapping ∇ : V → Q, where Q = V × V . For u ∈ V , ∇u is given by

(∇u)i,j = ((D̊+
x u)i,j , (D̊

+
y u)i,j),

with

(D̊+
x u)i,j =

{
ui,j+1 − ui,j , 1 ≤ j ≤ N − 1,
ui,1 − ui,N , j = N,

(D̊+
y u)i,j =

{
ui+1,j − ui,j, 1 ≤ i ≤ N − 1,
u1,j − uN,j, i = N,D
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302 CHUNLIN WU AND XUE-CHENG TAI

where i, j = 1, . . . , N. Here we use D̊+
x and D̊+

y to denote forward difference operators with
periodic boundary condition (u is periodically extended). Consequently the FFT can be
adopted in our algorithm. It should be pointed out that some other boundary conditions and
corresponding definitions of ∇ can be used. For the Neumann boundary condition, we can
adopt fast DCT (discrete cosine transform) in place of the FFT.

We denote the usual inner product and Euclidean norm of V as (·, ·)V and ‖ · ‖V , respec-
tively. We also equip the space Q with inner product (·, ·)Q and norm ‖ ·‖Q, which are defined
as follows. For p = (p1, p2) ∈ Q and q = (q1, q2) ∈ Q,

(p, q)Q = (p1, q1)V + (p2, q2)V

and

‖p‖Q =
√

(p, p)Q.

In addition, we mention that at each pixel (i, j),

|pi,j| = |(p1i,j, p2i,j)| =
√

(p1i,j)
2 + (p2i,j)

2,

the usual Euclidean norm in R
2. From the subscript i, j, one may regard |pi,j| as the pixel-

by-pixel norm of p.
Using the inner products of V and Q, we can find the adjoint operator of −∇, i.e., the

discrete divergence operator div : Q → V . Given p = (p1, p2) ∈ Q, we have

(divp)i,j = p1i,j − p1i,j−1 + p2i,j − p2i−1,j = (D̊−
x p

1)i,j + (D̊−
y p

2)i,j,

where D̊−
x and D̊−

y are backward difference operators with periodic boundary conditions p1i,0 =

p1i,N and p20,j = p2N,j.

3. The ROF model and some existing solvers. Assume that f ∈ V is an observed image
and is degraded from the true image, u ∈ V , as follows:

(3.1) f = Ku+ n,

where K : V → V is a convolution operator and n ∈ V is random Gaussian noise (the most
typical noise model). Image restoration aims at recovering u from f . Since the problem is
usually ill-posed, we cannot directly solve u from (3.1). Regularization of the solution should
be considered. One of the most basic and successful image regularization models is the ROF
model [34], which reads

(3.2) min
u∈V

{
Frof(u) = Rrof(∇u) +

α

2
‖Ku− f‖2V

}
,

where

(3.3) Rrof(∇u) = TV(u) =
∑

1≤i,j≤N

|(∇u)i,j |
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is the total variation of u. Note here that Rrof(·) is regarded as a functional of ∇u. In
[34], the authors considered the image denoising problem (K = I) and presented a gradient
descent method to solve (3.2). Here the method is described for general K. The artificial time
marching is introduced into the associated Euler–Lagrange equation (it is actually a system
of ordinary differential equations, since we are in the discrete setting) as follows:

(3.4)
ut = div

(
∇u√

|∇u|2+β

)
+ αK∗(f −Ku),

u(0) = f,

where β is a small positive number to avoid zero division and K∗ is the L2 adjoint of K.
There are mainly two drawbacks for the gradient descent method (3.4). First, it is an

approximation of the original problem (3.2), since the regularity term Rrof(∇u) is smoothed
and thus approximated to get (3.4). Second, the method is slow due to strict constraints on
the time step. The choice of β will affect both of these aspects. When β is larger, the scheme is
more efficient but the approximation is worse. Therefore there is a trade-off between accuracy
and efficiency.

Many algorithms have been proposed to improve the gradient descent method, aiming to
compute the solution of the ROF model (3.2) as efficiently and exactly as possible; see, e.g., the
primal-dual method [16], the dual method [12], the split Bregman iteration [45, 24], and the
splitting and quadratic penalty-based method [41, 40], as well as the augmented Lagrangian
method [39].

The difficulty in solving the ROF restoration model (3.2) is due to the nondifferentiability
of the TV seminorm. By using an operator-splitting technique [23, 41, 40, 24, 39], we can sep-
arate the calculation of the nondifferentiable term and the squared 2-norm term. Concretely,
an auxiliary variable p ∈ Q is introduced for ∇u. The model (3.2) is thus equivalent to

(3.5)
min

u∈V,p∈Q

{
Grof(u, p) = Rrof(p) +

α

2
‖Ku− f‖2V

}
s.t. p = ∇u,

which is a constrained optimization problem.
Since the blur is essentially averaging, it is reasonable to assume the following:
• The null spaces of ∇ and K have only 0 as common elements; i.e., Null(∇)∩Null(K) =

{0}.
Under this assumption, the functional Frof(u) in (3.2) is convex, proper, coercive, and contin-
uous. According to the generalized Weierstrass theorem and Fermat’s rule [21, 23], we have
the following result.

Theorem 3.1. The problem (3.2) has at least one solution u, which satisfies

(3.6) 0 ∈ αK∗(Ku− f)− div∂Rrof(∇u),

where ∂Rrof(∇u) is the subdifferential [21] of Rrof at ∇u. Moreover, if Null(K) = {0}, the
minimizer is unique.

In the following, we review some typical existing solvers for the ROF model.
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3.1. The CGM. In [16] Chan, Golub, and Mulet proposed a primal-dual method for
solving the ROF model. They introduced a new variable ω ∈ Q, defined by

(3.7) ωi,j =
(∇u)i,j
|(∇u)i,j | , 1 ≤ i, j ≤ N,

to the Euler–Lagrange equation of (3.2), to remove some of the singularity caused by the
nondifferentiability of the objective functional. This yields the following primal-dual system:

(3.8)
−divω + αK∗(Ku− f) = 0,

∇u− ω|∇u| = 0,
|ωi,j| ≤ 1, 1 ≤ i, j ≤ N,

where u and ω are called primal and dual variables, respectively. The system is then approx-
imated using a smoothed TV seminorm (with some small positive β which can be updated
iteration-by-iteration) in numerical computation. Newton’s linearization technique for both
the primal and dual variables is adopted. In the CGM, the parameter β can be very close
to 0. However, it is relatively slow in the family of dual and primal-dual methods because it
solves exactly a system of linear equations at each iteration.

3.2. Chambolle’s dual method. Another work based on the dual formulation with a
different derivation is due to Chambolle [12]. In this method, the primal variable of the image
data is expressed explicitly with the dual variable, and only the dual variable is computed
iteratively. However, the algorithm does not consider a general operator K in (3.2). In
the following we introduce Chambolle’s method in our context. (Note the difference in the
boundary condition used, and the slight difference between (3.2) and the model in [12] about
the parameter α.)

Denoting

(3.9) S = Closure{divξ : ξ ∈ Q, |ξi,j| ≤ 1 ∀ 1 ≤ i, j ≤ N},
Chambolle [12] showed that the ROF restoration model (3.2) with K = I yields

(3.10) u = f − 1

α
πS(αf) = f − πS

α
(f),

where πS(·) is a nonlinear projection operator to S, which reads

(3.11) min
divξ

{‖divξ − ·‖2V : ξ ∈ Q, |ξi,j | ≤ 1 ∀ 1 ≤ i, j ≤ N}.

From the Karush–Kuhn–Tucker (KKT) conditions and a careful observation, it was shown
that ξ in the nonlinear projection satisfies

(3.12) −(∇(divξ − αf))i,j + ξi,j|(∇(divξ − αf))i,j | = 0,

from which ξ can be calculated by the following semi-implicit gradient descent algorithm:

ξk+1
i,j =

ξki,j + τ(∇(divξk − αf))i,j

1 + τ |(∇(divξk − αf))i,j |
for a chosen step length τ .
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3.3. Split Bregman iteration. Recently, Bregman iteration and split Bregman iteration
attracted much attention in the signal and image processing community [9, 10, 24, 31, 45,
44, 48]. The basic idea is to transform a constrained optimization problem to a series of
unconstrained problems. In each unconstrained problem, the objective functional is defined
via the Bregman distance [5] of a convex functional.

The Bregman distance of a convex functional J(u) is defined as the following (nonnegative)
quantity:

(3.13) Dg
J(u, v) ≡ J(u) − J(v) − 〈g, u− v〉,

where g ∈ ∂J(v), i.e., one of the subgradients of J at v.
When J(u) is a continuously differentiable functional, its subdifferential ∂J(v) has a single

element for each v, and consequently the Bregman distance is unique. In this case the distance
is just the difference at the point u between J(u) and its first order approximation at the
point v. For those nondifferentiable functionals, the subdifferential may be empty or contain
multiple values. Therefore, the Bregman distance between u and v can be ill-defined or
multivalued. However, this does not matter in Bregman distance–based iterative algorithms
since the algorithms automatically choose a unique subgradient in each iteration as long as
the fidelity term for the constraints is differentiable. (This condition usually holds.) We also
recall here that the Bregman distance of a functional is not a distance in the usual sense since,
in general, Dg

J(u, v) 
= Dg
J (v, u) and the triangle inequality does not hold. See [31, 45] for

more details.
To find the solution of the ROF model (3.2), or equivalently the constrained problem (3.5),

the split Bregman iteration [24] solves a sequence of unconstrained problems of the form

(3.14) (uk, pk) = arg min
u∈V,p∈Q

D
(gk−1

u ,gk−1
p )

Grof
((u, p), (uk−1, pk−1)) +

r

2
‖p−∇u‖2Q,

where gk−1
u and gk−1

p , sometimes written together as (gk−1
u , gk−1

p ), are the subgradients of Grof

at (uk−1, pk−1) with respect to u and p, respectively, and r is a positive constant. Taking
the update of the subgradients into consideration, the iteration procedure is formulated as
Algorithm 3.1. The computation of (uk, pk) in the algorithm is similar to that of Algorithm
4.2, where, in the case of image denoising, the authors in [24] proposed using Gauss–Seidel
iteration for the u-subproblem.

Algorithm 3.1. Split Bregman iteration for the ROF model.

1. Initialization: u−1 = 0, p−1 = 0, g−1
u = 0, g−1

p = 0;

2. For k = 0, 1, 2, . . .: Compute (uk, pk) using (3.14), and update

(3.15)
gku = gk−1

u − rdiv(pk −∇uk),
gkp = gk−1

p − r(pk −∇uk).

4. Augmented Lagrangian method for the ROF model and convergence analysis. The
augmented Lagrangian method [25, 32, 33] has many advantages over other methods such as
penalty methods [1] and has been successfully applied to nonlinear PDEs and mechanics [23].
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In this section, we present the method for the ROF model, or equivalently the constrained
problem (3.5). The details of the algorithms will be presented, followed by some convergence
analysis.

4.1. Augmented Lagrangian method for the ROF model. We first define the augmented
Lagrangian functional for the constrained optimization problem (3.5) as follows:

(4.1) Lrof(v, q;μ) = Rrof(q) +
α

2
‖Kv − f‖2V + (μ, q −∇v)Q +

r

2
‖q −∇v‖2Q,

where μ ∈ Q is the Lagrange multiplier and r is a positive constant. For the augmented
Lagrangian method for (3.5), we consider the following saddle-point problem:

(4.2)
Find (u, p;λ) ∈ V ×Q×Q
s.t. Lrof(u, p;μ) ≤ Lrof(u, p;λ) ≤ Lrof(v, q;λ) ∀(v, q;μ) ∈ V ×Q×Q.

The relation between the saddle-point of problem (4.2) and the solution of (3.2) is stated
in the following theorem.

Theorem 4.1. u ∈ V is a solution of (3.2) if and only if there exist p ∈ Q and λ ∈ Q such
that (u, p;λ) is a solution of (4.2).

Proof. Suppose that (u, p;λ) is a solution of (4.2). From the first inequality in (4.2) we
have

(4.3) p−∇u = 0.

The above relation, together with the second inequality in (4.2), shows

(4.4)
Rrof(∇u) +

α

2
‖Ku− f‖2V ≤ Rrof(q) +

α

2
‖Kv − f‖2V + (λ, q −∇v)Q +

r

2
‖q −∇v‖2Q

∀(v, q) ∈ V ×Q.

Taking q = ∇v in the above equation indicates that u is a solution of (3.2).
Conversely, we assume that u ∈ V is a solution of (3.2). We take p = ∇u ∈ Q. From (3.6),

there exists one λ such that −λ ∈ ∂Rrof(∇u) and divλ = −αK∗(Ku − f). We verify that
(u, p;λ) is a saddle-point of Lrof ; i.e., Lrof(u, p;μ) ≤ Lrof(u, p;λ) ≤ Lrof(v, q;λ) ∀(v, q;μ) ∈
V ×Q×Q. Since p = ∇u, the first inequality holds. In the following we show Lrof(u, p;λ) ≤
Lrof(v, q;λ) ∀(v, q) ∈ V ×Q. Since

Lrof(v, q;λ) = Rrof(q) +
α

2
‖Kv − f‖2V + (λ, q −∇v)Q +

r

2
‖q −∇v‖2Q

= Rrof(q) +
α

2
‖Kv − f‖2V +

r

2

∥∥∥∥q −∇v +
λ

r

∥∥∥∥2
Q

− 1

2r
‖λ‖2Q

is convex, proper, coercive, and continuous with respect to (v, q), Lrof(v, q;λ) has a minimizer
(v̄, q̄) over V ×Q, which is characterized [21, 23] by

(4.5) Rrof(q)−Rrof(q̄) + (λ, q − q̄)Q + r(q̄ −∇v̄, q − q̄)Q ≥ 0 ∀q ∈ Q
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and

(4.6)
α

2
‖Kv − f‖2V − α

2
‖Kv̄ − f‖2V + (divλ, v − v̄)V + r(div(q̄ −∇v̄), v − v̄)V ≥ 0 ∀v ∈ V.

It is straightforward to verify that (u, p) satisfies (4.5) and (4.6). This completes the proof.
Theorem 4.1, together with Theorem 3.1, shows that the problem (4.2) has at least one

solution and each u in the solutions solves the original problem (3.2). We then use an iterative
algorithm to solve the saddle-point problem (4.2); see Algorithm 4.1.

Algorithm 4.1. Augmented Lagrangian method for the ROF model.

1. Initialization: λ0 = 0;
2. For k = 0, 1, 2, . . .: compute (uk, pk) as an (approximate) minimizer of the augmented

Lagrangian functional with the Lagrange multiplier λk, i.e.,

(4.7) (uk, pk) ≈ arg min
(v,q)∈V ×Q

Lrof(v, q;λ
k),

where Lrof(v, q;λ
k) is defined in (4.1); update

(4.8) λk+1 = λk + r(pk −∇uk).

We are now left with the minimization problem (4.7) to address. One may notice the
symbol ≈ in this problem. This is because, in general, it is difficult to find the minimizers
uk and pk exactly in practical computation since v and q are coupled together. Usually, one
separates the variables v and q and then uses an alternative minimization procedure [41, 40, 24]
to solve (4.7), through which in practice one can obtain the minimizer only approximately.
However, this does not affect the convergence of the whole Algorithm 4.1. More details are
as follows.

We separate (4.7) into the following two subproblems:

(4.9) min
v∈V

α

2
‖Kv − f‖2V − (λk,∇v)Q +

r

2
‖q −∇v‖2Q

for a given q, and

(4.10) min
q∈Q

Rrof(q) + (λk, q)Q +
r

2
‖q −∇v‖2Q

for a given v.
The subproblems (4.9) and (4.10) can be efficiently solved. For (4.9), the optimality

condition gives a linear equation

αK∗(Kv − f) + divλk + rdivq − r�v = 0,

by the periodic boundary condition we are using. It allows us to use Fourier transforms and
thus an FFT implementation as done in [41, 40], which, to the best of our knowledge, are the
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308 CHUNLIN WU AND XUE-CHENG TAI

first papers using FFT in TV minimization problems. Denoting F(v) as the Fourier transform
of v, we write the solution as follows:

(4.11) v = F−1

(
αF(K∗)F(f)−F(D̊−

x )F((λ1)k + rq1)−F(D̊−
y )F((λ2)k + rq2)

αF(K∗)F(K) − rF(�)

)
,

where λk = ((λ1)k, (λ2)k) and q = (q1, q2); Fourier transforms of operators such as K, D̊−
x , D̊

−
y ,

� = D̊−
x D̊

+
x +D̊−

y D̊
+
y are regarded as the transforms of their corresponding convolution kernels.

For (4.10), we actually have the following closed form solution [8, 40, 39]:

(4.12) qi,j =

{ (
1− 1

r
1

|wi,j|
)
wi,j, |wi,j| > 1

r ,

0, |wi,j| ≤ 1
r ,

where

(4.13) w = ∇v − λk

r
.

Some thresholding techniques similar to (4.12) have been used in [19] for image denoising
in the wavelet domain. At the end of this section, we would like to remark that the two
subproblems (4.9) and (4.10) also appear in the split Bregman method [24] in a different
form using subgradients. The split Bregman method also uses the shrinkage formulae (4.12)
to solve (4.10). However, the authors in [24] focused on the image denoising case of the
ROF restoration and proposed using Gauss–Seidel iteration for (4.9) with K = I. This is
different from our FFT-based implementation. According to our numerical test, the split
Bregman iteration is faster than our method in the case of image denoising. There are two
main reasons for this. First, for image denoising problems (where K = I), the system (4.9) is
sparse in the physical domain but dense in the frequency domain. Second, it is unnecessary
to solve (4.9) to full accuracy in the split Bregman iteration (and also in the augmented
Lagrangian method), and one single Gauss–Seidel iteration is enough. However, we mention
that, for general K (which is usually dense in physical domain), a Gauss–Seidel iteration may
not be suitable for this problem. Our method can handle more general cases.

We then iteratively and alternatively compute the v and q according to (4.11) and (4.12).
This has a Gauss-Seidel flavor. The procedure is shown in Algorithm 4.2.

Algorithm 4.2. Augmented Lagrangian method for the ROF model—solve the minimization
problem (4.7).

• Initialization: uk,0 = uk−1, pk,0 = pk−1;
• For l = 0, 1, 2, . . . , L − 1: Compute uk,l+1 from (4.11) for q = pk,l, and then compute

pk,l+1 from (4.12) for v = uk,l+1;
• uk = uk,L, pk = pk,L.

Here L can be chosen using some convergence test techniques. In this paper, we simply
set L = 1. In our experiments we found that with larger L (> 1) the algorithm wastes the
accuracy of the inner iteration and does not dramatically speed up the convergence of the
whole algorithm. This was also observed in [24] for the split Bregman method.
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4.2. Convergence analysis. We show some convergence results for the augmented La-
grangian method. We first give the convergence of Algorithm 4.2, and then present two
convergence results for Algorithm 4.1 where the minimization problem (4.7) is computed by
Algorithm 4.2 with full accuracy (L → ∞) and rough accuracy (L = 1), respectively.

Theorem 4.2. The sequence {(uk,l, pk,l) : l = 0, 1, 2, . . .} generated by Algorithm 4.2 con-
verges to a solution of the problem (4.7).

Proof. The proof is motivated by [40]. Here we just sketch the differences.
We define an operator S similarly as in [40], such that (4.12) is reformulated as q = S(w),

where w is as in (4.13). Therefore the iterative scheme in Algorithm 4.2 is as follows:

(4.14)

⎧⎨
⎩ uk,l+1 = (∇∗∇+ α

rK
∗K)−1

(
∇∗pk,l +∇∗ λk

r + α
rK

∗f
)
,

pk,l+1 = S
(
∇uk,l+1 − λk

r

)
,

where ∇∗ = −div is the adjoint operator of ∇. Here we also mention the existence of (∇∗∇+
α
rK

∗K)−1 under the assumption Null(∇) ∩Null(K) = {0}. We then define a linear operator
h : Q → Q as

(4.15) h(q) = ∇
(
∇∗∇+

α

r
K∗K

)−1
(
∇∗q +∇∗λk

r
+

α

r
K∗f

)
− λk

r
.

It is straightforward to verify the nonexpansiveness of h defined above.
Rewriting the iterative scheme (4.14) as

(4.16)

{
uk,l+1 = (∇∗∇+ α

rK
∗K)−1

(
∇∗pk,l +∇∗ λk

r + α
rK

∗f
)
,

pk,l+1 = S ◦ h(pk,l),
one can show the convergence via an argument similar to that of [40].

In the following we give the convergence of Algorithm 4.1 where the minimization problem
(4.7) is computed by Algorithm 4.2 with full accuracy (L → ∞) and rough accuracy (L = 1),
respectively. We should point out that the idea of our proofs follows the convergence proof
in [23]. However, the convergence proof of (uk, pk) (see (4.18) and (4.36)) in [23] requires the
uniform convexity of Rrof(p) (in our context) and thus cannot be directly applied to our case.
In addition to modifying this part, we provide more details to make the proof clearer.

Theorem 4.3. Assume that (u, p;λ) is a saddle-point of Lrof(v, q;μ). Suppose that the
minimization problem (4.7) is exactly solved in each iteration; i.e., L → ∞ in Algorithm 4.2.
Then the sequence (uk, pk;λk) generated by Algorithm 4.1 satisfies

(4.17)

{
lim
k→∞

Grof(u
k, pk) = Grof(u, p),

lim
k→∞

‖pk −∇uk‖Q = 0.

Since Rrof(p) is continuous, (4.17) indicates that uk is a minimizing sequence of Frof . If we
further have Null(K) = {0}, then

(4.18)

{
lim
k→∞

uk = u,

lim
k→∞

pk = p.
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310 CHUNLIN WU AND XUE-CHENG TAI

Proof. Let us define uk, pk, λ
k
as

uk = uk − u, pk = pk − p, λ
k
= λk − λ.

Since (u, p;λ) is a saddle-point of Lrof(v, q;μ), we have

(4.19) Lrof(u, p;μ) ≤ Lrof(u, p;λ) ≤ Lrof(v, q;λ) ∀(v, q;μ) ∈ V ×Q×Q.

From the first inequality of (4.19), we have p = ∇u. This relationship, together with (4.8),
indicates

λ
k+1

= λ
k
+ r(pk −∇uk).

It then follows that

(4.20) ‖λk‖2Q − ‖λk+1‖2Q = −2r(λ
k
, pk −∇uk)Q − r2‖pk −∇uk‖2Q.

On the other hand, from the second inequality of (4.19), (u, p) is characterized by

(4.21)
α

2
‖Kv− f‖2V − α

2
‖Ku− f‖2V + (divλ, v− u)V + r(div(p−∇u), v− u)V ≥ 0 ∀v ∈ V,

(4.22) Rrof(q)−Rrof(p) + (λ, q − p)Q + r(p−∇u, q − p)Q ≥ 0 ∀q ∈ Q.

Similarly, (uk, pk) is characterized by

(4.23)
α

2
‖Kv−f‖2V −

α

2
‖Kuk−f‖2V +(divλk, v−uk)V +r(div(pk−∇uk), v−uk)V ≥ 0 ∀v ∈ V,

(4.24) Rrof(q)−Rrof(p
k) + (λk, q − pk)Q + r(pk −∇uk, q − pk)Q ≥ 0 ∀q ∈ Q,

since (uk, pk) is the solution of (4.7). Taking v = uk in (4.21) and v = u in (4.23), we obtain,
by addition,

(4.25) −(λ
k
,∇uk)Q − r(pk −∇uk,∇uk)Q ≤ 0.

Similarly, we have

(4.26) (λ
k
, pk)Q + r(pk −∇uk, pk)Q ≤ 0,

by taking q = pk in (4.22), q = p in (4.24), and then adding. It then follows that

(4.27) (λ
k
, pk −∇uk)Q + r‖pk −∇uk‖2Q ≤ 0

if we add (4.25) and (4.26) together.
By (4.27) and (4.20), we have

(4.28) ‖λk‖2Q − ‖λk+1‖2Q ≥ r2‖pk −∇uk‖2Q ≥ 0,
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which implies

(4.29)

{
{λk : ∀k} is bounded,
lim
k→∞

‖pk −∇uk‖Q = 0.

Moreover, the second inequality of (4.19) indicates

(4.30) Grof(u, p) ≤ Grof(u
k, pk) + (λ, pk −∇uk)Q +

r

2
‖pk −∇uk‖2Q.

If we take v = u in (4.23) and q = p in (4.24), we have, by addition,

(4.31) Grof(u, p) ≥ Grof(u
k, pk) + (λk, pk −∇uk)Q + r‖pk −∇uk‖2Q.

Using (4.29), we have

(4.32) lim infGrof(u
k, pk) ≥ Grof(u, p) ≥ lim supGrof(u

k, pk),

by taking lim inf in (4.30) and lim sup in (4.31). Hence we complete the proof of (4.17).
In the following we show (4.18) if Null(K) = {0} holds. Since (u, p;λ) is a saddle-point of

Lrof(v, q;μ), we have

− λ ∈ ∂Rrof(p),(4.33)

divλ = −αK∗(Ku− f),(4.34)

where ∂Rrof(p) is the subdifferential of Rrof at p. Then, we deduce

Grof(u
k, pk) + (λ, pk −∇uk)Q

≥ Rrof(p)− (λ, pk − p)Q +
α

2
‖Kuk − f‖2V + (λ, pk −∇uk)Q

= Rrof(p) +
α

2
‖Kuk − f‖2V + (λ,∇u−∇uk)Q

≥ Rrof(p) +
α

2

∥∥∥∥Kuk + u

2
− f

∥∥∥∥2
V

+ α

(
K∗
(
K

uk + u

2
− f

)
,
uk − u

2

)
V

+ (λ,∇u−∇uk)Q

= Rrof(p) +
α

2
‖Ku− f‖2V +

α

2

∥∥∥∥Kuk + u

2
− f

∥∥∥∥2
V

− α

2
‖Ku− f‖2V

+ α

(
K∗
(
K

uk + u

2
− f

)
,
uk − u

2

)
V

+ (λ,∇u−∇uk)Q

= Rrof(p) +
α

2
‖Ku− f‖2V +

α

2

∥∥∥∥Kuk + u

2
− f

∥∥∥∥2
V

− α

2
‖Ku− f‖2V

+ α

(
K

uk + u

2
− f,K

uk − u

2

)
V

+ α(Ku− f,K(u− uk))V

= Grof(u, p) +
3

8
α‖K(uk − u)‖2V ,
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from which we obtain

lim
k→∞

‖K(uk − u)‖V = 0,

according to (4.17). If Null(K) = {0} holds, it follows that

lim
k→∞

uk = u.

This result, together with the second equation in (4.17), yields

lim
k→∞

pk = ∇u = p,

which completes the proof.
Theorem 4.4. Assume that (u, p;λ) is a saddle-point of Lrof(v, q;μ). Suppose that the

minimization problem (4.7) is roughly solved in each iteration, i.e., with L = 1 in Algorithm
4.2. Then the sequence (uk, pk;λk) generated by Algorithm 4.1 satisfies

(4.35)

{
lim
k→∞

Grof(u
k, pk) = Grof(u, p),

lim
k→∞

‖pk −∇uk‖Q = 0.

Since Rrof(p) is continuous, (4.35) indicates that uk is a minimizing sequence of Frof . If we
further have Null(K) = {0}, then

(4.36)

{
lim
k→∞

uk = u,

lim
k→∞

pk = p.

Proof. Again we define the following errors:

uk = uk − u, pk = pk − p, λ
k
= λk − λ.

In this case, (4.20) still holds, which is presented as follows:

(4.37) ‖λk‖2Q − ‖λk+1‖2Q = −2r(λ
k
, pk −∇uk)Q − r2‖pk −∇uk‖2Q.

Since (u, p;λ) is a saddle-point of Lrof(v, q;μ), (u, p) is characterized by

(4.38)
α

2
‖Kv− f‖2V − α

2
‖Ku− f‖2V + (divλ, v− u)V + r(div(p−∇u), v− u)V ≥ 0 ∀v ∈ V,

(4.39) Rrof(q)−Rrof(p) + (λ, q − p)Q + r(p−∇u, q − p)Q ≥ 0 ∀q ∈ Q.

Similarly, by the construction of (uk, pk) (Algorithm 4.2 with L = 1), we have

α

2
‖Kv − f‖2V − α

2
‖Kuk − f‖2V + (divλk, v − uk)V + r(div(pk−1 −∇uk), v − uk)V ≥ 0

(4.40) ∀v ∈ V,
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(4.41) Rrof(q)−Rrof(p
k) + (λk, q − pk)Q + r(pk −∇uk, q − pk)Q ≥ 0 ∀q ∈ Q.

Taking v = uk in (4.38), v = u in (4.40), and q = pk in (4.39), as well as q = p in (4.41), we
obtain, after addition,

(4.42) (λ
k
, pk −∇uk)Q + r‖pk −∇uk‖2Q + r(∇uk, pk − pk−1)Q ≤ 0.

It then follows from (4.37) and (4.42) that

(4.43) ‖λk‖2Q − ‖λk+1‖2Q ≥ r2‖pk −∇uk‖2Q + 2r2(∇uk, pk − pk−1)Q.

In the following we estimate (∇uk, pk − pk−1)Q in (4.43). We have

(4.44)
(∇uk, pk − pk−1)Q = (∇uk −∇uk−1, pk − pk−1)Q

+(∇uk−1 − pk−1, pk − pk−1)Q + (pk−1, pk − pk−1)Q.

On the other hand, by the construction of pk−1 (from uk−1), it follows that

(4.45) Rrof(q)−Rrof(p
k−1) + (λk−1, q − pk−1)Q + r(pk−1 −∇uk−1, q − pk−1)Q ≥ 0 ∀q ∈ Q.

Taking q = pk−1 in (4.41) and q = pk in (4.45), we obtain, by addition,

(4.46) r‖pk − pk−1‖2Q + (pk − pk−1, λ
k − λ

k−1
)Q − r(pk − pk−1,∇uk −∇uk−1)Q ≤ 0.

Since
λ
k − λ

k−1
= λk − λk−1 = r(pk−1 −∇uk−1),

we have

(4.47) (pk − pk−1,∇uk −∇uk−1)Q + (pk − pk−1,∇uk−1 − pk−1)Q ≥ ‖pk − pk−1‖2Q
according to (4.46). Equations (4.44) and (4.47), together with the identity

(pk−1, pk − pk−1)Q =
1

2
(‖pk‖2Q − ‖pk−1‖2Q − ‖pk − pk−1‖2Q),

imply

(4.48) (∇uk, pk − pk−1)Q ≥ 1

2
(‖pk‖2Q − ‖pk−1‖2Q + ‖pk − pk−1‖2Q).

We then obtain from (4.43) and (4.48) that

(4.49) ‖λk‖2Q + r2‖pk−1‖2Q − (‖λk+1‖2Q + r2‖pk‖2Q) ≥ r2‖pk −∇uk‖2Q + r2‖pk − pk−1‖2Q.
Equation (4.49) indicates

(4.50)

⎧⎪⎨
⎪⎩

{λk : ∀k}, {pk : ∀k}, and {∇uk : ∀k} are bounded,
lim
k→∞

‖pk −∇uk‖Q = 0,

lim
k→∞

‖pk − pk−1‖Q = 0.
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On the other hand, since (u, p;λ) is a saddle-point of Lrof(v, q;μ), we have

(4.51) Grof(u, p) ≤ Grof(u
k, pk) + (λ, pk −∇uk)Q +

r

2
‖pk −∇uk‖2Q.

If we take v = u in (4.40) and q = p in (4.41), we have, by addition,

(4.52) Grof(u, p) ≥ Grof(u
k, pk) + (λk, pk −∇uk)Q + r‖pk −∇uk‖2Q + r(∇uk, pk − pk−1)Q.

Using (4.50), we have

(4.53) lim infGrof(u
k, pk) ≥ Grof(u, p) ≥ lim supGrof(u

k, pk),

by taking lim inf in (4.51) and lim sup in (4.52). This completes the proof of (4.35). Starting
from (4.35), one can verify (4.36) in a similar way as in the proof of Theorem 4.3.

There are some other proofs for Theorem 4.3 in [2, 3] and for Theorem 4.4 in [20, 3,
10]. Results similar to Theorem 4.4 were also obtained in [37] by identifying the algorithm
as a special case of Douglas–Rachford splitting on the dual problem. The proof using the
alternating Douglas–Rachford splitting relies on the properties of maximal monotone operators
which appear in the optimality condition of the optimization problem, while our proof relies
on the convexity of the objective functionals.

We recall that the operator K is invertible in many cases, e.g., image denoising where
K = I and most image deblurring problems (although the condition number of the blur
kernel may be very bad). In these cases, Theorems 4.3 and 4.4 imply the convergence of
the sequence {uk} (either L → ∞ or L = 1 in Algorithm 4.2) to the unique solution of the
problem.

5. Relations between the augmented Lagrangian method, dual methods, and split
Bregman iteration for the ROF model. In this section, we show, in the discrete setting, that
CGM [16] and Chambolle’s dual method [12] for the ROF model are closely connected to
the augmented Lagrangian method. Also, we explain that the split Bregman iteration [24] is
equivalent to Algorithm 4.1.

For the saddle-point problem (4.2), we have the following optimality conditions:

∂vLrof(v, q;μ)|(u,p;λ) = αK∗(Ku− f) + divλ+ rdiv(p−∇u) = 0,(5.1)

∂qLrof(v, q;μ)|(u,p;λ) = ∂Rrof(p) + λ+ r(p−∇u) � 0,(5.2)

∂μLrof(v, q;μ)|(u,p;λ) = p−∇u = 0,(5.3)

where ∂Rrof(p) is the subdifferential of Rrof at p.
It is definitely true that various techniques such as Newton and quasi-Newton linearizations

can be applied to the above system of optimality conditions to solve the saddle-point problem.
Actually CGM and Chambolle’s dual method can be seen as directly solving simplified forms
of the same optimality conditions (5.1), (5.2), and (5.3), as discussed in the following.

5.1. Connection to the CGM. We show how to obtain the CGM from the augmented
Lagrangian method. Using (5.3), we get p = ∇u, which gives

(5.4) λi,j =

{
− (∇u)i,j

|(∇u)i,j | if |(∇u)i,j | 
= 0,

g ∈ R
2, |g| ≤ 1 if |(∇u)i,j | = 0,
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from (5.2). Therefore, the multiplier λ is the dual variable in the CGM with a different sign.
We then can reformulate the system of (5.1), (5.2), and (5.3) to be

(5.5)
divλ+ αK∗(Ku− f) = 0,

∇u+ λ|∇u| = 0,
|λi,j| ≤ 1 ∀i, j,

which is just the primal-dual system in [16] if −λ is replaced with ω.

5.2. Connection to Chambolle’s dual method. In the following we show how Cham-
bolle’s algorithm is connected to the augmented Lagrangian method. Compared to the deriva-
tion in [12], this is another way to obtain the dual method. From the system of (5.1), (5.2),
and (5.3), we first eliminate the p variable to obtain (5.5), where we solve for u in the first
equation as (assuming Null(K) = {0})
(5.6) u = (αK∗K)−1(αK∗f − divλ),

and plug it into the second equation to obtain

(5.7) ∇((K∗K)−1(αK∗f − divλ)) + λ|∇((K∗K)−1(αK∗f − divλ))| = 0.

For image denoising problems where K = I, (5.7) and (5.6) are just the equations used by
Chambolle in [12] to solve the dual variable and recover the primal variable u, respectively.
Equation (5.7) for the dual variable in [12] was obtained through a derivation different from
ours. Our derivation seems easier to follow. In addition, (5.6) and (5.7) derived here are
formulations for general K. We should mention that K is sometimes compact, and thus the
condition number of K∗K is very bad. In this case the algorithm is not efficient.

5.3. Connection to the split Bregman iteration. As noticed in [39, 37, 22] for the ROF
model, the split Bregman iteration is equivalent to the augmented Lagrangian method. Here
we briefly review the explanation by using the new notation in the discrete setting. Considering
the zero initialization for the subgradients and the Lagrange multiplier and letting

(5.8) (gk−1
u , gk−1

p ) = −(divλk, λk)

for k = 0, 1, 2, . . ., we have

(uk, pk) = argmin
u,p

D
(gk−1

u ,gk−1
p )

Grof
((u, p), (uk−1, pk−1)) +

r

2
‖p−∇u‖2Q

= argmin
u,p

Rrof(p) +
α

2
‖Ku− f‖2V + (u,divλk)V + (λk, p)Q +

r

2
‖p−∇u‖2Q

= argmin
u,p

Rrof(p) +
α

2
‖Ku− f‖2V − (λk,∇u)Q + (λk, p)Q +

r

2
‖p−∇u‖2Q

= argmin
u,p

Lrof(u, p;λ
k),

indicating the equivalence between the solutions of the Bregman iteration and the augmented
Lagrangian method and that the updates of the subgradients are also consistent with the
Lagrange multiplier update if the subproblems in these two methods are solved identically.
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6. Extension to the vectorial TV model. In this section, we extend our method and
observations to a vectorial TV restoration model. Let us denote in general an M -channel
image by u = (u1, u2, . . . , uM ), where um ∈ V ∀m = 1, 2, . . . ,M . The intensity at pixel (i, j)
is thus multivalued, say, ui,j = ((u1)i,j, (u2)i,j , . . . , (uM )i,j). If M = 3, one gets usual color
models such as RGB.

For the convenience of description, we introduce the following notation:

V = V × V × · · · × V︸ ︷︷ ︸
M

,

Q = Q×Q× · · · ×Q︸ ︷︷ ︸
M

.

Hence an M -channel image u is an element of V, and its gradient ∇u = (∇u1,∇u2, . . . ,∇uM )
is an element of Q. The usual inner products and norms in V and Q are as follows:

(u,v)V =
∑

1≤m≤M

(um, vm)V , ‖u‖V =
√

(u,u)V;

(p,q)Q =
∑

1≤m≤M

(pm, qm)Q, ‖p‖Q =
√

(p,p)Q.

For u ∈ V and p ∈ Q, we also define the following pixel-by-pixel norms:

|ui,j| =
√ ∑

1≤m≤M

(um)2i,j

and

|pi,j | =
√ ∑

1≤m≤M

|(pm)i,j |2

at each pixel (i, j).
We consider the following vector-valued image restoration problem:

(6.1) min
u∈V

{
Fvtv(u) = Rvtv(∇u) +

α

2
‖Ku− f‖2V

}
,

where

(6.2) Rvtv(∇u) = TV(u) =
∑

1≤i,j≤N

√ ∑
1≤m≤M

|(∇um)i,j|2

is the vectorial TV seminorm [35, 6] (see [4] for some other choices), and f = (f1, f2, . . . , fM ) ∈
V is an observed image and K = (Ki,j)M×M : V → V is the blur operator. In K, each Ki,j is
a blur kernel representing a convolution. The diagonal elements of K denote within-channel
blurs, whereas the off-diagonal elements describe cross-channel blurs. Similarly as for the
ROF model, here we make the following assumption:

• Null(∇) ∩Null(K) = {0}.
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Under this assumption, the functional Fvtv(u) in (6.1) is convex, proper, coercive, and con-
tinuous. Therefore we have the following result.

Theorem 6.1. The problem (6.1) has at least one solution u, which satisfies

(6.3) 0 ∈ αK∗(Ku− f)− div∂Rvtv(∇u),

where ∂Rvtv(∇u) is the subdifferential of Rvtv at ∇u. Moreover, if Null(K) = {0}, the
minimizer is unique.

By introducing a new variable p = (p1, p2, . . . , pM ) ∈ Q, the minimization problem (6.1)
is equivalent to the following constrained optimization problem:

(6.4)
min

u∈V,p∈Q
{Gvtv(u,p) = Rvtv(p) +

α
2 ‖Ku− f‖2V}

s.t. p = ∇u.

6.1. Augmented Lagrangian method. Here we present the augmented Lagrangian method
for the restoration problem (6.1) or, equivalently, (6.4). We first define the augmented La-
grangian functional as

(6.5) Lvtv(v,q;μ) = Rvtv(q) +
α

2
‖Kv − f‖2V + (μ,q−∇v)Q +

r

2
‖q−∇v‖2Q,

where μ ∈ Q is the multiplier and r is a positive constant. The augmented Lagrangian method
aims at solving the following saddle-point problem:

(6.6)
Find (u,p;λ) ∈ V ×Q×Q
s.t. Lvtv(u,p;μ) ≤ Lvtv(u,p;λ) ≤ Lvtv(v,q;λ) ∀(v,q;μ) ∈ V ×Q×Q.

Similarly to Theorem 4.1, we have the following result.
Theorem 6.2. u ∈ V is a solution of (6.1) if and only if there exist p ∈ Q and λ ∈ Q such

that (u,p;λ) is a solution of (6.6).
We use an iterative procedure as described in Algorithm 6.1 to solve the problem (6.6).

Again, one may see the ≈ in (6.7). This is because the minimization problem (6.7) has two
coupled variables and hence is difficult to solve exactly.

Algorithm 6.1. Augmented Lagrangian method for the vectorial TV model.

1. Initialization: λ0 = 0;
2. For k = 0, 1, 2, . . . : Compute (uk,pk) from

(6.7) (uk,pk) ≈ arg min
(v,q)∈(V,Q)

Lvtv(v,q;λ
k)

and update

(6.8) λk+1 = λk + r(pk −∇uk).

As for the minimization problem (6.7), we separate it into the following two subproblems:

(6.9) min
v

α

2
‖Kv − f‖2V − (λk,∇v)Q +

r

2
‖q−∇v‖2Q
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318 CHUNLIN WU AND XUE-CHENG TAI

for a given q, and

(6.10) min
q

Rvtv(q) + (λk,q)Q +
r

2
‖q−∇v‖2Q

for a given v.
Applying Fourier transforms to the optimality condition of the subproblem (6.9), we have

(6.11) αF(K∗)F(K)F(v) − rF(�)F(v) = αF(K∗)F(f) −F(div)F(λk)− rF(div)F(q),

from which F(v) can be found and then v via an inverse Fourier transform. Here apply-
ing Fourier transforms to a matrix or a vector is regarded as applying Fourier transforms
to its components, e.g., F(v) = (F(v1),F(v2), . . . ,F(vM )), F(div)F(λk) = (F(div)F(λk

1),
F(div)F(λk

2), . . . ,F(div)F(λk
M )), F(K) = (F(Ki,j))M×M . Thus one needs to solve a system

of linear algebraic equations of F(v) = (F(v1),F(v2), . . . ,F(vM )) since cross blurs exist in
general. In a special case without cross blurs, the blur kernel matrix K is a diagonal matrix,
and the F(v) can be calculated component by component. The subproblem (6.10) has the
following closed form solution:

(6.12) qi,j =

{ (
1− 1

r
1

|wi,j |
)
wi,j, |wi,j| > 1

r ,

0, |wi,j| ≤ 1
r ,

where

(6.13) w = ∇v− λk

r
.

We then have an iterative procedure to alternatively compute the v and q according to
(6.11) (6.12); see Algorithm 6.2.

Algorithm 6.2. Augmented Lagrangian method for the vectorial TV model—solve the
minimization problem (6.7).

• Initialization: uk,0 = uk−1,pk,0 = pk−1;
• For l = 0, 1, 2, . . . , L− 1: Compute uk,l+1 from (6.11) for q = pk,l, and then compute

pk,l+1 from (6.12) for v = uk,l+1;
• uk = uk,L,pk = pk,L.

Here L can be chosen using some convergence test techniques and is usually simply set to
be 1.

In the following we present some convergence results without giving proofs. They are
straightforward generalizations of Theorems 4.2, 4.3, and 4.4.

Theorem 6.3. The sequence {(uk,l,pk,l) : l = 0, 1, 2, . . .} generated by Algorithm 6.2 con-
verges to a solution of the problem (6.7).

Theorem 6.4. Assume that (u,p;λ) is a saddle-point of Lvtv(v,q;μ). Suppose that the
minimization problem (6.7) is exactly solved in each iteration; i.e., L → ∞ in Algorithm 6.2.
Then the sequence (uk,pk;λk) generated by Algorithm 6.1 satisfies

(6.14)

{
lim
k→∞

Gvtv(u
k,pk) = Gvtv(u,p),

lim
k→∞

‖pk −∇uk‖Q = 0.
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Since Rvtv(p) is continuous, (6.14) indicates that uk is a minimizing sequence of Fvtv. If we
further have Null(K) = {0}, then

(6.15)

{
lim
k→∞

uk = u,

lim
k→∞

pk = p.

Theorem 6.5. Assume that (u,p;λ) is a saddle-point of Lvtv(v,q;μ). Suppose that the
minimization problem (6.7) is roughly solved in each iteration; i.e., L = 1 in Algorithm 6.2.
Then the sequence (uk,pk;λk) generated by Algorithm 6.1 satisfies

(6.16)

{
lim
k→∞

Gvtv(u
k,pk) = Gvtv(u,p),

lim
k→∞

‖pk −∇uk‖Q = 0.

Since Rvtv(p) is continuous, (6.16) indicates that uk is a minimizing sequence of Fvtv. If we
further have Null(K) = {0}, then

(6.17)

{
lim
k→∞

uk = u,

lim
k→∞

pk = p.

6.2. Dual methods for vectorial TV model. In this subsection we discuss the formula-
tions of CGM and Chambolle’s dual method for the vectorial TV restoration model.

We start from the optimality conditions of the saddle-point problem (6.6), which read

∂vLvtv(v,q, μ)|(u,p;λ) = αK∗(Ku− f) + divλ+ rdiv(p−∇u) = 0,(6.18)

∂qLvtv(v,q, μ)|(u,p;λ) = ∂Rvtv(p) + λ+ r(p−∇u) � 0,(6.19)

∂μLvtv(v,q, μ)|(u,p;λ) = p−∇u = 0,(6.20)

where ∂Rvtv(p) is the subdifferential of Rvtv at p, and divλ = (divλ1,divλ2, . . . ,divλM ) as
well as div(p−∇u) means similarly.

6.2.1. The CGM. The CGM for color image restoration is still missing in the literature,
as pointed out in [6]: “the question of extension is open for the CGM’s model.” Here we present
the method via simplifying the optimality conditions of the saddle-point problem (6.6). Using
(6.20) to eliminate p and rearranging the result yields

(6.21)
αK∗(Ku− f) + divλ = 0,

∇u+ λ|∇u| = 0,
|λi,j| ≤ 1 ∀i, j,

which is a system similar to that in the CGM in [16]. In our implementation we use Newton’s
linearization techniques to simultaneously compute the primal and dual variables u and λ in
(6.21). We also adopt a continuation scheme on the smoothing parameter β based on the
duality gap [49].
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6.2.2. Chambolle’s dual method. If we go a step further, we will get a method similar
to Chambolle’s [12]. See [6]. From the first equation of (6.21) we have a relation between the
primal variable u and the dual variable λ as (assume here Null(K) = {0})

(6.22) u = (αK∗K)−1(αK∗f − divλ).

Substituting this equation into the second equation of (6.21) gives

(6.23) ∇((K∗K)−1(αK∗f − divλ)) + λ|∇((K∗K)−1(αK∗f − divλ))| = 0,

which can be solved with a semi-implicit gradient descent scheme. Here we derive Chambolle’s
dual method for the vectorial TV model in a way different from [6].

6.3. Split Bregman iteration for vectorial TV model. Split Bregman iteration for the
restoration problem (6.4) is presented in Algorithm 6.3. Therein the minimization problem
(6.24) can be solved using Algorithm 6.2. For the image denoising case, Gauss–Seidel it-
eration can be applied to the u-subproblem (as in our implementation), which results in a
more efficient algorithm than the FFT-based implementation. To the best of our knowledge,
Algorithm 6.3 has not been proposed previously.

Algorithm 6.3. Split Bregman iteration for the vectorial TV model.

1. Initialization: (u−1,p−1) = (0, 0), (g−1
u ,g−1

p ) = (0, 0);

2. For k = 0, 1, 2, . . .: Compute (uk,pk) from

(6.24) (uk,pk) = arg min
(u,p)

D
(gk−1

u ,gk−1
p )

Gvtv

(
(u,p), (uk−1,pk−1)

)
+

r

2
‖p−∇u‖2Q,

and update

(6.25)
gk
u = gk−1

u − rdiv(pk −∇uk),

gk
p = gk−1

p − r(pk −∇uk).

With an argument similar to that in the last section for the ROF model, one can show
the equivalence between the augmented Lagrangian method (Algorithm 6.1) and the split
Bregman iteration (Algorithm 6.3), provided the subproblems are solved identically.

7. Extension to high order models. We can also extend our method and observations
to high order models. As is well known, the TV restoration models (e.g., ROF and vectorial
TV) suffer from a staircase effect; see [47, 42, 18, 15, 7] and references therein. To overcome
this, high order models have been proposed [13, 18, 46, 29, 30, 14, 26]. Here we take the
Lysaker–Lundervold–Tai (LLT) model [29] as an example. Other high order models can be
treated similarly. Moreover, we present the model (which is still denoted as LLT) and method
for multivalued images, for generality.

Since the LLT model is defined using second order derivatives, we need to introduce second
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order difference operators. Given u ∈ V , we define

(D̊−+
xx u)i,j := (D̊−

x (D̊
+
x u))i,j,

(D̊++
xy u)i,j := (D̊+

x (D̊
+
y u))i,j,

(D̊++
yx u)i,j := (D̊+

y (D̊
+
x u))i,j,

(D̊−+
yy u)i,j := (D̊−

y (D̊
+
y u))i,j,

based on the first order difference operators introduced in section 2. One may verify that, by
the definition above, (D̊++

xy u)i,j = (D̊++
yx u)i,j holds. In this paper we also use other second

order difference operators such as D̊+−
xx , D̊+−

xy , D̊−+
xy , and D̊−−

xy . They can be similarly defined,
and we omit the details. We now denote the discrete Hessian of u as

Hu =

(
D̊−+

xx u D̊++
xy u

D̊++
yx u D̊−+

yy u

)
∈ Q2

with

(Hu)i,j =

(
(D̊−+

xx u)i,j (D̊++
xy u)i,j

(D̊++
yx u)i,j (D̊−+

yy u)i,j

)
,

where

Q2 = V × V × V × V.

We point out that there are actually 3 × 4 × 3 symmetric discrete Hessians by different
combinations of all the second order difference operators. Here we use just one of those
defined above. For a vector-valued image u = (u1, u2, . . . , uM ) ∈ V, the Hessian is computed
channel by channel and denoted as

Hu = (Hu1,Hu2, . . . ,HuM ) ∈ Q2,

where

Q2 = Q2 × · · · ×Q2︸ ︷︷ ︸
M

.

Given

p =

((
p111 p121
p211 p221

)
,

(
p112 p122
p212 p222

)
, . . . ,

(
p11M p12M
p21M p22M

))
∈ Q2

and

q =

((
q111 q121
q211 q221

)
,

(
q112 q122
q212 q222

)
, . . . ,

(
q11M q12M
q21M q22M

))
∈ Q2,

the inner product and norm in the space Q2 are as follows:

(p,q)Q2 =
∑

1≤m≤M

((p11m , q11m )V + (p12m , q12m )V + (p21m , q21m )V + (p22m , q22m )V ),

‖p‖Q2 =
√

(p,p)Q2 .D
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Similarly with those in the ROF and vectorial TV models, we mention the following pixel-by-
pixel norm:

|pi,j | =
√ ∑

1≤m≤M

((p11m )2i,j + (p12m )2i,j + (p21m )2i,j + (p22m )2i,j).

By regarding the Hessian as an operator H : V → Q2, we find its adjoint operator H∗ : Q2 →
V as

H∗(p) = (H∗p1,H∗p2, . . . ,H∗pM ),

where
H∗pm = D̊+−

xx p11m + D̊−−
yx p12m + D̊−−

xy p21m + D̊+−
yy p22m .

We then consider the following image restoration problem:

(7.1) min
u∈V

{
Fllt(u) = Rllt(Hu) +

α

2
‖Ku− f‖2V

}
,

where
Rllt(Hu) =

∑
1≤i,j≤N

|(Hu)i,j |,

f ∈ V is the observed image, and K : V → V is the blur operator which is explained in
section 6. We have the following assumption:

• Null(H) ∩Null(K) = {0}.
Given this, the functional Fllt(u) in (7.1) is convex, proper, coercive, and continuous. Accord-
ing to the generalized Weierstrass theorem and Fermat’s theorem, problem (7.1) has at least
one solution u, which is characterized by

(7.2) 0 ∈ αK∗(Ku− f) +H∗∂Rllt(Hu),

where ∂Rllt(Hu) is the subdifferential of Rllt at Hu. Moreover, if Null(K) = {0}, the mini-
mizer is unique.

In the following we present an augmented Lagrangian method to solve (7.1). We give
only the algorithm. Convergence results and connections to Chambolle’s dual method [38] are
similar to those in previous sections. It is also quite straightforward to derive the other two
new methods, i.e., the CGM and the split Bregman iteration for this problem, by following
our observations in the previous section. Here we omit these details.

We first reformulate (7.1) to be the following constrained optimization problem:

(7.3)
min

u∈V,p∈Q2

{
Gllt(u,p) = Rllt(p) +

α

2
‖Ku− f‖2V

}
s.t. p = Hu.

To solve (7.3), we define the augmented Lagrangian functional as

(7.4) Lllt(v,q;μ) = Rllt(q) +
α

2
‖Kv − f‖2V + (μ,q−Hv)Q2 +

r

2
‖q−Hv‖2Q2

,

where μ ∈ Q2, and consider the following saddle-point problem:

(7.5)
Find (u,p;λ) ∈ V×Q2 ×Q2

s.t. Lllt(u,p;μ) ≤ Lllt(u,p;λ) ≤ Lllt(v,q;λ) ∀(v,q;μ) ∈ V ×Q2 ×Q2.D
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Similarly with Theorem 4.1, u ∈ V is a solution of (7.1) if and only if there exist p ∈ Q2

and λ ∈ Q2 such that (u,p;λ) is a solution of (7.5). This can be shown by noting (7.2).
An iterative algorithm is given in Algorithm 7.1 to solve the saddle-point problem (7.5).

To solve the minimization problem (7.8), we separate it into the following two subproblems:

(7.6) min
v

α

2
‖Kv − f‖2V − (λk,Hv)Q2 +

r

2
‖q−Hv‖2Q2

for a given q, and

(7.7) min
q

Rllt(q) + (λk,q)Q2 +
r

2
‖q−Hv‖2Q2

for a given v.

Algorithm 7.1. Augmented Lagrangian method for the LLT model.

1. Initialization: λ0 = 0;
2. For k = 0, 1, 2, . . .: Compute (uk,pk) from

(7.8) (uk,pk) ≈ arg min
(v,q)∈(V,Q2)

Lllt(v,q;λ
k),

and update

(7.9) λk+1 = λk + r(pk −Huk).

As with (6.11), (6.12), and (6.13), we give the solutions to (7.6) and (7.7) as follows. From
the optimality condition of the subproblem (7.6) and using Fourier transforms, we deduce
(7.10)

αF(K∗)F(K)F(v) + rF(H∗)F(H)F(v) = αF(K∗)F(f) + F(H∗)F(λk) + rF(H∗)F(q),

from which F(v) and then v can be found. The subproblem (7.7) has the following closed
form solution:

(7.11) qi,j =

{ (
1− 1

r
1

|wi,j |
)
wi,j, |wi,j| > 1

r ,

0, |wi,j| ≤ 1
r ,

where

(7.12) w = Hv − λk

r
.

We then use an iterative procedure to alternatively calculate v and q according to (7.10)
and (7.11); see Algorithm 7.2.

Here L can be chosen using some convergence test techniques and is usually simply set to
be L = 1, as in the ROF and vectorial TV restoration problems.
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Algorithm 7.2. Augmented Lagrangian method for the LLT model—solve the minimization
problem (7.8).

• Initialization: uk,0 = uk−1,pk,0 = pk−1;
• For l = 0, 1, 2, . . . , L− 1: Compute uk,l+1 from (7.10) for q = pk,l, and then compute

pk,l+1 from (7.11) for v = uk,l+1;
• uk = uk,L,pk = pk,L.

Shape. Size: 128 × 128 Cameraman. Size: 256 × 256 Lena. Size: 512 × 512

Man. Size: 1024 × 1024 Tomato. Size: 259 × 259 Peppers. Size: 128 × 128

House. Size: 256 × 256 Lena(color). Size: 512 × 512
Rose. Size: 303 × 250

Figure 1. The test images used in this paper.

8. Examples and discussion. In this section we provide some numerical examples. We will
first present some results of the augmented Lagrangian method (ALM) applied to ROF, vec-
torial TV, and LLT models, and then compare ALM to the CGM, Chambolle’s dual method,
the split Bregman iteration (SB) based on Gauss–Seidel iteration, Matlab built-in image de-
blurring functions, and fast TV deconvolution (FTVd). All the experiments were performed
using Windows Vista and Matlab R2007a (Version 7.4.0.287) on a desktop with Intel CPU
(Core 2) at 2.13GHz and 2GB memory.

8.1. Test images, practical implementation, and stopping condition. In this paper, we
tested lots of images, including the well-known Cameraman, Lena, etc. See Figure 1 where
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the image sizes are also given.
We used the Matlab functions imfilter and imfilter33 to generate blurring effects for

grayscale and color images, respectively. For the grayscale image case, we tested three kinds
of blurring kernels: Gaussian, motion, and average. For the convenience of description, we
denote the Gaussian blur with a blurring size size and a standard deviation sigma as (G,
size, sigma). The motion blur with a motion length len and an angle theta is denoted as (M,
len, theta). Similarly, the average blur with a blurring size size is denoted by (A, size). We
generated these kernels using Matlab function fspecial with various testing parameters. For
the color image case, we combined various blurring kernels to generate some within-channel
blurs and cross-channel blurs. Specially, we used the method in [43] to generate cross-channel
blurs, which contains three steps as follow:

1. Generate 9 kernels:
{(G, 11, 9), (G, 21, 11), (G, 31, 13), (M, 21, 45), (M, 41, 90), (M, 61, 135), (A, 13),
(A, 15), (A, 17)};

2. Randomly assign the above 9 kernels to
{K11, K12, K13; K21, K22, K23; K31, K32, K33};

3. Multiply 0.8 to the diagonal kernels and 0.1 to the off-diagonal kernels.
In the experiments, we used Matlab function imnoise to add Gaussian noise with zero mean
and various deviations to the signals. For simplicity, we denote the deviation as dev.

For all of the tested algorithms, we used the following stopping condition:

• Given a tolerance ε > 0, the iteration runs until ‖uk−uk−1‖
‖uk−1‖ ≤ ε (or ‖uk−uk−1‖

‖uk−1‖ ≤ ε in

the case of color images).
In the following we present some results of the ALM applied to ROF, vectorial TV, and

LLT models, as well as some comparisons between ALM, CGM, Chambolle’s dual method,
the SB, Matlab built-in functions, and FTVd. We mention that, in all of the figures, SNR
and t denote the signal-noise-ratio and CPU time, respectively.

8.2. Results of the ALM applied to the ROF, vectorial TV, and LLT models. In this
subsection, we show some numerical examples about ALM applied to the ROF, vectorial
TV, and LLT models. See Figures 2, 3, 4, 5, 6, and 7. Different blur kernels, cross-channel
blurs, and Gaussian noises with different deviations were used to test our algorithms. The
cross-channel blurs were generated using the method in the last subsection. As is well known,
to restore an image from a both blurry and noisy observation is a very hard problem. Our
algorithms can generate good restoration results very efficiently for common-sized images
(such as the Cameraman and Lena images). The example illustrated in Figure 7 shows the
ALM applied to the LLT model to reduce the staircase effect of the ROF model; see the
zoomed images in Figure 7.

8.3. Comparisons with CGM, Chambolle’s dual method, and the SB. In this subsec-
tion, we make comparisons between ALM, CGM, Chambolle’s dual method, and the SB. We
compare these algorithms in the case of image denoising due to the following reasons. First,
Chambolle’s dual method and the SB (based on Gauss–Seidel iteration) were both proposed
for the image denoising case of the ROF model in [12, 24]. Second, when applied to image
deblurring, the CGM requires lots of memory and is quite slow since the matrix in the Newton
linearization [16] is dense.
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Blurry & Noisy 
 SNR: 7.31dB

ALM(r=10.00) 
SNR: 17.36dB, t = 0.33s

Blurry & Noisy 
 SNR: 7.28dB

ALM(r=10.00) 
 SNR: 13.36dB, t = 0.44s

Blurry & Noisy 
 SNR: 6.95dB

ALM(r=10.00) 
 SNR: 10.34dB, t = 0.45s

Figure 2. ALM with parameter r = 10 for the ROF restoration. The first row is the Cameraman image
corrupted by motion blur (M, 21, 45) and Gaussian noise with dev = 1.e− 5, 1.e− 4, 1.e− 3 (from left to right);
the second row is the restored images. The stopping tolerance is ε = 1.e − 2.

Blurry & Noisy 
 SNR: 7.69dB

ALM(r=10.00) 
SNR: 13.51dB, t = 2.48s

Blurry & Noisy 
 SNR: 7.64dB

ALM(r=10.00) 
 SNR: 11.88dB, t = 3.15s

Blurry & Noisy 
 SNR: 7.14dB

ALM(r=10.00) 
 SNR: 10.20dB, t = 3.59s

Figure 3. ALM with parameter r = 10 for the ROF restoration. The first row is the Lena image corrupted
by Gaussian blur (G, 21, 11) and Gaussian noise with dev = 1.e − 5, 1.e − 4, 1.e − 3 (from left to right); the
second row is the restored images. The stopping tolerance is ε = 1.e− 2.
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Blurry & Noisy 
 SNR: 9.93dB

ALM(r=10.00) 
SNR: 15.76dB, t = 7.72s

Blurry & Noisy 
 SNR: 9.86dB

ALM(r=10.00) 
 SNR: 13.85dB, t = 10.86s

Blurry & Noisy 
 SNR: 9.21dB

ALM(r=10.00) 
 SNR: 12.01dB, t = 13.90s

Figure 4. ALM with parameter r = 10 for the ROF restoration. The first row is the Man image corrupted
by average blur (A, 15) and Gaussian noise with dev = 1.e − 5, 1.e − 4, 1.e − 3 (from left to right); the second
row is the restored images. The stopping tolerance is ε = 1.e− 2.

Blurry & Noisy 
 SNR: 8.55dB

ALM(r=10.00) 
SNR: 17.16dB, t = 8.38s

Blurry & Noisy 
 SNR: 8.50dB

ALM(r=10.00) 
 SNR: 15.44dB, t = 10.61s

Blurry & Noisy 
 SNR: 8.01dB

ALM(r=10.00) 
 SNR: 13.56dB, t = 12.85s

Figure 5. ALM with parameter r = 10 for the vectorial TV restoration. The first row is the Lena
(color) image corrupted by cross-channel blur (generated in the last subsection) and Gaussian noise with dev =
1.e − 5, 1.e − 4, 1.e − 3 (from left to right); the second row is the restored images. The stopping tolerance is
ε = 1.e − 2.
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Blurry & Noisy 
 SNR: 7.89dB

ALM(r=10.00) 
SNR: 17.16dB, t = 2.36s

Blurry & Noisy 
 SNR: 7.87dB

ALM(r=10.00) 
 SNR: 14.95dB, t = 2.75s

Blurry & Noisy 
 SNR: 7.64dB

ALM(r=10.00) 
 SNR: 13.02dB, t = 3.48s

Figure 6. ALM with parameter r = 10 for the vectorial TV restoration. The first row is the Rose image
corrupted by cross-channel blur (generated in the last subsection) and Gaussian noise with dev = 1.e− 5, 1.e−
4, 1.e − 3 (from left to right); the second row is the restored images. The stopping tolerance is ε = 1.e − 2.

Original

Blurry&Noisy
 SNR: 17.74dB

ALM(r=10) for ROF
 SNR: 25.48dB, t = 0.98s

ALM(r=10) for LLT
 SNR: 25.74dB, t = 1.95s

ALM(r=10) for ROF
 zoom in

ALM(r=10) for LLT
 zoom in

Figure 7. ALM with parameter r = 10 for the ROF and LLT restorations. The blur kernel is (G, 21, 0.5)
and the noise level is dev = 1.e− 3. The stopping tolerance is ε = 1.e − 3.
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Original 
 SNR:  InfdB

Noisy 
 SNR: 11.15dB

ALM(r=25) 
 SNR: 12.13dB, t = 0.44s

CGM method(β
0
=0.10) 

 SNR: 12.15dB, t = 4.35s
Chambolle method(τ=0.240) 

 SNR: 12.10dB, t = 0.34s
Split Bregman(r=25) 

 SNR: 12.14dB, t = 0.27s

Figure 8. Comparisons between ALM, CGM, Chambolle’s dual method, and the SB for the ROF restoration.
The noise level is dev = 1.e − 2. The stopping tolerance is ε = 1.e − 4.

The codes for Chambolle’s dual method and the CGM for the grayscale image case were
obtained from the Internet. Although the SB for grayscale image denoising was implemented
in [24] in C++, we did not adopt it due to the consideration of the fairness of comparisons.
We implemented the SB in Matlab for both grayscale and color image cases, where Gauss–
Seidel iteration was used to solve the u-subproblems. We also implemented the CGM for the
color image case, where a direct solver for the linear system at each iteration was used, and
a similar continuation scheme for the smooth parameter β based on a duality gap as in [49]
was applied.

Some examples are provided in Figures 8, 9, 10, 11, 12, and 13. We compare these
algorithms in both grayscale and color image cases with different-sized images. In the figures,
β0 is the initial value of the smooth parameter β in the CGM, and τ is the (nearly optimal)
step size of Chambolle’s dual method. (Actually the convergence of Chambolle’s method is
proved under τ < 1

8 but is observed under τ < 1
4 .) In addition, r is the penalty parameter for

the ALM and SB cases. For the grayscale image case, we applied the observation in [24] for
setting the parameter r in the ALM. For the color image case, we found that r = α provides
good efficiency for ALM and SB. We also recorded the iteration numbers and CPU costs of
these algorithms for different stopping tolerances; see Table 1. Considering the length of the
paper, we do not provide these data for the color image case, since they have similar statistical
features with those for the grayscale image case.

From the figures and the table, we have some conclusions. The SB is in general the fastest
method and produces the best restoration results. For large stopping tolerances, Chambolle’s
dual method becomes the fastest one, but the results are a bit worse. The CGM requires the
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Original 
 SNR:  InfdB

Noisy 
 SNR: 8.16dB

ALM(r=25) 
 SNR: 15.10dB, t = 1.70s

CGM method(β
0
=0.10) 

SNR: 15.13dB, t = 25.91s
Chambolle method(τ=0.240) 

 SNR: 15.09dB, t = 2.39s
Split Bregman(r=25) 

 SNR: 15.13dB, t = 1.31s

Figure 9. Comparisons between ALM, CGM, Chambolle’s dual method, and SB iteration for the ROF
restoration. The noise level is dev = 1.e− 2. The stopping tolerance is ε = 1.e − 4.

Original 
 SNR:  InfdB

Noisy 
 SNR: 6.59dB

ALM(r=25) 
 SNR: 15.39dB, t = 6.96s

CGM method(β
0
=0.10) 

SNR: 15.45dB, t = 180.65s
Chambolle method(τ=0.240) 

 SNR: 15.48dB, t = 12.54s
Split Bregman(r=25) 

 SNR: 15.45dB, t = 7.47s

Figure 10. Comparisons between ALM, CGM, Chambolle’s dual method, and the SB for the ROF restora-
tion. The noise level is dev = 1.e − 2. The stopping tolerance is ε = 1.e− 4.
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Original 
 SNR:  InfdB

Noisy 
 SNR: 8.62dB

ALM(r=12.50) 
 SNR: 14.29dB, t = 0.59s

CGM method(β
0
=0.10) 

SNR: 14.36dB, t = 22.29s
Chambolle method(τ=0.240) 

 SNR: 14.25dB, t = 0.28s
Split Bregman(r=12.50) 
 SNR: 14.36dB, t = 0.39s

Figure 11. Comparisons between ALM, CGM, Chambolle’s dual method, and the SB for the vectorial TV
restoration. The noise level is dev = 1.e− 2. The stopping tolerance is ε = 1.e − 4.

Original 
 SNR:  InfdB

Noisy 
 SNR: 6.37dB

ALM(r=8.00) 
 SNR: 16.31dB, t = 5.85s

CGM method(β
0
=0.10) 

SNR: 16.55dB, t = 240.35s
Chambolle method(τ=0.240) 

 SNR: 16.40dB, t = 6.10s
Split Bregman(r=8.00) 
 SNR: 16.54dB, t = 4.01s

Figure 12. Comparisons between ALM, CGM, Chambolle’s dual method, and the SB for the vectorial TV
restoration. The noise level is dev = 1.e− 2. The stopping tolerance is ε = 1.e − 4.
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Original 
 SNR:  InfdB

Noisy 
 SNR: 7.50dB

ALM(r=8.00) 
 SNR: 17.41dB, t = 26.75s

Chambolle method(τ=0.240) 
 SNR: 17.40dB, t = 32.45s

Split Bregman(r=8.00) 
 SNR: 17.46dB, t = 25.83s

Figure 13. Comparisons between ALM, CGM, Chambolle’s dual method, and the SB for the vectorial TV
restoration. The noise level is dev = 1.e− 2. The stopping tolerance is ε = 1.e− 4. The CGM method ran out
of memory for this example.

fewest numbers of iterations but at more CPU cost. The SB is faster than ALM in general
for two main reasons: First, SB iteration solves the u-subproblem in the physical domain, but
ALM solves it in the frequency domain. Since the u-subproblem for image denoising problems
has sparse structure in the physical domain but dense structure in the frequency domain, fewer
calculations are needed at each iteration in the SB method. Second, it is not necessary to
solve the subproblems exactly in the SB (also in ALM), and one single Gauss–Seidel iteration
is enough. However, as image size gets larger, the CPU time of the ALM becomes nearly
the same as (sometimes less than) that of the SB. Also, as mentioned before, our FFT-based
implementation can handle more general cases (for general blurs K).

8.4. Comparisons with MATLAB functions. Comparisons between ALM and some built-
in Matlab functions, i.e., deconvwnr.m, deconvreg.m, and deconvlucy.m, are shown in Figures
14, 15, 16, and 17. Since these Matlab functions were designed for image deblurring, we
added quite low level Gaussian noise in the experiments in this subsection, i.e., with dev =
1.e− 6. (The restoration quality of the Matlab functions is very bad when the noise level is
higher than dev = 1.e−6.) We also mention that deconvwnr.m, deconvreg.m, and deconvlucy.m
are the only Matlab built-in functions that can handle color image deblurring, and they
require the diagonal blur kernels to be identical, i.e., K11 = K22 = K33, and all the off-
diagonal blur kernels to be 0. The kernels listed in the captions of Figures 16 and 17 are the
diagonal elements in these two examples, respectively. As one can see, the ALM generates
much better restorations than these built-in Matlab functions at comparable (or even less)
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Table 1
Numbers of iterations and CPU costs (in seconds) of ALM, CGM, Chambolle’s method, and SB, for the

problems shown in Figures 8, 9, and 10. Tol is the stopping tolerance.

(a) Denoising of the Shape image (Figure 8).

Tol ε =1.e-3 Tol ε =1.e-4 Tol ε =1.e-5 Tol ε =1.e-6

Algorithms Iter Time Iter Time Iter Time Iter Time

ALM 27 0.25 50 0.44 119 1.05 353 2.98

CGM 8 2.46 14 4.35 19 6.71 23 10.11

Chambolle 5 0.08 20 0.34 97 1.54 1324 20.48

SB 29 0.16 51 0.27 113 0.59 372 1.90

(b) Denoising of the Cameraman image (Figure 9).

Tol ε =1.e-3 Tol ε =1.e-4 Tol ε =1.e-5 Tol ε =1.e-6

Algorithms Iter Time Iter Time Iter Time Iter Time

ALM 17 0.84 36 1.70 119 5.44 344 15.63

CGM 10 17.25 15 25.91 19 48.92 22 106.88

Chambolle 6 0.66 24 2.39 118 11.47 633 61.48

SB 20 0.70 39 1.31 119 3.88 350 11.65

(c) Denoising of the Lena image (Figure 10). The CGM method ran out of
memory for ε =1.e-5, 1.e-6.

Tol ε =1.e-3 Tol ε =1.e-4 Tol ε =1.e-5 Tol ε =1.e-6

Algorithms Iter Time Iter Time Iter Time Iter Time

ALM 16 3.70 32 6.96 84 18.17 226 47.77

CGM 11 144.49 15 180.65 - - - -

Chambolle 5 2.98 22 12.54 85 48.53 331 187.50

SB 19 4.04 36 7.47 82 17.36 236 49.59

CPU time costs.

8.5. Comparisons with FTVd. In this subsection we provide several examples to compare
the ALM and FTVd [40, 43]. See Figure 18. FTVd is a recently proposed method for solving
TV based problems. It is much more efficient than other existing methods, as discussed in
[40]. As shown in Figure 18, the ALM is a little bit faster than FTVd and generates a bit
better restorations.

8.6. A remark on the computational cost of the ALM. We would like to remark here
on the computational costs of the ALM applied to the ROF, vectorial TV, and high order
models, respectively. As one can see, our method contains two iterations, one inner iteration
and one outer iteration. Since the update of Lagrange multipliers is extremely fast, the cost
of the algorithm at each outer iteration is dominated by the inner iteration (see Algorithms
4.1, 6.1, and 7.1). For simplicity of description, in the following we assume N2 as the number
of total pixels.

In Algorithm 4.2 for the ROF model, there are mainly two operations: the FFT-based
solver (4.11) for the v-subproblem and the shrinkage operation (4.12) for the q-subproblem.
The shrinkage operation (4.12) has a linear computational complexity, O(N2), and each FFT
has a complexity of O(N2 logN). The Fourier transforms of the operators K, D̊−

x , D̊
−
y ,�D
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Original 
 SNR:  InfdB

Blurry & Noisy 
 SNR: 6.30dB

ALM(r=10.00) 
 SNR: 12.79dB, t = 0.39s

deconvwnr 
SNR: 11.10dB, t = 0.06s

deconvreg 
 SNR: 11.15dB, t = 0.31s

deconvlucy 
 SNR: 9.29dB, t = 1.34s

Figure 14. ALM for the ROF restoration, and comparisons to Matlab built-in functions. The blur kernel
is Gaussian blur (G, 21, 11). The noise level is dev = 1.e − 6. The tolerance is 1.e− 2.

Original 
 SNR:  InfdB

Blurry & Noisy 
 SNR: 7.16dB

ALM(r=10.00) 
 SNR: 19.19dB, t = 1.62s

deconvwnr 
SNR: 15.32dB, t = 0.27s

deconvreg 
 SNR: 16.05dB, t = 1.29s

deconvlucy 
 SNR: 14.13dB, t = 5.88s

Figure 15. ALM for the ROF restoration, and comparisons to Matlab built-in functions. The blur kernel
is motion blur (M, 30, 135). The noise level is dev = 1.e− 6. The tolerance is 1.e− 2.
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Original 
 SNR:  InfdB

Blurry & Noisy 
 SNR: 9.91dB

ALM(r=10.00) 
 SNR: 15.98dB, t = 3.40s

deconvwnr 
SNR: 13.49dB, t = 0.98s

deconvreg 
 SNR: 13.49dB, t = 4.04s

deconvlucy 
 SNR: 11.16dB, t = 4.17s

Figure 16. ALM for the vectorial TV restoration, and comparisons to Matlab built-in functions. The
blur kernel is Gaussian blur (G, 21, 11). The noise level is dev = 1.e− 6. The tolerance is 1.e− 1.

Original 
 SNR:  InfdB

Blurry & Noisy 
 SNR: 10.38dB

ALM(r=10.00) 
 SNR: 22.50dB, t = 1.11s

deconvwnr 
SNR: 18.59dB, t = 0.33s

deconvreg 
 SNR: 19.30dB, t = 1.23s

deconvlucy 
 SNR: 12.44dB, t = 1.64s

Figure 17. ALM for the vectorial TV restoration, and comparisons to Matlab built-in functions. The
blur kernel is motion blur (M, 21, 45). The noise level is dev = 1.e− 6. The tolerance is 1.e− 1.
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Blurry & Noisy 
 SNR: 6.27dB

ALM(r=10) 
 SNR: 9.78dB, t = 0.45s

FTVd 
SNR: 9.47dB, t = 0.76s

Blurry & Noisy 
 SNR: 6.66dB

ALM(r=10) 
 SNR: 11.38dB, t = 3.26s

FTVd 
SNR: 10.86dB, t = 4.21s

Blurry & Noisy 
 SNR: 7.69dB

ALM(r=10) 
 SNR: 13.96dB, t = 3.07s

FTVd 
SNR: 13.56dB, t = 4.56s

Figure 18. Comparisons between ALM and FTVd for the ROF (the first two rows) and vectorial TV (the
third row) restorations. The first row is with Gaussian blur (G, 21, 11) and Gaussian noise with dev = 1.e− 4.
The second row is with motion blur (M, 30, 135) and Gaussian noise with dev = 1.e− 3. The third row is with
cross-channel blur (generated in section 8.1) and Gaussian noise with dev = 1.e − 4. The tolerance is 1.e − 2.

and the observed image f are constants, and thus are calculated only once during the whole
algorithm. At each iteration, Algorithm 4.2 performs 2 FFTs, 1 inverse FFT, and 1 shrinkage.
Since in this paper we set L = 1 in Algorithm 4.2, the total cost per outer iteration is just
one round of inner iteration, i.e., 2 FFTs, 1 inverse FFT, and 1 shrinkage.

In Algorithm 6.2 for the vectorial TV model, there are also mainly two operations: the
FFT-based solver (6.11) and the shrinkage operation (6.12). Different from the ROF model,
here we need to solve an algebraic linear system in (6.11). We apply Gaussian elimination to
solve the system, whose cost is very small compared to FFTs [43]. Therefore, at each iteration
the cost of (6.11) is dominated by that of the FFTs. By a similar analysis as for Algorithm
4.2, Algorithm 6.2 performs 2M FFTs, M inverse FFTs, and 1 shrinkage at each iteration.
Due to L = 1 in this paper, the total cost per outer iteration is thus about 2M FFTs, M
inverse FFTs, and 1 shrinkage. In the color image case where M = 3, the cost per outer
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iteration is 6 FFTs, 3 inverse FFTs, and 1 shrinkage.
By similar analysis as in the former two cases, we have, for Algorithm 7.2, that the per

iteration cost is dominated by 4M FFTs, M inverse FFTs, and 1 shrinkage. Also, the total
cost per outer iteration is about 4M FFTs, M inverse FFTs, and 1 shrinkage, which is 12
FFTs, 3 inverse FFTs, and 1 shrinkage in the case of color images.

The remaining question is how many outer iterations our method (i.e., Algorithms 4.1,
6.1, and 7.1) needs to meet a prescribed accuracy, i.e., the tolerance ε. The larger ε is, the
fewer iterations are enough. The smaller ε is, the more iterations are needed. It is hard to give
a theoretical result on this issue. According to our numerical experiments, to get a visually
good restoration, ε =1.e-1, 1.e-2 is in general enough for problems with low level noises (such
as dev = 1.e − 6, 1.e − 5, 1.e − 4), and ε =1.e-3, 1.e-4 is enough for problems with high level
noises (such as dev = 1.e − 2); see the given figures. Therefore, the higher the noise level
is, the more iterations are needed. Our method needs in general about 10 outer iterations to
obtain visually quite good restorations. For image deblurring problems (where the noise level
is low), the number of outer iterations is even less, e.g., 5 or 6. For image denoising problems
(where the noise level is high), however, more iterations are needed; see Table 1.

9. Conclusions and future works. In this paper, we have presented the augmented La-
grangian method for solving the ROF, vectorial TV, and high order models, in the discrete
setting, which is very clear for practical implementation in digital image processing. As demon-
strated by the examples, the proposed algorithms benefit from both accuracy and efficiency.
Some convergence analysis for our approach was also provided. In addition, we described, in
the discrete setting, close connections between the augmented Lagrangian method and several
other efficient approaches, such as CGM and Chambolle’s dual method. Using the extensions
to vectorial TV and high order models, we demonstrated how to obtain some new methods
for vectorial TV and high order models, e.g., CGM and the split Bregman iteration applied
to these models. A possible future avenue is to further extend the method to models with
other data fidelity terms, e.g., the TV-L1 model. We noticed that recently a variant of the
ROF model was proposed [28] which avoids the staircase effect of the original ROF model.
To apply our approach to this variant is also a valuable subject for future research.

Acknowledgments. We thank Dr. M. Zhu, Dr. X. Bresson, Dr. T. Goldstein, and Prof.
W. Yin for their making their codes available online.
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