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Abstract—This paper addresses the optimal response of a
thermal unit to an electricity spot market. The objective is to
maximize the unit profit from selling both energy and spinning
reserve in the spot market. The paper proposes a 0/1 mixed-integer
linear programming approach that allows a rigorous modeling of
i) nonconvex and nondifferentiable operating costs, ii) exponential
start-up costs, iii) available spinning reserve taking into account
ramp rate restrictions, and iv) minimum up and down time
constraints. This approach overcomes the modeling limitations
of dynamic programming approaches and is computationally
efficient. Results from realistic case studies are reported.

Index Terms—Electricity spot market, mixed-integer optimiza-
tion, optimal response.

I. INTRODUCTION

E LECTRIC power utilities are experiencing a major
restructuring process. This process is intended to open

the power sector to market forces with the ultimate target of
decreasing consumer prices. In this new competitive electric
power generation environment, a fundamental task is to de-
termine the optimal response of a thermal unit to the spot
market. The objective is to find out the start-up and shut-down
schedule as well as the hourly production of the unit so that
the expected benefit from selling both energy and spinning
reserve to the spot market is maximized. This problem has
been recently referred to as decentralized unit commitment.
For the analysis of this paper the market consists of generation
companies (GENCO’s), distribution companies (DISTCO’s)
and an independent market operator (IMO) to match offers and
demands [1], [2].

Perfect market competition is assumed, i.e. no participant has
the capability of altering clearing prices. Although hourly prices
(energy and reserve) depend on competitor actions, they are con-
sidered known. This assumption is reasonable as the effect of the
response of one thermal unit to the spot market does not change
prices considerably. Forecasting procedures can be used to esti-
mate hourly market prices for the next day. Under different price
profiles, the solution to the considered problem provides consis-
tent information to generate bids in response to the spot market.
For instance, if the unit bids with cost equal to 0 for the hours
with scheduled power output over 0 MW, it ensures it will be
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selected by the IMO. This is the minimum risk bidding strategy.
If the GENCO decides to increase the scheduled benefit it may
try to increase the forecast system marginal price by bidding a
price just below the forecast spot price. Thus, the unit ensures to
be accepted by the IMO and the profits will be higher than the
ones computed by the algorithm presented in this paper.

The dimension of this optimal response problem is small but
its mathematical features are complex. A precise model of the
unit operating costs requires the use of nondifferentiable and
nonconvex functions [3]. A detailed modeling of start-up costs
requires the use of exponential functions [3]. Furthermore,
taking into account ramp limitations, a precise modeling of the
contribution of the unit to the spinning reserve of the system
requires the use of complex restrictions usually formulated
as nonlinear constraints [4]. Minimum up and down time
constraints also require the enforcement of conditions usually
expressed as nonlinear constraints [4]. Few references address
bidding related issues for the power sector. Brokerage systems
are proposed in [5]–[8] and references [9]–[11] provide sched-
uling algorithms in a competitive market.

The optimal response problem addressed in this paper is
similar to any of the unit subproblems of a unit commitment
solved by Lagrangian relaxation. In this unit commitment
Lagrangian relaxation framework, the unit maximum profit
problem has been traditionally solved using dynamic program-
ming [12]–[14]. However, a dynamic programming approach
has several important drawbacks:

1) Non-differentiable and nonconvex operating costs are
complex to model in order to efficiently compute the
profit of every state in every hour.

2) The start-up cost is a function of the time the unit has been
shut down. This cost depending on time has to be modeled
approximately by increasing the number of states consid-
ered in every hour.

3) To take into account ramp constraints, the modeling of
the unit available spinning reserve has to be done approx-
imately by further increasing the number of states consid-
ered in every hour.

Drawbacks 2 and 3 result in inaccuracies and additional com-
putational burden.

This paper proposes a 0/1 mixed-integer linear programming
approach that allows a rigorous modeling of i) nonconvex and
nondifferentiable operating costs, ii) exponential start-up costs,
iii) available spinning reserve taking into account ramp rate re-
strictions, and iv) minimum up and down time constraints. This
approach is based on the formulation stated by Dillon et al. [15].
It overcomes the modeling limitations of dynamic programming
approaches and is computationally efficient.

0885–8950/00$10.00 © 2000 IEEE
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The proposed approach is useful i) to determine the optimal
bidding strategy of a unit in the spot market and ii) to solve ef-
ficiently and accurately the subproblems that result from ad-
dressing a (centralized) unit commitment problem using La-
grangian relaxation.

This paper is organized as follows. Section II provides the no-
tation used throughout the paper. In Section III the optimal re-
sponse problem is formulated. In Section IV this problem is for-
mulated as a mixed-integer linear programming problem. Sec-
tion V provides results from different realistic case studies. Fi-
nally, conclusions are stated in Section VI.

II. NOTATION

The notation used throughout the paper is stated below:
Functions:

start-up cost of unit at hour [$], which is a non-
linear function of the time unit has been shutdown
at hour , ,
stairwise approximation of the start-up cost of unit

at hour [$],
variable cost of unit at hour [$/h], which is a
nonlinear function of the power output of unit at
hour , ,
piecewise linear approximation of the variable cost
of unit at hour [$/h].

Constants:
spot price of energy at hour [$/MWh],
spot price of spinning reserve at hour [$/MW],
fixed cost of unit [$/h],
shut-down cost of unit [$/h],
minimum down time of unit [h],
slope of block of the variable cost of unit
[$/MWh],
cost of the th discrete interval of the start-up cost of
unit [$/h]
number of discrete intervals of the start-up cost func-
tion,
number of blocks of the piecewise linearization of
the variable cost function,
capacity of unit [MW],
minimum power output of unit [MW],
ramp-down limit of unit [MW/h],
ramp-up limit of unit [MW/h],
large enough constant (e.g., the maximum number
of hours unit can be off),
shut-down ramp limit of unit [MW/h],
start-up ramp limit of unit [MW/h],
number of hours of the planning period,
upper limit of block of the variable cost of unit
[MW],
time periods unit has been on at the beginning of
the planning horizon (end of hour 0) [h],
minimum up time of unit [h].

Variables:
variable used for the linearization of the variable
cost function of unit at hour , it represents the
th power block [MW],

dummy variable used for the discretization of the
start-up cost function of unit at hour [h],
power output of unit at hour [MW],
maximum power output of unit at hour [MW],
minimum power output of unit at hour [MW],
time periods that unit has been shut-down at hour

[h]
0/1 variable which is equal to 1 if the power output
of unit at hour has exceeded block ,
0/1 variable which is equal to 1 if unit is committed
at hour ,
0/1 variable which is equal to 1 if unit is started-up
at the beginning of hour and it has been off for
hours,
number of hours unit has been on ( ) or off ( ) at
the end of hour ,
0/1 variable which is equal to 1 if unit is started-up
at the beginning of hour ,
0/1 variable which is equal to 1 if unit is shut-down
at the beginning of hour .

Sets:
set of discrete intervals of the start-up cost function,
set of indices of the hours of the planning period,
set of blocks of the piecewise linearization of the
variable cost function.

III. ORIGINAL FORMULATION

The optimal response of a thermal unit to a perfect elec-
tricity spot market can be formulated as follows:

Maximize

(1)

subject to:

(2)

Min

(3)

Max (4)

(5)

(6)

(7)

(8)
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and

(9)

For unit consistency, it should be noted that time periods of
1 hour are considered.

The objective function (1) represents the benefit from selling
power and spinning reserve. It includes revenues from selling
both energy and spinning reserve as well as production costs,
start-up costs and shut-down costs. A more sophisticated rev-
enue function taking into account competitor actions can be in-
corporated in the above framework. However, the objective of
this paper is to provide a precise description and mathematical
treatment of the technical constraints a unit faces when bidding
in a spot market.

Constraints (2) force the thermal unit to work below its max-
imum power output, and above its minimum power output. Con-
straints (3) state that the available maximum power output at
every hour depends on ramp rate limits. These constraints are
explained below in Section IV-C. Constraints (4) update the
minimum power output taking into account the ramp rate limits.
These constraints are explained below in Section IV-D. Con-
straints (5) and (6) enforce feasibility in terms of minimum
up and minimum down time constraints respectively. The re-
maining constraints preserve the logic of running, start-up, and
shut-down status changes.

From a mathematical point of view, the above formulation of
the problem is mixed-integer and nonlinear.

IV. SORTING OUT NONLINEARITIES

This section provides an alternative linear formulation of
problem (1)–(9). Nonlinear constraints such as minimum up
and down time constraints, and maximum and minimum power
output constraints are converted into linear constraints. The
nonlinear startup cost is discretized so that a linear function
of the time the unit has been de-committed is attained. As
a byproduct a linear off-time counter is derived. Finally,
nonconvex and nondifferentiable variable costs are expressed
as a piecewise linear function.

A. Linear Expression of Minimum Up Time Constraints

Nonlinear constraints (5) are replaced by the equivalent linear
constraints (10)–(12) below:

(10)

(11)

(12)

where Min .
Equation (10) ensures that the unit will satisfy the minimum

up time constraint if it has been on at hour 0 for fewer hours than

the minimum up time. Equation (11) enforces the minimum up
time constraint for all the possible sets of consecutive hours of
size . Equation (12) enforces the minimum up time con-
straint for the last hours, i.e. if unit is started-up in
one of these hours it will remain committed until the last hour
of the time horizon.

Several remarks on indices and should be made. If
(i.e., either the unit is initially de-committed or ),
constraints (10) are not included in the formulation. Constraints
(11) are only considered for positive values of index . More-
over, in case , constraints (11) are not to
be included. Finally, constraints (12) are only introduced in the
formulation for positive values of index and if

, i.e. , otherwise they should be removed from the
formulation.

B. Linear Expression of Minimum Down Time Constraints

Nonlinear constraints (6) are replaced by the equivalent linear
constraints (13)–(15) below:

(13)

(14)

(15)

where Min .
Equation (13) ensures that the unit will satisfy the minimum

down time constraint if it has been off at hour 0 for fewer hours
than the minimum down time. Equation (14) enforces the min-
imum down time constraint for all the possible sets of consec-
utive hours of size . Equation (15) enforces the minimum
down time constraint for the last hours, i.e. if unit
is shut-down in one of these hours it will remain de-committed
until the last hour of the time horizon.

It should be noted that constraints (13)–(15) are identical to
constraints (10)–(12) just by changing , , and

by , , and respectively.
The same considerations regarding subindices and stated

in Section IV-A should be taken into account for constraints
(13)–(15).

C. Linear Expression of the Maximum Power Output
Constraint

Variable represents the maximum power output of unit
at hour . This variable considers the ramp-up rate limit, and

the startup and shut-down ramp rates limits, and it is used in the
spinning reserve term of the objective function. Mathematically,
this variable can be expressed as follows:

Min

(3)
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As it was stated in Section III, constraints (3) update the avail-
able maximum power output taking into account the ramp rate
limits. The available maximum power output is the minimum of
i) the unit capacity if the unit is committed and it has not been
started-up in the current hour and it will not be shut-down the
next hour, ii) the shut-down ramp rate limit if it will be de-com-
mitted the next hour, iii) 0 if the unit is de-committed, iv) the
start-up ramp rate limit if the unit is started-up, and v) the power
output of the previous hour plus the ramp-up rate limit in the
case the unit remains committed.

This variable can be defined in an alternative linear way as
follows:

(16)

(17)

(18)

If unit is off at hour [i.e. ] the maximum avail-
able power output will be 0, which is enforced by constraints
(16) and (18). Otherwise, and should be i)
smaller than the unit capacity , ii) smaller than the power
output in the previous period plus the maximum ramp-up rate
limit, iii) smaller than the start-up ramp rate limit in case the
unit is started at the beginning of period , and iv) smaller than
the shut-down ramp rate limit in case the unit is de-committed
at the beginning of period . All these limits are enforced
by constraints (16) and (17). It should be noted that constraints
(16)–(18) are linear. It should also be noted that constraints (16),
(17) provide a value of identical to the value provided by
equation (3) if and only if variable is multiplied by a posi-
tive constant in the objective function (in case of maximization)
such as . Otherwise will take a value so that the ben-
efit is maximum but it does not have to be equal to the value
provided by equation (3).

Finally, the power output should be smaller than , so
that the nonlinear right hand side of equation (2) becomes:

(19)

which is linear.

D. Linear Expression of the Minimum Power Output
Constraint

As variable only appears in constraints (2) there is no
need to define it as it was done for . The power output
should be greater than the nominal minimum power output
[equation (20) below] and should take into account the max-
imum ramp-down rate limit and the shut-down ramp rate limit
[equation (21) below]. Additionally, if the unit is de-committed,
the power output must be 0 [equation (20) below]. This can be
formulated as follows:

(20)

(21)

It should be noted that the both previous constraints are linear.

E. Time Counter

In order to express the start-up costs as a function of the time
a unit has been off, it is necessary to define an off-time counter

and to include it in the formulation.
The counter of the hours a unit has been off can be expressed

through the following condition:

If then else

Mathematically, as stated in [16], this conditional expression
can be formulated with linear constraints as:

(22)

(23)

(24)

(25)

where is a large enough constant (e.g., the maximum number
of hours unit can be off).

F. Stairwise Formulation of the Start-Up Cost Function

The start-up cost is modeled as a nonlinear (exponential)
function of the number of hours a unit has been off. As the
number of hours is discrete the start-up cost is also a discrete
function that can be formulated as a 0/1 linear expression
(Fig. 1). It should be noted that if the number of intervals, ,
is large enough this model of the start-up cost asymptotically
approximates the original exponential model. The larger the
number of intervals the more precise the discretization will
be. It should also be noted that the number of intervals can
be large because the problem addressed is small. This linear
formulation is presented below:

(26)

(27)

(28)

(29)

(30)

(31)

Equation (26) represents the stairwise linear start-up cost
function , which is a constant of value if unit has
been off for hours (corresponding to the evaluation of the
exponential start-up cost for equal to ). If unit is started-up
when it has been off for hours or longer is equal to

. This is modeled through a new binary variable
which is equal to 1 if unit is started-up at hour and has
been off for hours. If unit is started-up, constraints (27)
force only one of these binary variables to be equal to 1. Every
constraint (28) relates variables with the time counter

through a dummy variable, , whose limits are
imposed by constraints (29) and (30). Variable is used
either when unit is off at hour or when unit is started-up
at hour and has been off for hours or longer. Finally,
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Fig. 1. Nonlinear start-up cost function (� ���) and its stairwise
approximation (�� ���).

constraints (31) state that variables are binary. It should
be noted that all the above constraints are linear. This stairwise
approximation is shown in Fig. 1 for the case of 3 intervals (i.e.
ND ).

G. Linear Piecewise Approximation of Non-Convex and
Non-Differentiable Variable Costs

Variable costs are usually modeled as nonlinear (quadratic)
functions of the power output. However, generators have a
number of steam admission valves that are opened in sequence
as the power output is increased. This is particularly so for com-
bined cycle gas turbines. Thus, the variable cost is a nonconvex
function [3]. This nonconvex function can be represented by
a piecewise linear curve by using binary variables (Fig. 2).
The size of the problem under consideration is small and
therefore the number of linear blocks can be as large as needed
to precisely model the actual nonconvex variable cost function.

The piecewise linear variable cost can be expressed as
follows:

(32)

where is the slope of power block for unit and
is the power generated by unit at hour in block .

Equation (32) substitutes the nonlinear variable cost function
in objective function (1).

The following constraints express the piecewise linearization:

(33)

(34)

(35)

(36)

(37)

(38)

Fig. 2. Nonconvex variable cost function and its linear approximation.

(39)

(40)

Constraints (33) state that power output of unit at hour
is the sum of the power generated in each block plus the min-
imum power output. Constraints (34)–(39) set the limits of the
power generated in each block. This power must be greater than
0 and smaller than the “power length” of each block. This is en-
sured through a binary variable which is equal to 1 if
the power output of unit at hour has exceeded block . Fi-
nally, constraints (40) state that variables are binary.

H. Final Linear Formulation

The new linear formulation is presented below:

Maximize

(41)

subject to:

Equations (26) and (32) which express linearized start-up cost
and production cost respectively, (19), (20) which set limits
on power output, (16)–(18) and (21) which enforce ramp rate
limits, (10)–(12) and (13)–(15) which model minimum up and
down time constraints respectively, (22)–(25) representing time
counter constraints, (7)–(9) which impose the logic of start-ups
and shutdowns, (27)–(31) expressing the stairwise approxima-
tion of the start-up cost, and (33)–(40) which model the lin-
earization of the variable cost.

V. CASE STUDY

The data for the unit considered in this study, given in Table I,
is based on the data of reference [4]. A coal-fired unit has been
chosen. Its original characteristics have been altered so that the
following examples show the differences between a typical for-
mulation and a precise formulation as the one proposed in this
paper. Thus, ramp up and down rate limits have been decreased
and start-up and shut-down ramp rates have been added. The
start-up cost is modeled through 11 intervals (Table II) and the
variable cost is linearized in 3 blocks as shown in Fig. 2. The
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TABLE I
CHARACTERISTICS OF THE THERMAL UNIT

TABLE II
STAIRWISE START-UP COST ($)

TABLE III
PIECEWISE LINEAR VARIABLE COST

slopes and limits of the power blocks are presented in Table III.
It is to be noted that this variable cost function is nonconvex
and nondifferentiable. Finally, an initial status is provided. At
the beginning of the planning horizon, the unit has been com-
mitted for 11 hours and the power output is equal to 170 MW.

The profile of the spot prices of energy is based on the
curve of marginal prices obtained in the Spanish de-regulated
electricity market on January 28th, 1999 (www.mercaelec-
trico.comel.es). This profile of prices is plotted in Figs. 3 and
4. The prices for spinning reserve are all zero but for hours 12
and 20 (hours with the highest spot price), which are equal to
$67/MW.

The aim of this case study is to show how the linear formula-
tion presented in this paper models precisely i) constraints typi-
cally addressed as nonlinear (minimum up and down time con-
straints, and start-up and shut-down ramp rate limits), ii) non-
convex and nondifferentiable variable costs, and iii) exponential
start-up costs. It is also shown how the scheduling of the unit is
affected by the inclusion of a spinning reserve term in the rev-
enue equation.

The optimal response of the unit is shown in Fig. 3. In hour 1,
although the benefit is negative (the energy spot price is smaller
than the variable cost), the unit cannot be shut-down due to the
shut-down ramp rate limit. It should be noted that the unit is
decommitted in hours of negative benefit. However, the unit re-
mains off in hours 9 and 10 when the spot price is larger than
$43.33/MWh (the maximum slope of the variable cost piecewise
linear approximation). This is due to the minimum down time
of 9 hours. It should also be noted that there is a reduction in
power output in hour 15 (230 MW). This power output reduc-
tion corresponds to the upper limit of the second block of the
variable cost (230 MW). Generation does not exceed this limit
because the slope of the next block is greater than the spot price
($43.33/MWh versus $40.60/MWh). The total benefit over the
24 hour period is $27 898.8.

Fig. 3. Optimal response of the thermal unit for the base case.

Fig. 4. Optimal response with approximate available spinning reserve.

In order to show the differences between usual approximate
models and the one proposed in this paper, several simplifica-
tions have been introduced on this base case. The models usu-
ally found in the literature [17] i) do not model nonconvex and
nondifferentiable variable costs, ii) consider constant start-up
costs instead of nonlinear (exponential) start-up costs, and iii)
do not model the actual available spinning reserve but a spin-
ning reserve based on the unit capacity [i.e., to use instead
of ]. These approximations may deteriorate the quality of
the solution obtained, leading to a solution far from optimal.

The first simplification consists of considering a linear vari-
able cost of constant slope. In this case, nonconvex and nondif-
ferentiable variable cost functions are not modeled, which is a
usual approximation considered when solving this kind of prob-
lems [17]. The slope is equal to $40/MWh which corresponds to
the mean of the slopes of the three blocks of the base case. The
production of the unit is identical to the one obtained in the base
case except for hours 15 and 16. In hour 15 the power output in
the base case was 230 MW because the spot price was smaller
than the variable cost slope of the next power block. The pro-
duction in hour 16 is limited by the ramp up rate (60 MW/h).
For the simplified case, the spot price is greater than the vari-
able cost slope and the unit is at full power (294 MW) in both
hours. The total benefit is $27 638.33.
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The second simplification shows the effect of using a con-
stant start-up cost regardless the number of hours the units has
been off before being started-up. This is a usual approximation
that leads to sub-optimal solutions. The constant start-up cost
is equal to $2667 which is the start-up cost if the unit has been
off for 6 hours at the time it is started-up ( ). As a result, the
generation does not change with respect to the base case and the
unit is again started-up at hour 11. The total benefit is $28 048.8
which is $150 higher than the benefit of the base case. This is
the difference between the constant start-up cost and the start-up
cost if the unit has been off for 9 hours before being started-up
( ).

The last simplification on the base case shows the need of a
precise modeling of the available maximum power output. This
variable, , is substituted by the unit capacity, , in the ob-
jective function, i.e. the revenue from selling spinning reserve
is not modeled precisely. The results are shown in Fig. 4. The
benefit is $34 898.88 which is considerably higher than the one
obtained in the base case. This revenue is unreal as the unit ben-
efits from fictitious spinning reserve that cannot be served by the
unit. Moreover, it should be noted a reduction of generation in
hours 11–14 and 18–21 so that the difference between produc-
tion and the unit capacity is maximum, i.e. to obtain the max-
imum benefit. The actual benefit of this solution is $25 299.08,
which represents a 10.28% benefit reduction with respect to the
base case.

The model has been implemented on a SGI R10000 based
processor using CPLEX under GAMS [18]. The computing time
is negligible for all the cases analyzed.

VI. CONCLUSIONS

This paper addresses the optimal response of a thermal unit
to a perfect electricity spot market. The objective is to maxi-
mize the unit profit from selling both energy and spinning re-
serve in the spot market. Perfect market competition is assumed.
The paper proposes a 0/1 mixed-integer linear programming ap-
proach that overcomes the modeling limitations of dynamic pro-
gramming and is computationally efficient. The proposed ap-
proach is useful to generate appropriate information to produce
successful bids to the spot market. Results from realistic case
studies are reported. With respect to benefits, it is shown how
relevant is the precise modeling of the available spinning re-
serve and cost nonlinearities.
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Optimal Response of a Power Generator to Energy,
AGC, and Reserve Pool-Based Markets

José Manuel Arroyo, Member, IEEE, and Antonio J. Conejo, Senior Member, IEEE

Abstract—The electric power industry all over the world is un-
dertaking major regulatory and operational changes. The under-
standing of power supply as a public service is being replaced by
the notion that competitive markets constitute a more appropriate
framework to supply reliable and cheap electric energy to con-
sumers. As mandated by FERC orders 888 and 889, this paper
considers simultaneously energy, AGC, and reserve markets in a
pool framework. It provides a tool to enable a power generator to
determine optimally its degree of involvement in each one of these
markets. A real-world case study is analyzed and results are pre-
sented.

Index Terms—AGC market, energy market, mixed-integer opti-
mization, pool-based electricity markets, reserve market.

NOMENCLATURE

The notation used throughout the paper is stated below in the
following.

Functions

Start-up cost in period [in dollars per hour],
which is a nonlinear function of the time the unit
has been shut-down before period .
Operating cost in period [in dollars per hour].
Variable cost in period [in dollars per hour],
which is a nonlinear function of the average
power output in period .

Constants

Weighting factor associated to commodity ,
where (energy), AGC, TMSR, TMNSR,
TMOR .
Forecasted price of AGC in period [$/MW &
h].
Forecasted price of energy in period [$/MWh].
Forecasted price of 10 min nonspinning reserve
(nonsynchronized reserve) in period [$/MW &
h].
Forecasted price of 30 min operating reserve
(nonsynchronized reserve) in period [$/MW
& h].
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Forecasted price of 10 min spinning reserve (syn-
chronized reserve) in period [$/MW & h].
Fixed cost [in dollars per hour].
Maximum contribution to AGC [in megawatts].
Shut-down cost [in dollars per hour].
Maximum capacity [in megawatts].
Minimum power output [in megawatts].
Ramp-down limit [in megawatts per hour].
Regulating high limit (as defined by FERC) [in
megawatts].
Regulating low limit (as defined by FERC) [in
megawatts].
Ramp-up limit [in megawatts per hour].
Shut-down ramp limit [in megawatts per hour].
Start-up ramp limit [in megawatts per hour].
Amount of capacity that can be delivered in ten
minutes [in megawatts].
Amount of capacity that can be delivered in thirty
minutes [in megawatts].
Maximum contribution to TMSR [in megawatts].

Variables

0/1 variable which is equal to 1 if AGC is pro-
vided in period .
Capacity assigned to AGC in period [in
megawatts].
Average value of the AGC contribution in pe-
riod [in megawatts].
Power output in period [in megawatts].
Average power output in period [in
megawatts].
Maximum available synchronized power in
period (taking into account ramp rates) [in
megawatts].
Time periods during which the unit has been
shut-down before period [in hours].
Capacity assigned to the 10 min nonspinning
reserve in period [in megawatts].
Average value of the 10 min nonspinning re-
serve contribution in period [in megawatts].
Capacity assigned to the 30 min operating re-
serve in period [in megawatts].
Average value of the 30 min operating reserve
contribution in period [in megawatts].
Capacity assigned to the 10 min spinning re-
serve in period [in megawatts].
Average value of the 10 min spinning reserve
contribution in period [in megawatts].
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0/1 variable which is equal to 1 if the unit is
on-line in period .
0/1 variable which is equal to 1 if the unit is
started-up at the beginning of period .
0/1 variable which is equal to 1 if the unit is
shut-down at the beginning of period .

Sets

Set of production constraints.
Set of indices of the intervals (hours) of the market
horizon.

I. INTRODUCTION

THE ELECTRIC power industry in the U.S. and all over
the world is undertaking major regulatory and operational

changes. The underlying rationale behind all these changes is
to move from a centralized operation approach to a competitive
one. That is, the understanding of power supply as a public ser-
vice is being replaced by the notion that a competitive market
is a more appropriate framework to supply reliable and cheap
electric energy to consumers. This new competitive paradigm
materializes into two market structures: 1) a power pool and 2)
a floor to facilitate bilateral contracts among producers and con-
sumers.

A pool is an e-commerce marketplace where producers and
consumers submit production and consumption bids, respec-
tively. The market operator clears the market (energy, AGC,
or reserve) using market rules and produces a market-clearing
price and the sets of accepted production and consumption bids.
Typically, the market operator clears the market once a day.
Markets for energy, AGC and reserve can be considered simul-
taneously. Producers, consumers, and the regulatory authority
agree upon the market rules before their implementation.

In a monthly or yearly framework, the structure to allow com-
petitive trade among producers and consumers is the floor for
bilateral contracts. A bilateral contract is an agreement between
a producer and a consumer so that the producer supplies elec-
tric energy to the consumer at a given price. Physical bilateral
contracts are medium-term decisions lasting from one month to
one year. Financial contracts to hedge price volatility are pos-
sible and desirable.

The power pool is commonly denominated Power Ex-
change (PX). Usually, producers are referred to as GENerating
COmpanies (GENCOs) and consumers can be referred to
as CONsumption COmpanies (CONCOs). Energy Service
COmpanies (ESCOs) buy energy from bilateral contracts
and from the power pool to sell it to different types of cus-
tomers with the purpose of maximizing their own benefits.
The market-clearing entity is often known as the Market
Operator (MO). Power transactions are carried out through the
transmission and distribution networks. The TRANSmission
COmpanies (TRANSCOs) provide the wires to materialize the
power transactions. Transmission companies are usually highly
regulated entities that provide a nondiscriminatory access
to their wires at a regulated fee. Analogously, DIStribution
COmpanies (DISCOs) offer a nondiscriminatory use of their

distribution wires at a regulated fee. The entity in charge of en-
suring the technical feasibility of the power transactions agreed
upon at the Power Exchange is denominated the Independent
System Operator (ISO). The ISO has usually the authority to
modify power transactions already scheduled if system security
is at stake. These modifications should be minimal. In the
technical literature, confusingly, the MO is called sometimes
ISO, and CONsumption and Energy Service COmpanies are
referred to as DISCOs. See [1] and [2] for additional details.

This paper considers simultaneously energy, regulation and
reserve markets in a pool framework as stated in FERC orders
888 [3] and 889 [4]. It does not consider bilateral contracts. This
paper proposes a tool to enable a power generator to determine
optimally its degree of involvement in each one of these mar-
kets. The related problem of determining how to bid to achieve
the energy, AGC, and reserve optimal schedules is beyond the
scope of this paper. Moreover, it is considered that all those mar-
kets have enough liquidity to allow the generator to sell the op-
timal amounts it desires of energy, AGC, and reserves. The fol-
lowing unbundled pool-based markets are considered simulta-
neously:

1) energy market;
2) AGC market;
3) 10 min spinning reserve (TMSR) market;
4) 10 min nonspinning reserve (TMNSR) market;
5) 30 min operating reserve (TMOR) market.
All these markets are cleared once a day on an hourly basis,

either simultaneous or successively.
The energy pool allows energy transactions and it is the most

important trade structure in a pool-based electricity market. Pro-
ducers and consumers submit energy production and consump-
tion bids, respectively. The market operator clears the market
using market rules and produces a market-clearing energy price
and the sets of accepted production and consumption energy
bids.

In the AGC market, generators offer a regulation band within
an upper and a lower limit at a given price for every hour. The
market operator selects AGC offers following an increasing
price order until enough AGC power has been allocated to
meet system requirements. Reserve markets work in a similar
fashion. In the TMSR market, offers refer to synchronized
power whereas in the TMNSR and the TMOR markets, offers
refer to nonsynchronized power.

Facing those five markets, a generator must decide how much
energy/power to allocate to every market so that its profit is
maximized and all its technical constraints are satisfied. This
paper provides a tool that a generator can use to optimally allo-
cate its resources and therefore to determine the optimal amount
of energy/power to offer in each market. It is assumed that the
generator should be able to deliver all of its contracted services
and that bids can only be called in the market in which they
were placed. The tool is based on a mixed-integer mathematical
programming model that can be solved using a branch and cut
solver such as [5].

The model assumes that sufficiently accurate price forecasts
are readily available for energy, AGC, and the three types of
reserves. These forecasts can be obtained from historical price
time series using an appropriate forecasting tool, either based on
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time series, transfer functions or neural networks [6]–[9]. Elec-
tricity price forecast errors are typically below 5% [10]. To con-
sider uncertainty in prices requires a stochastic programming
approach that is not used in this paper. However, price uncer-
tainty is better considered in the process of elaborating the ac-
tual bidding strategies.

All generator constraints including intertemporal ones are en-
forced. Intertemporal constraints are ramp-up and ramp-down
limits, start-up and shut-down ramp limits, minimum up time
and minimum down time.

This paper assumes that the considered GENCO does not
have the capability of altering market-clearing prices. There-
fore, its maximum profit problem decomposes by generator, and
this is why the problem addressed in this paper is the one cor-
responding to a single generator. The problem of determining
the coordinated actions of all the generators of a price-maker
GENCO to alter market-clearing prices to its own benefits is
outside the scope of this paper.

In a typical situation, most of the revenue of the GENCO
corresponds to energy, unless AGC prices are particularly high.
Nevertheless, volatility is usually higher for AGC prices than for
energy prices and therefore a not-too-risky GENCO will mostly
rely on the energy market. Usually, potential revenues are com-
paratively much smaller in reserve markets than in AGC and
energy markets, and therefore reserve markets normally play a
secondary role on the GENCO total revenue.

This paper is built upon previous work by Rau [11] and
Cheung et al. [12] where hybrid markets are considered. In
these markets competitive pricing coexists with centralized
load balance procedures. The model reported in this paper
considers pure competitive markets.

The remainder of this paper is organized as follows. In Sec-
tion II the problem of optimal multimarket response is formu-
lated. Section III presents and analyzes results for a realistic case
study. Finally, Section IV provides conclusions. The Appendix
further details the problem formulation.

II. FORMULATION

The optimal response of a thermal unit to an electricity multi-
market, including energy, AGC, and different types of reserves,
can be formulated as follows:

Maximize

(1)

subject to

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

For unit consistency, it should be noted that time periods of 1
h are considered.

The objective function (1) represents the benefit from selling
energy, AGC, synchronized spinning reserve, and nonsynchro-
nized reserves (ten minutes nonspinning reserve and thirty min-
utes operating reserve). It should be noted that average values
of each commodity are considered to take into account its varia-
tion over each pricing interval. That is, constant pricing intervals
span one hour while the considered saleable commodities (en-
ergy, AGC, and reserves) change during each hourly interval.
Therefore, the hourly revenue associated to each commodity is
calculated as the price in the interval times the average value of
the commodity over the interval. It should be noted that, in what
respect to energy, the above criterion implies a linear variation
of the power output throughout every hour.
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In order to take into account the different risks involved in the
above markets, the revenue associated to each one is weighted
by GENCO-selected weighting factors, so as to materialize the
preference (or risk aversion) of the GENCO participating in
those markets. The operating cost includes production costs,
start-up costs, and shut-down costs, which are formulated in (2).
The production cost used in this paper is a piecewise linear func-
tion which allows modeling nonconvex and nondifferentiable
costs. The exponential start-up cost can be modeled precisely
by linear expressions using binary variables. The expressions
for these two cost functions are stated in the Appendix.

Constraints (3)–(7) express the average value of each com-
modity in every period which is used in (1). Constraints (8) set
the limits for the capacity assigned to AGC in each period. The
AGC capacity contribution is limited by the regulating range
and by its maximum bound [11]. Constraints (9)–(11) set the
upper limits of the spinning reserve and the nonsynchronized
reserves respectively. Constraints (12) state that a unit may pro-
vide AGC if and only if it is on-line. Constraints (13) force the
thermal unit to work above its minimum power output when it
is on-line. Additionally, if the unit is providing AGC the power
output should be greater than or equal to the regulating low limit.
On the other hand, constraints (14) enforce the unit to work
below its capacity. Analogously, these constraints state that the
AGC contribution plus the power output should be below the
regulating high limit [11]. Constraints (15) introduce the ef-
fect of ramp rate limits on the power output, the AGC contribu-
tion and the spinning reserve contribution through a new vari-
able, , which represents the maximum available synchro-
nized power. Constraints (16) and (17) impose, respectively,
the ramp-up and the start-up ramp rate limits on the sum of
all the commodities. Analogously, ramp-down and shut-down
ramp rates are enforced on the sum of all the commodities by
constraints (18) and (19).

The block of constraints (20) expresses in a compact way
the operating constraints for every time period, i.e., generation
output limits, and all intertemporal constraints including
ramp-up and ramp-down limits, start-up and shut-down ramp
limits, minimum up time, and minimum down time. These
constraints are further described in the Appendix. Finally,
constraints (21) express the binary nature of some variables
used in the formulation.

From a mathematical point of view, the above formulation of
the problem is mixed-integer and linear.

III. CASE STUDY

Data for the considered power unit as well as price values are
given in this section. The characteristics of the unit are based on
the data of [13].

The start-up cost in $ is provided in Table I. Eleven one-hour
steps are considered to model the exponential variation of this
cost.

A ten-block nonconvex variable cost is considered and given
in Table II. A nonconvex cost has been selected to illustrate the
capability of the proposed formulation to handle this type of
costs.

TABLE I
START-UP COST (IN DOLLARS)

TABLE II
VARIABLE COST

The shut-down cost is considered constant and equal to $56
and the fixed cost is $500.

Power, AGC, and reserve limits are provided in Table III.
Minimum up time and minimum down time for the consid-

ered unit are both 4 h. In the period before the market horizon
the unit has been running for 11 h and produced 170 MW.

Price data are provided in Table IV. Energy prices are the
prices obtained in the electricity market of California on April
23rd, 2000 (www.calpx.com). This price profile is plotted in
Fig. 1. The prices for AGC and spinning reserve are considered
constant and equal to $15/MW & h and $10/MW & h, respec-
tively. Prices of TMNSR are selected to follow the shape of en-
ergy prices. Finally, prices for TMOR are different than zero
only for peak hours. It should be emphasized that, in general,
price profiles should be obtained using appropriate forecasting
engines such as the ones reported in [6]–[10].

For the sake of simplicity all weighting factors ( ) have been
set to 1.

Table V shows the optimal allocation of the unit resources
in every period of the market horizon. The maximum available
synchronized power is also shown in Table V. Note that
this variable includes the effect of the intertemporal constraints
such as ramp-up, start-up, and shut-down limits.

Fig. 1 shows the energy price profile (data) and the unit power
output for the 24-h market horizon.

Some comments are in order. Despite the low energy price,
during the first period the unit remains on-line due to the ini-
tial status and the shut-down ramp rate limit. The unit is off-line
during the valley periods in which the price of energy is very
low (hours 2–7), while meeting the minimum down time re-
quirement. The unit is started-up in period 8 when the energy
prices begin to rise. The algorithm determines the unit power
output and its AGC contribution so that the maximum profit is
obtained and ramp rate limits are met. It should be noted that the
power output follows the shape of the energy price profile ex-
cept for hours 18 and 19 (Fig. 1) in which it decays although the
energy prices are higher than in previous hours. This reduction
in power is a side effect of the large TMOR price in hours 20–22.
Thus, it is more profitable for the unit to reduce the power output
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TABLE III
POWER OUTPUT, AGC, AND RESERVE LIMITS

TABLE IV
PRICE DATA

Fig. 1. Power output versus energy price.

in hours 18 and 19, so that there is a higher amount of nonsyn-
chronized power in hours 20 and 21. In these peak hours the unit
begins to increase its power output again.

Since prices of AGC are higher than prices of synchronized
reserve, TMSR (see Fig. 2), the unit is mostly contributing to
AGC, while the TMSR contribution is different than 0 only in
periods 11, 12, 17, 18, 22 and 23 when the synchronized power
is large. The evolution of AGC and TMSR contributions along
the periods is shown in Fig. 2, where AGC and TMSR prices
are also represented.

Regarding the nonsynchronized reserves it should be empha-
sized that TMNSR contribution is active almost all over the

TABLE V
UNIT OPTIMAL ALLOCATION OF PRODUCTION RESOURCES

Fig. 2. AGC and TMSR contributions.

market horizon. The reason for these results comes from the fact
that the regulating high limit, RH, for AGC is 200 MW and the
total capacity is 294 MW. Therefore, as AGC prices are higher
than TMSR prices, the synchronized power is limited by RH,
and in most of the periods there is enough power to be sold ei-
ther as TMNSR or TMOR. The TMNSR contribution is at its
maximum limit, 50 MW, in all the periods except in periods 1
and 8 when the unit is shutting-down and starting-up, respec-
tively; and in period 22 which precedes period 23 wherein there
is a high decline in the TMNSR price with respect to the TMSR
price and enough synchronized power is available.

Finally, TMOR contribution is greater than 0 only in periods
19, 20, and 21 so that is different from 0 in pe-
riods 20, 21, and 22 in which, as mentioned previously, TMOR
prices are high. During the remaining periods in which TMOR
prices are 0, it is indifferent to the unit whether to contribute to
TMOR or not.

Table VI shows revenues, costs, and profits for the unit.
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TABLE VI
REVENUES, COST, AND PROFIT (IN DOLLARS)

The model has been implemented on a SGI R12000, 400 MHz
based processor with 500 MB of RAM using CPLEX 7.0 under
GAMS [5]. The computing time required to achieve the optimal
solution is 51.51 s.

IV. CONCLUSION

As stated in FERC orders 888 and 889, this paper considers
a pool-based electricity market in which energy, AGC, and re-
serve are traded through independent auctions. This paper de-
velops a tool that enables a power generator to optimally de-
termine how to allocate its power among the energy, AGC and
reserve markets, while enforcing all generator constraints, in-
cluding intertemporal constraints. The result of this model pro-
vides the generator with the information it needs to successfully
bid in a pool-based electricity market. The usefulness of this tool
is demonstrated by means of a real-world case study.

APPENDIX

The linear expressions of nonconvex and nondifferentiable
production costs, the linear exact expressions of exponential
start-up costs, and the set of operating constraints, are presented
in this Appendix.

The following set of constraints formulate the nonconvex and
nondifferentiable variable production cost as a function of the
average value of the power output.

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

where is the piecewise linear variable cost in period [$/h]
which replaces the nonlinear variable cost, , in (2), is
the slope of block of the variable cost [$/MWh], is the
number of blocks of the variable cost, is the average power
produced in the block in period [MW], is a 0/1 variable

which is equal to 1 if block determines the average power in
period , and is the upper limit of block [MW].

Finally, the start-up cost and the set of operating constraints
can be modeled as follows [14].

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)
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where

In the above formulation is the stairwise linear start-up
cost in period [$/h] that substitutes the exponential start-up
cost, , in (2), is the cost of the th discrete interval of
the start-up cost [$/h], is a 0/1 variable which is equal to
1 if the unit is started-up at the beginning of period and it has
been off for periods, ND is the number of discrete intervals
of the start-up cost function, is a dummy variable used
for the discretization of the start-up cost function in period
[h], is a large enough constant, is the number of intervals
the unit must be initially on-line due to the minimum up time
constraint [h], is the minimum up time [h], is the number
of intervals the unit must be initially off-line due to the minimum
down time constraint [h], is the minimum down time [h],
is the number of intervals of the market horizon, and is the
number of periods the unit has been on-line at the beginning of
the market horizon (end of hour 0) [h].

Constraints (A7)–(A16) express the stairwise linear start-up
cost, including the formulation of a time counter. It should
be noted that if ND is equal to the number of intervals of the
market horizon this linear expression is exact. Constraints
(A17)–(A20) introduce the effect of ramp rate limits on the
power output through variable , which represents the
maximum available synchronized power in period . Con-
straints (A21)–(A23) and (A24)–(A26) enforce the minimum
up and down time constraints, respectively. Finally, constraints
(A27) and (A28) preserve the logic of running, start-up, and
shut-down status changes [15].
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Abstract—This paper addresses the self-scheduling of a hydro
generating company in a pool-based electricity market. This
company comprises several cascaded plants along a river basin.
The objective is to maximize the profit of the company from
selling energy in the day-ahead market. This paper proposes a
0/1 mixed-integer linear programming model to account, in every
plant, for the nonlinear and nonconcave three-dimensional (3-D)
relationship between the power produced, the water discharged,
and the head of the associated reservoir. Additionally, start-up
costs due mainly to the wear and tear are considered. Finally,
different realistic case studies are analyzed in detail.

Index Terms—Hydroelectric producer, mixed-integer LP, pool-
based electricity market.

NOMENCLATURE

The notation used throughout the paper is stated as follows:
Constants:

Conversion factor equal to 3.6 10 Hm s m h .
Capacity of plant [MW].
Minimum power output of plant for performance
curve 1 (lower interval of water content) [MW].
Minimum power output of plant for performance
curve 2 (intermediate interval of water content)
[MW].
Minimum power output of plant for performance
curve 3 (higher interval of water content) [MW].
Future value of the stored water in the reservoir as-
sociated with plant at the end of the market time
horizon Hm .
Start-up cost of plant [$].
Number of periods of the market time horizon.
Minimum water discharge of plant m s .
Maximum water discharge of plant m s .
Maximum water discharge of block of plant

m s .
Forecasted natural water inflow of the reservoir
associated to plant in period Hm h .
Initial water content of the reservoir associated to
plant Hm .
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Minimum content of the reservoir associated to plant
Hm .

Maximum content of the reservoir associated to
plant Hm .
Lower level of the content of the reservoir associated
with plant used in the discretization of the perfor-
mance curves Hm .
upper level of the content of the reservoir associated
to plant , used in the discretization of the perfor-
mance curves Hm ,
Forecasted price of energy in period [$/MWh].
Slope of the block of the performance curve 1 of
plant MW/m s .
Slope of the block of the performance curve 2 of
plant MW/m s .
Slope of the block of the performance curve 3 of
plant MW/m s .
Time delay between reservoir of plant and reser-
voir of plant [h].

Variables:
0/1 variable used for the discretization of the perfor-
mance curves.
0/1 variable used for the discretization of the perfor-
mance curves.
Power output of plant in period [MW].
Spillage of the reservoir associated to plant in
period m s .
Water discharge of plant in period m s .
Water discharge of block of plant in period

m s .
0/1 variable which is equal to 1 if plant is on-line
in period .
0/1 variable which is equal to 1 if water discharged
by plant has exceeded block in period .
Water content of the reservoir associated to plant
in period Hm .
0/1 variable which is equal to 1 if plant is started-up
at the beginning of period .
0/1 variable which is equal to 1 if unit is shut-down
at the beginning of period .

Sets:
Set of indices of the plants belonging to the hydro
company.
Set of indices of the periods of the market time
horizon.
Set of indices of the blocks of the piecewise lin-
earization of the unit performance curve.
Set of upstream reservoirs of plant .
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Fig. 1. Hill chart.

I. INTRODUCTION

THIS paper considers a day-ahead electricity market for en-
ergy based on a pool. In this framework, generating com-

panies (GENCOs) and consumer or energy service companies
submit bids for selling and buying electric energy for the next
24 hr. An independent agent, namely, the market operator (PX),
is in charge of clearing the market, determining the accepted and
rejected buying and selling bids. The market clearing procedure
also provides the market clearing price for every period. These
electricity markets based on a pool are spread worldwide (Spain
[1], New England [2], Scandinavia [3]).

In this new environment, GENCOs face new challenging
problems with the ultimate goal of maximizing their profits.
One of those problems consists of determining, in the short
term, the optimal self-schedule of the units belonging to the
GENCO so that the profit from selling energy is maximized
without regard to the power balance in the system. This problem
is referred to as self-scheduling, and it is the problem addressed
in this paper.

Another relevant problem is how to translate this information
into a bidding strategy to ensure that in the day-ahead market,
the GENCO achieves the maximum benefit. Bidding strategy
development is outside the scope of this paper.

Recently, several contributions dealing with the problem of
self-scheduling have been available in the technical literature
[4], [5]. In [4], this problem is solved for a price-taker GENCO
comprising one thermal unit. The same problem is solved in [5]
for an oligopolistic GENCO owning several thermal units.

This paper addresses the self-scheduling problem for a hydro
GENCO (H-GENCO) owning several plants cascaded along
a river basin [6]. Specific features of hydro plants include
i) spatial-temporal coupling among reservoirs and ii) for every
plant, the nonlinear dependence between the power output,
the water discharged, and the head of the associated reservoir
are precisely accounted for through a 0/1 mixed-integer linear
formulation. Additionally, start-up costs are also considered in
this work.

In order to solve the self-scheduling problem, it is essen-
tial to use accurate models. These models should include the
hydro generation characteristic describing the relationship be-
tween the head of the associated reservoir, the water discharged,
and the power generated. This is a nonlinear and nonconcave
3-D relationship: the so-called Hill chart [7]. This relationship
can be represented as a family of nonlinear and nonconcave

Fig. 2. Traditional approximation of the unit performance curve.

curves, which are also known as unit performance curves, each
for a specified value of the head (see Fig. 1).

In most optimization methods, the effect of the variation of
the head has been neglected to avoid nonlinearities, which al-
lows using a single unit performance curve. Furthermore, this
single curve has been approximated either through a concave
piecewise linear approximation (see Fig. 2) [8], [9] or by mod-
eling just the so-called best local efficiency points (see Fig. 2)
[10], [11]. All these simplifications may lead to inaccuracies.
On the contrary, dealing with nonconcavities in a nonlinear op-
timization framework is difficult and may lead to multiple local
optima and to unreliable solution procedures.

On the other hand, it is important to consider start-up costs
for hydro units [12]. The start-up costs are due to

i) the loss of water during maintenance;
ii) wear and tear of the windings;
iii) wear and tear of the mechanical equipment;
iv) malfunctions in the control equipment;
v) loss of water during the start-up.

From the above causes, the main ones are ii) and iv). As a result,
a start-up cost per megawatt unit nominal output that depends
on the type of unit [12] can be derived.

The H-GENCO analyzed in this paper is considered to be a
price-taker. In other words, it does not have market power, i.e.,
its schedule does not alter the hourly market clearing prices.
Therefore, prices are assumed known. Several forecasting pro-
cedures are available to predict the day-ahead hourly market
clearing prices, such as auto regressive models [3], [13], linear
programming [14], or neural networks [15]. If the H-GENCO
is a price-maker, a new source of complexity arises: It is nec-
essary to model how the market clearing price changes with
the H-GENCO total production. For every hour, the function
modeling this variation is the so-called price-quota curve of
the H-GENCO [5]. These curves have to be estimated and in-
corporated in the self-scheduling problem formulation of the
H-GENCO.

The self-scheduling problem for an H-GENCO can be formu-
lated as a 0/1 mixed-integer nonlinear nonconcave and moderate
scale problem.

The main contributions of this paper are the following:

1) a discretization of the Hill chart into a set of nonconcave
curves depending on the reservoir content so that the tra-
ditionally neglected effect of the head is modeled;
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2) a precise piecewise linear approximation of each noncon-
cave unit performance curve that overcomes the inaccu-
racies of previous approximations (see Fig. 3);

3) the modeling of start-up costs to avoid unnecessary
start-ups.

This paper provides a 0/1 mixed-integer linear model that
allows an accurate representation of the variation of the per-
formance curves with the reservoir head. The number of
performance curves needed to represent accurately the head
variation is usually small (below 5), and therefore, the asso-
ciated computational burden is moderate (minutes on a PC).
Furthermore, this paper also provides a 0/1 mixed-integer linear
model to represent the nonconcavities of each performance
curve, which can be made as accurate as needed while keeping
the computational burden low. Finally, start-up costs are also
modeled using binary variables.

The above contributions are included in the model, resulting
in a 0/1 mixed-integer linear programming problem that can be
solved efficiently by available branch and cut solvers [16].

The self-scheduling problem addressed in this paper is similar
to any of the hydro subproblems of a short-term hydro-thermal
coordination problem solved by Lagrangian relaxation. In this
framework, the maximum profit problem faced by the hydro
producer has been traditionally solved using network program-
ming [17] or a combination of network programming and dy-
namic programming [6], without taking into account the three
improvements explained above.

The proposed approach allows i) the determination of the
self-scheduling of the H-GENCO in the day-ahead market and
ii) the efficient and accurate solution of the subproblems that
result from addressing a (centralized) short-term hydro-thermal
coordination problem using Lagrangian relaxation.

The ultimate motivation of this paper is to provide the
H-GENCO with a short-term self-scheduling tool to achieve
maximum profit from selling energy in the day-ahead market
while considering all its operating constraints.

The remaining of this paper is organized as follows. In Sec-
tion II, the problem is formulated in detail. This section presents
a discretization of the Hill chart. In addition, this section in-
cludes a precise modeling of the piecewise linearization of the
nonconcave and nonlinear relationship for every plant between
the water discharged and the power output. In Section III, results
from realistic case studies are provided and discussed. Finally,
some relevant conclusions are drawn in Section IV.

II. FORMULATION

The formulation of the self-scheduling problem of an
H-GENCO is presented in Sections II-A–C. This problem is
formulated as a 0/1 mixed-integer linear programming problem.

A. Objective Function

The goal of any participant in an electricity market is to max-
imize its own profit, which is computed as the difference be-
tween the revenues and the total operating costs. The operating
costs comprise production costs and start-up costs. In the case
of a hydro company, the production costs are negligible. As it
is reported in [10] and [12], the start-up costs have real impact

Fig. 3. Nonconcave piecewise linearization.

on the short-term scheduling of hydro generation. Start-up costs
are mainly caused by the increased maintenance of windings
and mechanical equipment and by malfunctions of the control
equipment. Thus, the objective function to be maximized can be
expressed as

(1)

In (1), the first term is related to the revenues of each plant be-
longing to the H-GENCO, whereas the second term represents
the start-up costs, which are defined as a constant dependent on
the type of the plant [10], [12]. Finally, an extra term has been
added to model in a simple way the future value of stored water
in reservoirs.

B. Hydro Constraints

The following expressions represent the set of constraints
related to every hydro plant over the market time horizon. In
this paper, the family of curves representing, for every plant, the
relationship between the reservoir head, the water discharged,
and the power output has been simplified to a prespecified
number of curves, each one for an interval of the head. The
generalization to any number of curves is straightforward. For
the sake of simplicity, three curves are considered in this
paper, corresponding to a low, medium, and high level of the
reservoir content. Through the use of binary variables, the
model accounts for these three curves.

Moreover, in order to consider the nonconcavities and non-
linearities of these unit performance curves [7], [10], a precise
mixed-integer linear formulation has been developed.

Finally, water balance and logical status of commitment is
enforced through additional constraints.

1) Simplification of the Three-Dimensional Unit Perfor-
mance Curves: For each plant, the set of curves representing
the relationship between the head, the power output, and the
water discharge is reduced to three curves, according to two
levels of the stored water in the reservoir. Fig. 4 depicts an
illustrative example of this simplification. It should be noted
that this figure represents a simplification of the Hill chart
(see Fig. 1), where each unit performance curve has been
approximated by a nonconcave piecewise linearization (see
Fig. 3). If the content of the reservoir in period ,
is below (low level), then curve 1 is used. If is
between and , i.e., intermediate level, then curve 2 is
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Fig. 4. Three-dimensional unit performance curves for plant �.

used. Finally, if the stored water in period is above (high
level), then curve 3 is used. The generalization to any number
of curves is straightforward.

This discretization is modeled through a 0–1 mixed-integer
linear formulation, which is presented as

(2)

(3)

(4)

(5)

In the formulation above, and are the binary
variables used to choose the right curve according to the content
level. If and are both equal to 0, constraints
(2) and (3) force to be in the lower interval so that curve
1 is used. If is equal to 1 and is equal to 0,
constraints (2) and (3) force to be in the intermediate
interval, implying that the relationship between head, flow, and
power output is represented by curve 2. Finally, if and

are both equal to 1, constraints (2) and (3) force
to be in the higher level so that curve 3 is used. The formulation
of each unit performance curve is presented in Section II-B2.

It should be noted that constraints (4) avoid the combination
0-1 for variables and . It should also be noted
that a higher number of levels can be modeled through the use
of additional binary variables in a straightforward manner.

Finally, the set of constraints (5) sets the lower limit of the
reservoir content in every period.

2) Piecewise Linear Formulation of the Unit Performance
Curves: Unit performance curves are nonlinear and noncon-
cave [7], [10]. In this paper, these curves have been modeled
through a piecewise linear formulation. Nonconcavities have
also been modeled through the use of binary variables. Fig. 5
shows a three-piece linear nonconcave unit performance curve
for a low content level. Fig. 5 is similar to Fig. 3 but simpli-
fied to illustrate the nonconcave linearization. Note that unlike
in [10] and [11], the operation of the plant is not restricted to the
local best efficiency points. In other words, the whole noncon-
cave unit performance curve is accurately modeled through the
use of binary variables.

Fig. 5. Piecewise linear nonconcave unit performance curve.

The formulation of the nonconcave unit performance curves
is as follows:

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Constraints (6) and (7) represent curve 1, i.e., the unit
performance curve for the lower level (see Fig. 4). For this
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curve, and are both equal to 0, as imposed
by constraints (2)–(4). Therefore, both constraints force the
power output to be equal to the minimum power output plus
the blocks of the lower-level piecewise linear curve. It should
be noted that if and are not both equal to 0,
constraints (6) and (7) are deactivated through the inclusion of
the capacity .

In an analogous fashion, couples of constraints (8) and (9), as
well as (10) and (11), model curves 2 and 3, respectively (see
Fig. 4), through the appropriate values of and
stated in Section II-B1.

Constraints (12) state that the water discharge of plant in
period is the sum of the water discharged in each block plus the
minimum water discharge. Constraints (13)–(16) set the limits
of the water discharged in each block. This discharge must be
greater than 0 and smaller than the size of each block. This is
ensured through a binary variable , which is equal to 1
if the water discharge of plant in period has exceeded block
.

3) Water Balance: The continuity equation of the hydro
reservoirs is formulated as

(17)

where is a factor to convert water discharge units m s
into stored water units Hm . For unit consistency, it should be
noted that time periods of 1 hr are considered.

4) Logical Status of Commitment: The following con-
straints

(18)

are necessary to model the start-up and shut-down status of the
plants [18]

Although variables may seem superfluous since they
only appear in (18), extensive numerical simulations have
proven their ability in considerably reducing the computing
time.

C. Types of Variables

Variables used in the formulation are

(19)

(20)

(21)

(22)

(23)

TABLE I
HYDRO DATA

Fig. 6. Hydraulic topology of the river basin.

Variables , , , , and
are defined as binary in (19) and (20). Variables can
be defined as real variables belonging to the interval ,
as stated in (21). Finally, constraints (22) and (23) state that
the power output, spillage, discharge, reservoir content, and
water discharged in each block in every period are all positive
variables.

III. CASE STUDY

Results from a realistic case study are reported in this section.
The H-GENCO analyzed owns eight cascaded plants along a
river basin. Table I shows the data of these plants. The spatial
coupling among reservoirs is depicted in Fig. 6. For the sake of
simplicity, 1-hr delays between any connected reservoirs have
been considered. Additionally, forecasted water inflows are con-
sidered constant over the whole market time horizon, which is
one day divided into 24 hourly periods. This case study con-
siders that the final water content of each reservoir is identical
to its initial value. Initial and final reservoir contents can be
obtained by a medium-term planning procedure. Consequently,
constants representing the future value of stored water are
all equal to 0.

Table II shows the value of the slopes of the performance
curves of each plant for the low interval of their corresponding
reservoir contents . A piecewise linear approximation
with four blocks has been implemented. The performance
curves for the intermediate and high water contents are ob-
tained by adding 0.05 and 0.1, respectively, to each slope in
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TABLE II
PIECEWISE LINEAR APPROXIMATION OF THE PERFORMANCE CURVES

TABLE III
POWER OUTPUT LIMITS

Table II. For each plant, the blocks of the approximation are
equally sized, as shown in the last column of the table.

Finally, Table III shows the minimum power output corre-
sponding to each performance curve as well as the capacity of
each plant.

The optimal solution is achieved in 22 min of CPU time,
and the optimal value of the objective function is $558 587.1.
The model developed has been implemented on a SGI R12000,
400-MHz-based processor with 500 MB of RAM using CPLEX
7.0 under GAMS [16].

Fig. 7 shows the computed 24-hr generation schedule. It also
shows the considered energy price profile corresponding to the
electricity market in mainland Spain on March 3, 2001 [19]. It
should be noted that the hydro production follows the shape of
the price profile. For the sake of clarity, the production schedule
of units 1 to 5 is also plotted in Fig. 8.

To illustrate the results obtained, plant 5 is selected. Most of
the other plants behave in a similar fashion (see Figs. 7 and 8).
Figs. 9–12 show the evolution of the water content, the profit,
the water discharge, and the power output of plant 5 over the
time span, respectively.

From Figs. 9–12, it should be noted that the plant is mainly
operated on the hours with the highest prices.

As it can be seen in Fig. 9, the associated reservoir stores
water in the periods 1–9 preceding the hours with the highest
prices. Note that the water content is over 20 Hm in periods
8–15 in order to use the high-level performance curve (see
Table I), thereby yielding large profits. On the other hand, note
that in hours 19–22, which also correspond to high prices,
the water content decreases below 20 Hm (medium level) in

Fig. 7. Energy price profile and production schedule.

Fig. 8. Production schedule of plants 1 to 5.

order to achieve the medium-term target of 13 Hm in the last
period of the time span. It should also be noted that only in
hours 20 and 21, the production corresponds to the last block
of the linearization of the performance curve, which is the most
inefficient one, with a slope of 0.2 MW/m s. This is due to the
need to discharge water to reach the desired final water content.

The same test case has been run without considering the
start-up costs. The optimal solution is achieved in 7 min of
CPU time, and the optimal value of the objective function
is $567 156.3, i.e., a 1.53% increase on the total profit with
respect to the original case. Aside from this difference in profit,
the schedule of the plants is also affected by the omission of
start-up costs. For instance, plant 1 is decommitted in hour 5,
and plant 5 is decommitted in hours 15, 16, and 23.

Finally, this test case has also been run, including two sim-
plifications that highlight how the two contributions modeled
in this paper (discretization of the Hill chart and modeling of
nonconcave performance curves) influence the computational
burden and the objective function value. The first simplification
consists of considering only one nonconcave efficiency curve
for every plant. This simplification has been carried out by con-
sidering a lower level curve, a medium level curve, and a higher
level curve for every plant in each case. The optimal solution
was achieved for the three cases in 2 s of CPU time. The optimal
values of the objective function were $531 254.4, $574 943.5,
and $619 109.1. In other words, the effect of not considering
the nonlinear dependence between the power output, the water
discharged, and the head of the associated reservoir material-
izes in deviations from the optimal solution of 5.1 , 2.9%,
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Fig. 9. Water content of reservoir associated with plant 5.

Fig. 10. Hourly profit of plant 5.

Fig. 11. Hourly water discharge of plant 5.

Fig. 12. Hourly power output of plant 5.

and 10.8%, respectively. Additionally, the scheduling of plants
3, 4, and 5 experiments changes with respect to the original case,
mainly in hours 1–7 and 15–18, when the energy prices are low.

The second simplification considered a discretization of the
Hill chart into three concave performance curves to quantify the
effect of modeling several concave performance curves. The op-
timal solution was $642 452.7 and was attained in 4 min of CPU
time. From these results, it can be concluded that the discretiza-
tion of the Hill chart to model head variations takes up most of
the computing time.

IV. CONCLUSIONS

This paper considers a pool-based electricity market for
energy. In this framework, it provides a tool that allows a hydro

generating company to optimally determine the short-term
self-scheduling of its hydro plants cascaded along a river basin.
The objective is to maximize the profit of the company from
selling energy in the day-ahead market. This paper proposes a
0/1 mixed-integer linear programming model to account in each
plant for the nonlinear nonconcave 3-D relationship between
the reservoir head, the power output, and the water discharged.
Additionally, start-up costs are considered. The model has been
successfully tested on realistic case studies.
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Abstract—This paper addresses the self-scheduling problem of
a price-taker power producer. It focuses on risk modeling, em-
phasizing the tradeoff existing between maximum profit and min-
imum risk. The paper analyzes a self-scheduling model that con-
siders simultaneously profit and risk. This model is formulated as
a mixed-integer quadratic programming problem, which is solved
using commercially available software. Relevant results from a re-
alistic case study are discussed.

Index Terms—Pool-based electricity market, price-taker power
producer, profit versus risk tradeoff, risk-constrained self-sched-
uling.

NOMENCLATURE

Variables:
Production cost during hour .
Power production during hour .
Total revenue.

covariance matrix of random variables
.

Market-clearing price of hour (random variable).
Vector of the (24) prices for day .

Constants:
Number of days for which true and estimate prices
are available.
Considered time periods in one day (typically 24).
Factor used to estimate the covariance matrix.
Weighting factor to incorporate risk into the ex-
pected profit objective function.
Feasible operating region of the generating machine.

Miscellaneous:
Expected value operator with respect to random
variables .
Variance operator with respect to random variables

.
est Superscript that indicates estimate value.
true Superscript that indicates true value.
exp Superscript that indicates expected value.
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I. INTRODUCTION

THIS PAPER considers a day-ahead electric energy
market based on a pool. Within this pool, producers and

consumers submit production and consumption bids to the
market operator, which clears the market using an appropriate
market-clearing procedure. This procedure results in 24 hourly
energy prices to be paid by consumers and to be charged by
producers. Appropriate forecasting techniques can be used to
predict these 24 day-ahead hourly prices. Furthermore, the
covariance matrix that expresses the statistical dependence
of these prices among themselves can also be estimated [1].
It should be noted that modeling bilateral contracts requires
longer market horizons than those considered in this paper.

In the above framework, this paper addresses the self-sched-
uling problem faced by a power producer. The effect of risk
is explicitly recognized in formulating this self-scheduling
problem taking into account the variance of the market-clearing
prices. Therefore, the tradeoff of maximum profit versus
minimum risk is properly addressed. Within the framework
stated in [2], the analysis performed can be extended to simul-
taneously consider AGC, spinning reserve, and nonspinning
reserve markets.

Note that any producer participating in an electric energy pool
should self-schedule its units to maximize its expected profit
assuming a given level of risk. This optimal self-schedule is then
used by the producer to derive an appropriate bidding strategy to
the pool [3]. This strategy is designed so that the optimal self-
schedule is accepted by the pool operator through its market-
clearing procedure (based on unit commitment or on auctions).

The producer considered in this paper is a price-taker, i.e.,
a producer with no capability of altering the market-clearing
prices. Therefore, its power plants do not have to seek coordina-
tion among themselves in determining their respective produc-
tion strategies because coordination does not change market-
clearing prices. Therefore, the self-scheduling of each generator
is independent of the self-scheduling of the others. For the sake
of simplicity and without loss of generality, a producer owning
a single generator is considered in this paper.

The objective of the producer is to maximize the expected
value of profit from selling energy in the day-ahead market, as-
suming a certain risk level. Therefore, a precise modeling of risk
is embedded in the considered maximum profit problem.

The profit maximization problem faced by the producer is
therefore a risk-constrained self-scheduling problem that is for-
mulated as a mixed-integer quadratic programming problem. A
commercial software [4] is used to solve this problem.

This paper is built upon previous results on self-scheduling of
power producers as stated in [3] and [5]. Its relevant contribution

0885-8950/04$20.00 © 2004 IEEE
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consists in modeling risk in a rigorous manner and providing a
tradeoff decision framework involving profit versus risk.

Relevant references on self-scheduling include [5] and [6].
Although several references are available on risk management
in pool markets for a long-term time span, only few references
address risk-related problems in the short-term. They include
the following references. Paper [7] presents a unit commitment
problem with uncertainty in the market prices. It uses a real
option model to manage the price risk and the price behavior is
modeled through scenarios (trinomial trees). Paper [8] presents
“Value-at-Risk” and hedging instruments to manage market
price risk for suppliers, distributors and traders. In [9], the
authors analyze how to deal with the risk associated with
operating conditions for models that include the transmission
network. In [10], the authors explain how the participants in
the former California power market had a risk exposure related
to prices and propose the “Value-at-Risk” method to quantify
this exposure. [11] presents a methodology to analyze the risk
associated to short-term operational planning in the presence
of load uncertainty.

The risk analysis carried out in this paper frames itself in a
pool-based electric energy market that is cleared using a simple
auction procedure, and where bilateral contracts are not signifi-
cant. This is actually the case of the electricity market of main-
land Spain [12].

If the producer has the possibility of signing
long/medium-term contracts to hedge risk, the decision
framework becomes more complex and versatile. In the
long/medium-term, the producer should decide which
contracts to sign, and as a result of such decision, the power
that the producer allocates to trade in the pool (short-term).
The long/medium-term decision of which contracts to sign
is better taken within a stochastic programming framework,
similar to the one stated, for instance, in [13]–[16] or [17]. The
power that has not been allocated to bilateral contracts should
be traded in the spot market using a framework similar to the
one developed in this paper. An overview of the cascaded
decisions faced by a power producer in the long-, medium-,
and short-term frameworks can be found in [18].

This paper is organized as follows. Section II provides a de-
scription of the revenue that the producer expects to achieve in
the day-ahead energy market. This revenue is characterized as a
random variable whose average value and variance (a measure
of risk) are described mathematically. In Section III, the risk-
constrained self-scheduling problem faced by the producer is
formulated as a mixed-integer quadratic programming problem.
Results from a realistic case study are described and analyzed
in Section IV. Finally, Section V provides some relevant conclu-
sions.

II. REVENUE AND RISK CHARACTERIZATION

The expected value of the revenue obtained by the generator
in the day-ahead electric energy market is calculated as

(1)

Note that expectation and summation operators can be
swapped, i.e.,

(2)

Therefore, the average value of the revenue of the generator in
the day-ahead electric energy market is computed as the sum-
mation over time of the price estimate times the actual power
production in each hourly time-period.

The mutual dependence among the 24 revenues can be mea-
sured through their variance. This variance is an appropriate
measure of risk: the higher the variance, the higher the risk. The
variance of the 24 revenues can be computed as

(3)

where is the covariance matrix of prices
[1]. It should be noted that the variance of the total

revenue can be formulated solely as a function of the covariance
matrix of the prices because the only random variables involved
are these prices.

The actual covariance matrix for day is

(4)

where for day .
If the true values of prices as well as their estimates are avail-

able up to day , the covariance matrix of day can be
estimated as

(5)

where is a convenient number of days (up to and including
day ) for which true and estimate prices are available.

Hourly price series of most electric energy markets present
some characteristics that can cause problems if (5) is directly
used. These characteristics are [19]: nonconstant mean and vari-
ance, multiple seasonality (corresponding to a daily and weekly
periodicity, respectively), high volatility, and high percentage of
unusual prices (mainly in periods of high demand). Therefore, a
better estimate for the covariance matrix can be obtained using
the following exponentially weighted moving-average equation
[20]:

(6)

where is greater than or equal to 24 to make the covariance
matrix positive definite. To guarantee that covariance matrix
is positive definite, at least 24 error vectors should be linearly
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independent, which is usually the case. Moreover, using more
than 24 error vectors further ensures the positive definiteness of
the covariance matrix . Because past prices are weighted by
the “smoothing constant” , higher weights are
assigned to the days closer to day and these weights decay ex-
ponentially as the days considered are farther and farther away
in the past from day . Therefore, seasonality effects and outliers
have less impact on variances and covariances as these effects
occur in periods more and more distant from day . It should
be noted that both (5) and (6) render biased estimations of ma-
trix . However, as stated in [20], it can be shown that the bias
approaches zero as , the number of days considered in the es-
timation, increases. Nevertheless, as the value of increases,
precision may deteriorate due to possible outliers. Therefore,
by trial and error, an appropriate value of should be selected
so that the bias approaches zero while estimation precision re-
mains high.

III. SELF-SCHEDULING

At the time of self-scheduling, any producer faces a tradeoff
between maximum profit and minimum risk. If the producer
decides to ignore risk, the resulting profit maximization self-
scheduling problem can be formulated as [5]

(7)

where is the production cost during hour . This cost includes
a quadratic operation cost that depends on the power output ,
and fixed, start-up and shut-down costs. Further information on
cost can be found in [5].

Operation constraints of the generator include:

• minimum and maximum power output limits;
• ramp-up and ramp-down limits;
• start-up and shut-down ramp limits;
• minimum up- and minimum down-time constraints.

The above constraints can be generally expressed as
, where is the feasible operating region of

the generator. A detailed description of the feasibility region
can be found in [5].

On the other hand, if the producer seeks to minimize risk and
it is not disturbed by low profit, the corresponding risk mini-
mization self-scheduling problem can be formulated as

(8)

where both and are time indices.
It should be noted that problem (8) is of no practical use.

However, it is formulated for derivation consistency and for the
sake of clarification.

Generally, a producer is interested in finding a self-schedule
that results in a large profit with low risk (variance). To combine

TABLE I
TECHNICAL DATA FOR THE GENERATING MACHINE

TABLE II
COSTS DATA FOR THE GENERATING MACHINE

TABLE III
PRICE ESTIMATES

these two conflicting objectives, the technique presented in [21]
for portfolio selection can be used. This technique uses a single
objective function with the help of a risk tolerance parameter .
The resulting self-scheduling problem has the form

(9)

Note that the variance of the total revenue is equal to the vari-
ance of the total profit because all costs are considered deter-
ministic.

Penalty parameter allows adding the two conflicting terms
that form the objective function of problem (9). Parameter
lies in the range and its actual value materializes the
tradeoff between expected profit and risk; therefore, it depends
on the preferences of the producer. A conservative producer
places more emphasis on minimizing risk while deriving its
self-scheduling, so it chooses a large value of to increase the
weight of the risk measure in (9). On the contrary, another pro-
ducer may be prepared to assume higher risk in the hope of ob-
taining a higher profit, so its selected value for is close to 0.

The solution of (9) for different values of provides the effi-
cient frontier [21]–[24], that is, the set of solutions for which ex-
pected profit cannot be increased without increasing profit vari-
ance, i.e., risk. As stated in [25], the selection of the weighting
factor depends on, among others, the financial situation of the
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TABLE IV
ESTIMATE OF THE COVARIANCE MATRIX

generating company, its willingness to take risks and the char-
acteristics of the particular electricity market. A detailed dis-
cussion on how to obtain appropriate values for the weighting
factor is outside the scope of this paper.

It should be noted that modeling the feasible operating re-
gion of the generator (represented by ) requires the use of
binary variables to represent the commitment status as well as
start-ups and shut-downs. Therefore, problem (9) is a mixed-in-
teger quadratic programming problem.

If covariance matrix is positive definite, problem (9) has a
strict optimum that can be efficiently attained. If, on the other
hand, is positive semidefinite (only other possibility), non-
strict optima may exist and solution algorithms behave not as
efficiently as in the positive definite case. Nevertheless, com-
putational experience shows that appropriate solutions are ob-
tained in both cases.

IV. CASE STUDY

The considered case study consists in the day-ahead self-
scheduling of a power producer owning a single generating ma-
chine. Data for this machine is provided in Tables I and II.

Price forecasts are provided in Table III while an estimate
of the covariance matrix is provided in Table IV. A time series
of three months corresponding to the electric energy market
of mainland Spain [12] has been used to estimate prices. Price
estimates are obtained using a transfer function procedure
[19], while the covariance matrix has been estimated through
(6) using data for the last 24 days prior to the estimation
day. Through numerical simulation it has been verified that
good estimations for this covariance matrix are obtained with

and . Using standard clustering techniques
[26] to analyze this covariance matrix, the following can be
concluded in terms of correlations affecting risk. Hours 20–24
(late-evening peak) are highly correlated among each other
and show small correlations with the other hours of the day.

Fig. 1. Expected profit versus profit standard deviation.

The same pattern is presented by hours 5–9 (early-morning
shoulder) and 11–14 (afternoon peak). The physical reasons for
the above correlations lay on the structure and the composition
of the load. However, the study of the load structure is beyond
the scope of this paper.

The scheduling problem (9) is solved for different values of
the parameter , which allows assigning different weights to the
risk term versus the profit term in the objective function. This al-
lows constructing the efficient frontier. Fig. 1 depicts expected
profit versus profit standard deviation and illustrates the effi-
cient frontier. It can be observed that expected profit increases as
variance also increases. Note that the decrement rate in expected
profit is important, which makes the tradeoff profit versus risk
relevant.

The expected profit achieved by a conservative producer
is $11 737.21 whereas the expected profit with maximum

risk is equal to $29 209.56.
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TABLE V
SCHEDULING COMPARISON FOR TWO LEVELS OF RISKS

Table V illustrates scheduling differences for the cases of
maximum risk and a low level of risk (see
Fig. 1). This range on is considered wide enough to reflect the
variety of risk that electricity producers are willing to assume.
As can be seen from this table, the consideration of different risk
levels yields two results: 1) the risk averse producer
is on-line during fewer time periods, and 2) in those periods in
which it is on-line, its production is considerably lower com-
pared to the case of maximum risk . Note that interme-
diate values of result in different intermediate schedules.

A clear conclusion can be drawn: the producer should make a
decision on its desired level of risk before solving its day-ahead
scheduling problem and using that information to bid in the
electric energy market. Different levels of risk imply different
self-scheduling results and different bidding strategies, and ul-
timately, different actual profits.

The CPU time required to solve problem (9) for a given value
of in a Dell PowerEdge 6600 with two processors at 1.60 GHz
and 2 Gb of RAM memory is approximately 7 s.

V. CONCLUSION

Any power producer faces a profit versus risk tradeoff while
determining its self-scheduling and its bidding strategy for the
day-ahead electric energy market. This paper provides an appro-
priate tool to analyze the profit versus risk tradeoff faced by the
producer. Moreover, it provides the producer with an instrument
to efficiently self-schedule once a level of risk has been speci-
fied. Practical simulations using realistic electric energy mar-
kets show that risk levels affect profits in a significant manner.
Therefore, any producer should be aware of the consequences
of its selected level of risk on its self-scheduling, its bidding
strategy, and ultimately, on its actual profits.
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Price Maker Self-Scheduling in a Pool-Based
Electricity Market: A Mixed-Integer LP Approach
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Abstract— This paper addresses the self-scheduling problem
faced by a price-maker to achieve maximum profit in a pool-based
electricity market. An exact and computationally efficient mixed-
integer linear programming (MILP) formulation of this problem
is presented. This formulation models precisely the price-maker
capability of altering market-clearing prices to its own benefits,
through price quota curves. No assumptions are made on the char-
acteristics of the pool and its agents. A realistic case study is pre-
sented and the results obtained are analyzed in detail.

Index Terms—Electricity pool market, market power, mixed-
integer linear programming (MILP), price maker.

NOTATION

A. Functions

stepwise monotonically decreasing discontinuous
function that, for every hour , expresses the
market-clearing price as a function of the price
maker quota in that hour (see Fig. 1);
production cost for hour of the th unit belonging
to the price maker;
revenue of the price maker in hour .

B. Constants

megawatt size of step of the price quota curve for
hour (see Figs. 2 and 3);
number of units owned by the price maker;
number of steps of the price quota curve in hour ;
is the summation of power blocks from step 1 to step
-1 for hour (note that ; see Figs. 2

and 3).
number of time periods considered;
price corresponding to step number of the price
quota curve in hour ;
feasible operating region of unit .

C. Variables

real variable representing the fractional value of the
power block corresponding to step to obtain quota

;
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power produced by unit in hour ;
price maker quota in hour ;
binary variable that is equal to 1 if step is the
last step needed to obtain quota in hour and 0
otherwise.

I. INTRODUCTION

The framework considered in this paper is a pool-based elec-
tricity market for energy. An auction mechanism to clear the
market one day ahead on an hourly basis is assumed [1], [2].
No particular assumptions are made on generating companies;
therefore, several price makers as well as several competitive
fringe producers are market agents. The hourly load may be
price elastic or not.

In the above context, this paper addresses the self-scheduling
problem of a price maker, i.e., a generating company owning
a portfolio of units that is capable of altering market-clearing
prices. The objective function of this self-scheduling problem
is to maximize the price maker profits. Once the optimal self-
schedule is known, an appropriate bidding strategy to actually
achieve this optimal schedule should be developed.

For every hour, it is assumed that the market-clearing price
as well as the offer and demand curves are available once the
market has been cleared. This is the case of several electricity
markets like the market in mainland Spain [3], the former elec-
tricity market of California [4], and the electricity market of
New England [5]. The above information is crucial because
it allows small producers to forecast next-day market-clearing
prices, and it also allows price makers to forecast their corre-
sponding price quota curves. Note that several price makers can
compete in the considered pool-based electricity market.

The price quota curve of a price maker for a given hour pro-
vides the market-clearing price as a function of the price maker
quota (accepted production in that hour). This curve is described
in detail in [1], [6]. Hourly price quota curves (also known as
residual demand curves) allow formulating precisely the self-
scheduling profit maximization problem that every price maker
faces every day in a pool-based electricity market for energy.

This paper specifically addresses the day-ahead self-sched-
uling problem faced by a particular price maker. It provides an
efficient yet simple mixed-integer linear programming (MILP)
formulation that allows achieving the optimal solution for re-
alistic case studies in moderate solution times. This LP formu-
lation is exact in the sense that it is not an approximation of a
nonlinear formulation, as is the case of the model presented in
[7].

0885-8950/02$17.00 © 2002 IEEE
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Market power and price maker behavior have been analyzed
mostly in a single period context (therefore, not using 0/1
variables), and continuity has been assumed in functions and
variables. Particularly relevant works are [8]–[11]. This paper
provides a complementary approach that does not require
continuity and considers a multiperiod setting. On the other
hand, it extends the work reported in [6], specifically in pro-
viding an exact and efficient mixed-integer formulation, which
guarantees the achievement of the optimal solution.

The remainder of this paper is organized as follows. Section II
describes price quota curves, presents a nonlinear formulation of
the price maker self-scheduling problem, and provides its equiv-
alent mixed-integer linear formulation. In Section III, the results
from a realistic case study are analyzed in detail. Section IV pro-
vides some conclusions. Finally, an Appendix is presented to
describe the running cost and the feasible operating region for
generating units.

II. PROBLEM FORMULATION

A. Price Quota Curve Description

For a given hour, the quota of a price maker is the amount
of power it contributes to serve the demand in that hour. If the
price maker exercises its market power by retaining production,
the market-clearing price increases. The curve that expresses
how the market-clearing price (for the whole market) changes as
the quota of the price maker changes is called residual demand
curve [1] or, more directly, price quota curve. Note that different
price makers competing in the same electricity market present
different price quota curves.

The price quota curve for a given hour, corresponding to a
price maker, is a stepwise monotonically decreasing curve that
expresses the actual market-clearing price in that hour as a func-
tion of the market quota (total accepted production) of the price
maker. Price quota curves are stepwise because (producer/con-
sumer) bids are assumed to be blocks of power at given prices.

The 24 hourly day-ahead price quota curves of a given
price maker provide all the market information it needs to
self-schedule optimally, i.e., to maximize its benefits. That
is, these curves embody the effects of all interactions with
competitors and the market functioning rules. Once these
curves are available, the price maker self-scheduling problem
can be precisely formulated without further regard to the effect
of competitors, i.e., the self-scheduling problem of any price
maker can be formulated independently of the problems of
other producers.

The functioning of a day-ahead electricity market is as
follows. First, each producer, either price maker or price taker,
uses a self-scheduling algorithm to determine its optimal
self-schedule. Then, each producer uses a bidding strategy
designed to achieve in the market that optimal schedule.
Finally, the market operator uses a market-clearing procedure
to determine the actual production of each producer.

The day-ahead price quota curves of a price maker can be
obtained 1) by market simulation or 2) using forecasting proce-
dures [1]. Both techniques are outside the scope of this paper,
and therefore, the hourly price quota curves of the price maker
considered are assumed to be known data.

Fig. 1. Price quota curve.

For the sake of illustration, Fig. 1 shows a typical price quota
curve.

B. Nonlinear Formulation

The natural formulation of the optimization problem that a
price maker has to face is nonlinear, due to the products between
the variables that appear in the objective function [6].

This formulation is

maximize (1)

subject to (2)

(3)

The objective function (1) expresses the profit of the price
maker over the planning horizon. The first term is the total rev-
enue, and the second one is the total production cost, as formu-
lated in the Appendix and in [12].

The set of constraints (2) enforces that every unit works
within its feasible operating region over the whole planning
horizon. A precise mixed-integer linear description of this fea-
sibility region can be found in [12], [13], and in the Appendix.

The set of constraints (3) expresses for every hour the price
maker quota as the sum of the power production of its units.

C. Linear Formulation

An alternative equivalent formulation of problem (1)–(3) that
is linear is provided as follows:

maximize (4)

subject to (5)

(6)

(7)
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Fig. 2. Price quota curve: illustration of the linear formulation.

Fig. 3. Revenue versus quota.

(8)

(9)

The objective function (4) expresses the profit of the price
maker: total revenue minus total costs. Figs. 2 and 3 illustrate
the variables and constants needed to express linearly the price
maker revenue as a function of its quota. Taking advantage of the
stepwise nature of the price quota curve in every hour, the total
revenue is expressed linearly using real variables and binary
variables , as illustrated in Fig. 2. Note that the revenue is
the shadowed area in that figure. Fig. 3 also illustrates the above
linear formulation. This figure expresses the price maker total
revenue as a function of its quota. Observe the nonconvex and
discontinuous nature of this function. Quota values that origi-
nate discontinuities on revenues do not lead to an ambiguous
formulation, because the maximization of the objective func-
tion always leads to the highest revenue values.

The sets of constraints (5) and (6) are identical to sets (2) and
(3), respectively. The set of constraints (7) expresses linearly
the price maker quota in every hour as a function of variables

and , as illustrated in Fig. 2. The block of equations (8)

expresses that the megawatt blocks of the price quota curve of
every hour are nonnegative values, bounded above. The block of
equations (9) states that only one variable is different from
0 in every hour. Thus, sets of equations (8) and (9) together en-
force that only one variable is different from 0 in every hour.
It should be noted that both formulations (1)–(3) and (4)–(9) are
fully equivalent, and this allows saying that the linear formula-
tion (4)–(9) is exact

III. CASE STUDY

The considered electricity market includes one price maker
producer owning 40 thermal units and different competitive
fringe producers comprising 120 thermal units. It should be
noted that mixed hydrothermal price makers can be analyzed in
a similar way as thermal price makers. The differences among
these analyses are simply related to the description of the fea-
sible operating regions of the hydroelectric units. The market
time horizon is 24 hours. Data for all units are based on the
1996 IEEE RTS [14] and are detailed in Table I. In this table,
Type indicates the unit type (A, B, C, D, E, F, or G); PM/CF
indicates the number of units corresponding to the price maker
and the competitive fringe producers, respectively; and
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TABLE I
GENERATING UNITS DATA

indicate, respectively, the maximum and minimum power
output; every value provides the production cost of the
block of the unit (four-block piecewise convex cost curves are
considered); RR gives both ramp-up and ramp-down maximum
values; SC is the constant start-up cost; and MUT and MDT
represent the minimum up and down times, respectively.

Price quota curves for the price maker are obtained simu-
lating the market behavior as stated in [6]. They can also be
obtained through forecasting procedures. However, it should be
noted that they are exogenous data for the problem addressed
in this paper. For the sake of illustration, the price quota curve
faced by the price maker in hour 21 is shown in Fig. 1.

For this case study, problem (4)–(9) is solved using CPLEX
7.0 under the General Algebraic Modeling System (GAMS)
[15] on an SGI R12000 (400 MHz) processor with 500 MB of
RAM. The required CPU time is about 15 min.

Optimal profit for the price maker producer is US $869,122.
The production self-schedule for the price maker is illustrated in
Figs. 4–6. Fig. 4 provides for the 24-hour time horizon: 1) the
price maker hourly production (gigawatts), 2) the hourly total
served demand (gigawatts), and 3) the hourly market-clearing
price ($ per megawatt hour). The total hourly served demand is
obtained after evaluating the optimal self-scheduling of every
market participant. It can be observed that the market-clearing
price is highly correlated with the served demand. However, that
price is not correlated with the price maker production, and this
is an indication that market power is being exercised. This lack
of correlation can be used as a monitoring variable to assess
market power.

Fig. 5 shows the quota of the price maker in percentage with
respect to the total served power in every hour, and from Fig. 5
it is apparent that the price maker quota in percentage is higher
in off-peak hours than in high-demand hours. This is again an
indication that power is withheld in high-demand hours to keep
the price high in these hours. This quota variation can also be
used as a monitoring variable to appraise market power.

Fig. 6 provides specific information on the manner in which
the price maker exercises its market power. The upper and lower
solid plots represent the power range for which the price does
not change. The plot provides the price maker production in
the marginal block of the price quota curve, i.e., the last block of
this curve used by the price maker. Fig. 6 shows that, for some
hours, (mostly high-demand ones) the marginal production (the

Fig. 4. Price maker production, served demand, and market-clearing price.

Fig. 5. Percentage of served power assigned to the price maker.

Fig. 6. Range of constant optimal price and price maker production.

production in the marginal block) of the price maker is in the
upper limit of the range for the final price. This may mean that
the price maker is withholding its production in those hours not
to force the price down, and this is again a clear indication that
the price maker is exercising its market power. Fig. 6 can be used
as a monitoring tool to assess the exercise of market power.

On the other hand, during other hours, (i.e., hours 1–8, 21, 22,
and 24) the optimal production is located somewhere between
the lower limit and the upper limit that preserve the market-
clearing price. There are three different reasons for that. In hour
8, this is so to meet the ramp-down constraint that becomes ac-
tive between hours 8 and 9; it should be noted that the total pro-
duction of the price maker begins to decrease in hour 8, when
the demand rises. Secondly, in hour 24, the reason is to meet
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the ramp-up limit between hours 23 and 24. Finally, in hours
1–7, 21, and 22, the reason is that a relevant change in the price
maker marginal cost occurs within the range of constant optimal
price; note that hours 1–7 present a very wide range of constant
optimal price. For example, in hour 4, the optimal price is US
$12.3/MWh, but the price maker only owns 4.858 GW of power
cheaper than that price (see Table I); therefore, the price maker
is only willing to offer that amount, because, if it offers more
than 4.858 GW, its profit decreases.

IV. CONCLUSION

This paper provides a mixed-integer LP formulation for the
self-scheduling problem faced by a price maker in a pool-based
electricity market. This formulation is exact in the sense that it is
equivalent to a “natural” nonlinear formulation of the problem.
This linear formulation allows an efficient solution using a stan-
dard branch-and-cut solver. Extensive computational analyses
based on realistic price makers in realistic markets have shown
the appropriate functioning of the proposed formulation.

APPENDIX

The running cost of a thermal unit and its technical constraints
are described in this Appendix. The running cost is ex-
pressed as

(A1)

where represents the fixed cost of unit ; is the piecewise
linear variable cost of unit in hour ; denotes the startup
cost of unit ; is the shutdown cost of unit ; is a 0/1
variable that is equal to 1 if unit is online in period ;
denotes the 0/1 variable that is equal to 1 if unit is started up at
the beginning of period ; and is the 0/1 variable that is equal
to 1 if unit is shutdown at the beginning of period . Equations
(A1) express the running cost of unit in period as the sum of
a fixed term, different from zero if the unit is online, plus the
variable cost, the startup cost, and the shutdown cost.

The piecewise linear variable cost is formulated as

(A2)

(A3)

(A4)

where is the number of blocks of the piecewise linear variable
cost function; represents the power produced by unit
in period using the th power block; is the size of the th
power block of unit ; is the minimum power output of unit
; and denotes the slope of block of the variable cost of

unit .
Constraints (A2) express the variable cost of unit in period

as the sum of the corresponding terms of the piecewise lin-
earization. Constraints (A3) state that the power output of unit

in period is the sum of the power generated using each block
plus the minimum power output. Constraints (A4) set the limits
of the power generated in each block. This power should be
greater than zero and less than the size (in megawatts) of each
block. This formulation assumes that the cost is monotonically
increasing. Nonconvex costs can be easily modeled by using ad-
ditional binary variables [12].

The feasible operating region is formulated through the
following linear constraints, which are further described in [12]:

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

where

(A17)

(A18)

In the expressions above, is the capacity of unit ; is
the shutdown ramp limit of unit ; represents the ramp-up
limit of unit ; is the startup ramp limit of unit ; is the
ramp-down limit of unit ; is the minimum up time of unit
; is the minimum down time of unit ; expresses the

time periods unit has been online at the beginning of the market
horizon (end of period 0); provides the initial commitment
status of unit (1 if it is online, 0 otherwise); and represents
the time periods unit has been offline at the beginning of the
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market horizon (end of period 0). For unit consistency, it should
be noted that time periods of one hour are considered.

Constraints (A5) and (A6) set the lower and upper limits of
the power output, respectively. The upper limit is restricted by
the maximum capacity of the unit in normal operation and by the
shutdown ramp rate if the unit is shutdown in the next period. It
should be noted that the power output becomes zero if the unit
is offline, i.e., if binary variable is equal to zero.

The set of constraints (A7) imposes the ramp-up rate limit as
well as the startup ramp rate limit. Analogously, ramp-down and
shutdown ramp rate limits are enforced by constraints (A8).

Equations (A9)–(A11) represent the linear expressions of
minimum up-time constraints. The set of equations (A9) is
related to the initial status of the units. is the number of
initial periods during which unit must be online to meet the
minimum up-time requirement. If unit does not declare any
initial status, is assumed to be equal to zero. The set of
equations (A10) is used for the periods following , and it
ensures the satisfaction of the minimum up-time constraint
during all the possible sets of consecutive periods of size

. Finally, the set of equations (A11) is needed for the last
periods, i.e., if a unit is started up in one of these

periods, it remains online during the remaining periods. Sim-
ilarly, (A12)–(A14) provide the formulation of the minimum
down-time constraints. Equations (A12)–(A14) are identical
to (A9)–(A11) just by changing , , , and by

, , , and , respectively.
Finally, constraints (A15) and (A16) are necessary to model

the startup and shutdown status of the units and to avoid the
simultaneous commitment and decommitment of a unit [13].
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Abstract—This paper provides a framework to obtain the op-
timal bidding strategy of a price-taker producer. An appropriate
forecasting tool is used to estimate the probability density functions
of next-day hourly market-clearing prices. This probabilistic infor-
mation is used to formulate a self-scheduling profit maximization
problem that is solved taking advantage of its particular structure.
The solution of this problem allows deriving a simple yet informed
bidding rule. Results from a realistic case study are discussed in
detail.

Index Terms—Bidding strategy, forecasting, MILP, pool-based
electricity market, price-taker producer, self-scheduling.

NOMENCLATURE

The notation used throughout the paper is stated below.
Constant used to obtain the upper bound of the
confidence interval for hour .
Constant used to obtain the lower bound of the
confidence interval for hour .
Random variable describing the total profit of
the thermal generator (all hours) in $.
Average value of the total profit of the thermal
generator (all hours) in $.
Random variable describing the profit of the
thermal generator at hour in $.
Average value of the profit of the thermal
generator at hour in $.
Operating cost function of the thermal
generator at hour in $/h. It is precisely
described in the Appendix.
Optimal value of the operating cost function of
the thermal generator at hour in $/h.
Number of scenarios.
Power produced by the thermal generator at
hour in MW.
Optimal power produced by the thermal
generator at hour in MW.
Maximum power output of the thermal
generator in MW.
Covariance matrix of random variables

.
Scenario index.
Hour index.
Time span in hours.

-percentage point of the distribution.
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Random variable describing the
market-clearing price at hour in $/MWh.
Average value of random variable in
$/MWh.
Estimate of the market-clearing price at hour
in $/MWh.
True market-clearing price at hour in $/MWh.
Market-clearing price at hour and scenario
in $/MWh.
Feasible operating region of the thermal
generator. It is precisely described in the
Appendix.
Probability of scenario .
Estimate of the standard deviation of random
variable in $/MWh.
Expected value operator with respect to
random variables .
Expected value operator with respect to
random variable .
Variance operator with respect to random
variable .
Variance operator with respect to random
variables .

I. INTRODUCTION

THIS paper addresses the bidding problem faced by a
thermal price-taker producer in a pool-based electric

energy market.
It is assumed that price uncertainty is high and that an

appropriate forecasting tool is available to forecast next-day
hourly prices and to estimate their associated probability
density functions.

This paper provides a simple yet informed bidding rule
that allows a price-taker producer to obtain optimal bidding
decisions.

The analysis consists of three steps:

1) An appropriate price-forecasting tool is used to esti-
mate the probability density functions corresponding to
next-day hourly energy prices.

2) A self-scheduling problem is formulated using the prob-
abilistic price information derived in 1). This problem is
efficiently solved taking advantage of its singular struc-
ture, which is described in Section III.

3) The solution of the problem formulated and solved in
2) allows deriving a simple yet informed bidding rule for
the price-taker.

The framework for the analysis above is a pool-based elec-
tricity market [1]–[3]. It is assumed that the market is cleared
one day in advance on an hourly basis, and that producers and

0885-8950/02$17.00 © 2002 IEEE
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consumers submit hourly bidding curves consisting of blocks
of energy and their corresponding prices. It is considered that,
in each hour, every generator must bid all its available power
in one or several power blocks at increasing prices of its choice
[1]. No particular assumption is made on the market structure
and its participants. The market-clearing price is used to pay
any accepted production bid, and it is also the price paid by any
accepted demand bid.

The analysis in this paper is restricted to considering a
price-taker producer, i.e., a producer with no capability of
altering market-clearing prices. In such situation, the profit
maximization problem faced by the producer decomposes
into independent subproblems. Each of these subproblems
corresponds to the profit maximization of each generator owned
by the producer [4]. Therefore, for the sake of simplicity, a
single generator is considered henceforth. The problem faced
by a price-maker producer, i.e., a producer with capability
of altering market-clearing prices is outside the scope of this
paper.

This paper extends the model reported in [4], providing a
probabilistic framework for the treatment of uncertain market-
clearing prices, and deriving a simple yet informed bidding rule.

Quite a few bidding methods addressing the strategic bid-
ding problem have been published so far [5]. Pioneering paper
[6] solves the optimal bidding problem for a single time pe-
riod using dynamic programming. In [7], an analytical formu-
lation for building the optimal bidding strategy in the former
pool-based electricity market of England & Wales was devel-
oped under the assumption of a perfectly competitive market.
However, this assumption does not seem reasonable for most
electricity markets. In [8], a bidding strategy was proposed for
the situation of two buyers competing for a single block of en-
ergy. Huse et al. [9] proposed a simple bidding strategy based on
heuristics without taking into consideration the effect of inter-
temporal constraints. In [10], a simple bidding model is derived
after estimating the probability of winning below and on the
margin. In [11], a bidding strategy is developed to maximize the
profit obtained by a supplier by adjusting its submitted opera-
tional parameters such as the declared minimum power output.

In [12]–[15], game theory is applied to find an equilibrium
state (Nash equilibrium) of the bidding game, corresponding
to the optimal bidding strategies achieved by the participants.
Contreras et al. [16] propose an iterative Cournot model to find
the optimal bidding policy of a generating company. In [17],
Nash equilibrium is applied under the framework of bilateral
based electricity markets. These methods are more suitable for
analyzing strategic behavior rather than for proposing a tool to
develop bidding strategies.

Under the framework of multi-round auctions, several
bidding strategies are proposed [18]–[20]. In [21], [22], evo-
lutionary and artificial intelligence techniques such as genetic
algorithms, genetic programming and finite state automata are
used to develop adaptive and evolutionary bidding strategies.
Unfortunately, iterative auctions are not implemented in most
electricity markets.

Other methods such as ordinal optimization [23], Lagrangian
relaxation [24], stochastic optimization [25], and Markov de-
cision process [26] have also been applied to solve the optimal

bidding strategy problem. In [23], an ordinal optimization based
bidding strategy is used for seeking good enough bids with high
probabilities. An innovative model and a Lagrangian relaxation-
based method are presented in [24] to solve the bidding and
self-scheduling problem. In [25], the optimal bidding problem
is modeled as a stochastic optimization problem taking into ac-
count the effect of competitors through Monte Carlo simula-
tion. In [26], this problem is represented as a multiple stage
probabilistic decision-making problem and a Markov decision
process was applied to calculate bidding decisions.

The remainder of this paper is organized as follows. Section II
provides the proposed modeling framework to deal with price
uncertainty. In Section III, the price-taker self-scheduling
problem under price uncertainty is formulated, analyzed and
solved. Section IV provides a probabilistic description of the
profit achieved by the price-taker. Section V presents the simple
yet informed bidding rule derived from the solution of the
self-scheduling problem. In Section VI, the results of a realistic
case study are analyzed in detail. Section VII presents some
relevant conclusions. Finally, in the Appendix, a mathematical
linear description of the cost function and the feasible operating
region of a generator is provided.

II. PRICE UNCERTAINTY MODELING

A model for the uncertainty in the hourly market-clearing
prices is proposed in this section. This model provides a proba-
bilistic characterization of these prices that has a definitive im-
pact on the self-scheduling problem presented in Section III.
Moreover, the model also provides a probabilistic characteri-
zation of the profit for the price-taker, which is described in
Section IV.

The model is based on the probability density functions of
forecast prices. Several techniques to forecast electricity prices
can be found in the technical literature. For instance, jump diffu-
sion/mean reversion models have been proposed in [27]. Neural
networks are used to predict prices in the England & Wales
pool [28], in California [29], and in the Victorian market [30].
Techniques based on Fourier and Hartley transforms have been
studied in [31]. Recently, in [32], two models based on time se-
ries analysis have been proposed. These models, which produce
accurate predictions, relate actual prices to demands and past
prices.

All the aforementioned forecasting procedures assume that
the market-clearing price at hour is a random
variable denominated , which has to be forecast. It should be
noted that random variables depend on the ac-
tual price values of the time series that is used for forecasting.
From a statistical point of view, they are random variables “con-
ditioned” to the actual price values of the time series used for
forecasting. This time series spans from an arbitrary origin up
to hour 24 of the day preceding the one whose prices have to be
forecast. Under the above assumption, and using a time series
forecasting procedure [33], the expected value of random vari-
able is the actual price prediction at hour , , that is

(1)

This is a key fact that is used in Section III.
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The estimate of the standard deviation of the random variable
is readily available from the forecasting procedure, and it is

denominated .Moreover, it canbe shown that the distribution
of random variable is approximately Lognormal [32], i.e.,

Lognormal (2)

Upper and lower bounds of the confidence interval are com-
puted respectively as

(3)

It should be noted that parameters and are obtained di-
rectly from the forecasting procedure and depend on the con-
sidered level of confidence to be guaranteed, e.g., 99% or 95%
[33].

They are computed so as to cover 99% or 95% of the total
area under the Lognormal distribution. Formulae to compute
parameters and are provided below [34]:

(4)

(5)

where depends on the desired level of confidence.
For a level of confidence of 99%, is obtained from

Probability , which results in
. Analogously, .

III. SELF-SCHEDULING

Under price uncertainty, the profit maximization problem of
a price-taker generator can be formulated as

maximize

subject to (6)

The objective function of the problem above is the expected
value of profit for selling energy, i.e., expected revenues minus
incurred operating costs (as described in the Appendix). Note
that 1 hour time intervals are considered. The only constraint
of this problem states that the generator must operate within
its feasible operating region (power output limits, ramp-rate
constraints, and minimum up and down time constraints). This
feasible operating region is also precisely described in the
Appendix.

It should be noted that the random variable describing market-
clearing prices only affects the objective function, and particu-
larly, the term corresponding to revenues.

Formulation (6) suggests a reformulation to allow a scenario-
based solution approach, i.e.,

maximize

subject to (7)

where .
Note, however, that this scenario formulation leads to an

intractable problem. For instance, considering 24 hours and
3 price values per hour results in 3 scenarios which is a
number higher than 2.8 10 , and this number constitutes
an excessive number of scenarios. An alternative approach is
therefore needed, and it is developed in what follows.

Using basic probability theory [35], expectation and summa-
tion operators can be swapped in (6), resulting in

maximize

subject to (8)

And using the expected value defined in (1), problem (8)
becomes

maximize

subject to (9)

This problem is mixed-integer and linear (see the Appendix)
and its size is moderate [4]. It can be easily solved using a stan-
dard branch and cut solver such as CPLEX under GAMS [36].

The solution of problem (9) provides the best possible pro-
duction decision under price uncertainty: , .
Note that all information available on prices (probability density
functions) is used to reach the above optimal production deci-
sion. Note, also, that no additional information is available be-
fore the bidding procedure is carried out and the market cleared.
Therefore, no additional information alters the optimal produc-
tion decision.

The next step is to establish bidding rules to ensure that the
generator gets allocated its optimal self-scheduled production,
i.e., , . This is done in Section V.

IV. PROFIT

The profit achieved by the generator at hour , , is also a
random variable. Using basic statistics theory [35], if the actual
price is within the confidence interval, the average value of
is computed as

(10)

and its variance is estimated as

(11)

The profit achieved by the generator during the 24 hours of
the day, , is also a random variable. Its average value is easily
computed as [35]

(12)
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The variance of can be estimated as follows

... (13)

The diagonal elements of the covariance matrix
are the estimates of the variances of the random variables ,
i.e., , . The off-diagonal elements are the
covariances between each couple of random variables . That
is, element is the covariance of random variables
and . The computation of matrix is somehow involved but
it is precisely described in [37].

V. BIDDING STRATEGY

Using the results obtained in Section III, the proposed bid-
ding strategy is stated below. The generator should submit to
the market operator a bidding curve for each hour of the market
horizon. Each one of these hourly bidding curves consists of a
set of blocks of power and their corresponding increasing prices.
For example, a 42-MW unit in hour 21 may bid powers 10, 20
and 12 MW at prices 20, 25, and 30 $/MWh. It should be noted
that a convex bidding curve is required, i.e., prices have to be
associated with the power blocks bid.

The bidding rule formulated below to determine the hourly
bidding curve of the generator only requires up to two blocks
of power and their corresponding prices. If, as a result of the
market rules, each hourly bidding curve should have a number
of blocks larger than two, the rule below can be modified
straightforwardly.

In the rule below, recall that is the estimate of the stan-
dard deviation of the probability density function describing the
market-clearing price at hour . Additionally, it is assumed that
parameters and have been obtained for a level of confi-
dence of 99%.

The bidding curve for hour is formulated as a function of the
optimal self-scheduled production in that hour, . Three cases
are possible and are analyzed below.

Case 1) If , the bidding curve consists of a single
block of power at price . See Fig. 1(a).

It should be noted that this bidding curve guaran-
tees with a level of confidence of 99% that the power
accepted in this situation is 0, which is the optimal
self-scheduled power for this case.

Case 2) If is such that , the bidding curve
consists of two blocks of power and their corre-
sponding prices. These two blocks of powers are ,
and , and their prices are and

, respectively. See Fig. 1(b).
Note that this bidding curve guarantees with a

level of confidence of 99% that the power accepted
in this situation is , which is the optimal self-
scheduled power for this case.

Fig. 1. Bid curves for the proposed bidding strategy.

TABLE I
VARIABLE COST

Case 3) If , the bidding curve consists of a single
block of power at price . See Fig. 1(c).
It should be noted that this bidding curve guarantees
with a level of confidence of 99% that the power
accepted in this situation is , which is the optimal
self-scheduled power for this case.

If the required level of confidence has to be larger than 99%,
parameters and should be computed accordingly. However,
note that a low profile bidding behavior is convenient in many
markets, and this requires bidding prices not far away from the
actual market-clearing prices.

VI. CASE STUDY

This section provides a comparison in terms of profit and
power schedule obtained by a generator under price uncertainty
and under perfect knowledge of true energy prices.

Data for the considered power unit as well as price values are
given below. The characteristics of the unit are based on the data
of [38]. The shut-down cost is considered constant and equal to
$56 and the fixed cost is $700. The start-up cost is considered
constant and equal to $1038. Reference [4] provides a model to
consider the exponential variation of the start-up cost that can
be easily integrated in the framework provided in this paper.

A ten-block nonconvex variable cost is considered and given
in Table I. A nonconvex cost has been selected to illustrate the
capability of the proposed formulation to handle this type of
costs.
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TABLE II
FEASIBLE OPERATING REGION

TABLE III
ENERGY PRICE DATA ($/MWh)

Table II shows the limits that constrain the feasible operating
region, , of the generator: minimum power output, maximum
capacity, start-up ramp rate limit, shut-down ramp rate limit,
ramp-up rate limit, ramp-down rate limit, minimum up time, and
minimum down time.

Finally, in the hour before the market horizon the unit has
been running for 11 hours and producing 170 MW.

It is assumed that the power output of the thermal unit is con-
stant throughout each hour. However, a linear variation of the
power output during each hour can be modeled as stated in [39].
For clarity, this model is not considered in this paper.

Price data are provided in Table III. The second column cor-
responds to the actual prices obtained in the electricity market
of mainland Spain on Wednesday August 29th, 2001 [1]. The
third column shows the estimates of the energy prices using the
forecasting method proposed in [32] with a level of confidence
equal to 99%. Lower and upper bounds of the estimate of each
price, as well as an estimate of its standard deviation are also
shown in this table. Fig. 2 depicts the actual energy prices, the
forecast energy prices and their bounds.

Firstly, the self-scheduling problem is solved with the fore-
cast prices. The hourly power output can be found in Table IV.
For this production schedule, the profit that the generator would
have obtained can be computed using the true prices (settle-
ment procedure). In this case, the actual settlement profit, com-
puted using optimal self-scheduled powers and true prices is

Fig. 2. Price forecast versus actual prices.

U.S. $27 207.70. Note that the optimal self-scheduled powers
have been obtained with forecast prices.

In order to assess the actual loss in profit due to price uncer-
tainty, it is assumed that the generator is a perfect fortune-teller,
i.e., it has perfect knowledge of the true prices in advance. Note,
however, that this information is not available in the real world.
If the self-scheduling problem is solved with the true price pro-
file, the settlement profit is equal to U.S. $27 268.95, which
represents the maximum profit the generator can make. Note
that there is only a 0.22% difference between the maximum at-
tainable profit and the actual profit obtained with the forecast
schedule. This slight difference shows that both, the forecasting
technique and the bidding strategy, are efficient. Power output
in each hour is shown in Table IV for the two price profiles. As
it can be noted, both schedules meet the technical constraints
presented in Table II. Moreover, the production schedules ob-
tained with both price profiles are different (hours 14, 15, 17,
20, 23, and 24) implying that several blocks of energy are bid at
different prices in one case versus the other; however, the com-
mitment status is identical for both cases.

Finally, Table V presents the structure of the hourly bids that
the generator should submit to the market operator. For the sake
of simplicity, it is assumed that the generator bids one or two
blocks in every hour, as proposed in Section V. In hours of
scheduled power between 0 and maximum power output (hours
1, 11–13, 15, 16, 19–21, 23, and 24), the actual scheduled en-
ergy is bid at a price smaller than the true one (the lower bound
of the confidence interval) and the remaining power at a price
greater than the true one (the upper bound of the confidence in-
terval). In those hours of scheduled power equal to maximum
power output (hours 14, 17, 18, and 22) price bids are smaller
than the corresponding true prices. On the other hand, in those
hours where the scheduled power is equal to 0 (hours 2–10) the
corresponding price bid is greater than the true price. Note that
with the above bidding strategy the desired schedule does be-
come the actual one.

The model has been implemented on a SGI R12000, 400 MHz
based processor with 500 MB of RAM using CPLEX 7.5 under
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TABLE IV
SELF-SCHEDULE IN MW

TABLE V
BIDDING STRATEGY

GAMS [36]. The optimal solutions to both cases (with forecast
and with actual energy prices) were achieved in 2.0 seconds of
computing time.

VII. CONCLUSIONS

This paper provides a bidding rule that allows a price-taker
producer to achieve, under price uncertainty, its optimal
self-schedule. An appropriate probability description of hourly
market-clearing prices is provided. It is used to formulate and
solve an expected maximum profit self-scheduling problem.
The solution of this problem allows determining a simple yet in-
formed bidding rule to achieve the actual optimal self-schedule.

The analysis of multiple case studies allows concluding that
the rule developed is effective in achieving the optimal (and
feasible) schedule of the price-taker producer.

APPENDIX

The operating cost and the set of operating constraints, , are
presented in this Appendix.

The nonlinear and nonconvex operating cost, , can be for-
mulated as

(A1)

where is the shut-down cost [$/h], is a 0/1 variable which
is equal to 1 if the unit is shut-down at the beginning of hour ,

is the fixed cost [$/h], is a 0/1 variable which is equal
to 1 if the unit is on-line at hour , expresses the variable
production cost at hour [$/h], which is a nonlinear function
of the power output at that hour. Finally, is a 0/1 variable
which is equal to 1 if the unit is started-up at the beginning of
hour , and is the start-up cost [$/h].

A mixed-integer linear formulation of the nonconvex and
nondifferentiable variable production cost is provided in this
Appendix and can also be found in [4]

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

where is the piecewise linear variable cost at hour [$/h]
which replaces the nonlinear variable cost, , in (A1), is
the slope of block of the variable cost [$/MWh], NL is the
number of blocks of the variable cost, is the power pro-
duced in the block at hour [MW], is a 0/1 variable which
is equal to 1 if block determines the power at hour , and is
the upper limit of block [MW].

Finally, the following set of linear constraints formulates the
feasible operating region, , comprising power limits, ramp rate
limits and minimum up and down time constraints [4]

(A8)

(A9)

(A10)
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(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

where
;

In the above formulation, is the minimum power output
[MW], SD is the shut-down ramp rate limit [MW/h], RU is
the ramp-up rate limit [MW/h], SU is the start-up ramp rate
limit [MW/h], RD is the ramp-down rate limit [MW/h], is
the number of intervals the unit must be initially on-line due to
the minimum up time constraint [h], UT is the minimum up time
[h], is the number of intervals the unit must be initially off-line
due to the minimum down time constraint [h], DT is the min-
imum down time [h], is the number of periods the unit has
been off-line at the beginning of the market horizon (end of hour
0) [h], and is the number of periods the unit has been on-line
at the beginning of the market horizon (end of hour 0) [h].

Constraints (A8) and (A9) set the limits on the power
output. Ramp rate limits (ramp-up, start-up, ramp-down and
shut-down) are imposed by constraints (A10) and (A11). Con-
straints (A12)–(A14) and (A15)–(A17) enforce the minimum
up and down time constraints respectively. Constraints (A18)
and (A19) preserve the logic of the variables representing
running, start-up, and shut-down status changes [40]. Finally,
variables are stated as binary in constraints (A20).
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Multimarket Optimal Bidding for a Power Producer
Miguel A. Plazas, Antonio J. Conejo, Fellow, IEEE, and Francisco J. Prieto

Abstract—This paper considers a profit-maximizing thermal
producer that participates in a sequence of spot markets, namely,
day-ahead, automatic generation control (AGC), and balancing
markets. The producer behaves as a price-taker in both the
day-ahead market and the AGC market but as a potential
price-maker in the volatile balancing market. The paper provides
a stochastic programming methodology to determine the optimal
bidding strategies for the day-ahead market. Uncertainty sources
include prices for the day-ahead and AGC markets and balancing
market linear price variations with the production of the thermal
producer. Results from a realistic case study are reported and
analyzed. Conclusions are duly drawn.

Index Terms—Electricity spot markets, market power, optimal
bidding strategies, stochastic programming.

NOTATION

The notation used throughout the paper is reproduced below
for quick reference.

Sets:
Set of hours.
Set of generating units.
Set of scenarios.
Set of blocks of the revenue function in the balancing
market.

Numbers:
Number of blocks of the revenue function in the bal-
ancing market.
Number of scenarios for market , where D

(day-ahead), G (AGC), A (balancing) .
Total number of scenarios.

Constants:
Variable operating cost for unit (Euro/MWh).
Power output of unit at the beginning of period 1
(MW).
AGC capacity for unit (MW).
Capacity of unit (MW).
Minimum power output of unit (MW).
Ramp-down limit for unit (MW/h).
Ramp-up limit for unit (MW/h).
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Maximum energy to be traded in the balancing market
in hour (MWh).
Upper bound for random variable price (Euro/MWh).
Probability of scenario .

Random variables:
Intercept of the inverse demand curve corresponding to
hour in the balancing market.
Slope of the inverse demand curve corresponding to
hour in the balancing market.
Price in hour and market , where D (day-

ahead), G (AGC) .
It should be noted that a subscript affecting any of the above

variables indicates actual uncertainty realization .
Real variables:

Power of unit in market , hour ,
and scenario (MW).
Energy produced by unit in market and scenario
during hour (MWh).
Total energy production (of the generating company)
in hour , scenario , and market
(MWh).
Block of the total energy production of the gener-
ating company in the balancing market in hour and
scenario (MWh).

Binary variables:
It is equal to 1 if unit is engaged in AGC in hour
and scenario and 0 otherwise.

Functions:
Revenues for hour and scenario in the balancing
market (Euro).
Expected value over .
Recourse function associate to stage
and scenario .
Function that provides the price ranking (increasing
value) for all the considered scenarios.

I. INTRODUCTION

WE consider a power producer that owns several gen-
erating units and participates in a pool-based market

framework that includes three independent and successive mar-
kets: the day-ahead market, the automatic generation control
(AGC) market, and the balancing market. We consider that
the producer has no market power capability in the day-ahead
and AGC markets, but it can influence price in the volatile
balancing market. Not modeling market power in this market
is unrealistic and leads to unreasonable results. The objective
of the producer is to maximize its expected profits from selling
energy in the day-ahead and balancing markets and AGC in the
AGC market.

0885-8950/$20.00 © 2005 IEEE
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Fig. 1. Time sequence for market clearing.

For instance, in the electricity market of mainland Spain,
AGC total revenues are typically 3% of the energy revenues,
but prices range from 16 to 100 Euro/MW (2003) and there
exist opportunities for profit spikes. The volume traded in the
day-ahead market of mainland Spain in 2004 was Euro 5800
million and the volume negotiated in the AGC market was Euro
128 million. This amount represents only 2.2% of the energy
traded in the day-ahead market but note that AGC is provided
at almost no cost to the generating company.

The day-ahead market is cleared through an auction mecha-
nism. That is, producers submit selling bids including energy
production blocks and their corresponding minimum selling
prices, while consumers submit buying bids consisting in
energy consumption blocks and their corresponding maximum
buying prices. In turn, the market operator clears the market
using a suitable market-clearing procedure [1], [2].

The AGC and balancing markets are cleared using analo-
gous auction procedures. For any of these three markets, market
clearing provides hourly prices and accepted production and
consumption bids.

The time framework for market clearing is as follows. The
day-ahead market concerning the whole day d is cleared around
10 am of day . Analogously, the AGC market concerning
the whole day d is cleared around 4 pm of day . The
balancing market concerning the whole day d is cleared around
6 pm of day . For these three markets, bids are sent to
the market operator just before the closing (clearing) hour, and
market-clearing results are known just after that closing hour.
This time framework is illustrated in Fig. 1. It should be noted
that additional balancing markets can be considered; however,
they are generally less relevant than the first balancing market,
and this is why they are not considered in this paper. The
electricity market of mainland Spain motivates this modeling
framework.

This paper provides a methodology that allows a producer to
develop appropriate bidding strategies for the day-ahead market,
thereby selling its production in the best possible manner. This
methodology is based on stochastic programming [3].

It should be noted that the methodology developed can be
straightforwardly applied to derive also bidding strategies for
the AGC and balancing markets by moving the time window and
repeating the procedure. That is, once the day-ahead market re-
sults are available, a two-stage stochastic programming problem
can be solved to derive bidding stacks for the AGC market.

TABLE I
STOCHASTIC PROCESSES FOR PRICES AND PRICE FUNCTIONS

Also, once the results for the AGC market are also available,
a one-stage stochastic programming problem can be solved to
derive bidding stacks for the balancing market.

Uncertainty sources include prices for the day-ahead and
AGC markets and linear functions describing the way the
market price in the balancing market changes with the total
production of the producer. We characterize those uncertainties
using stochastic models based on historical information.

We consider that self-scheduling is carried out on a weekly
basis and therefore the on/off status of the units is known a priori
at the time of constructing bidding stacks. Therefore, no start-up
and shut-down decisions are considered in this paper.

Relevant references on stochastic programming and electric
power are [4]–[8]. Within an electricity market framework, [9]
models in detail the day-ahead market but not other markets,
and [10] focuses on hydrodominated systems.

Background material on electricity markets can be found in
[11]–[15], while background material for stochastic program-
ming is covered in [3], [16], and [17].

This paper is organized as follows. Section II describes the
stochastic programming optimization framework that allows
deriving optimal bidding strategies for the day-ahead market.
In Section III, the stochastic processes involving day-ahead
market prices and AGC market prices are characterized. Addi-
tionally, the two processes that characterize linearly the price
variation with production in the balancing market are charac-
terized. Section IV is a detailed case study where results are
reported and analyzed. Some relevant conclusions are drawn
in Section V. Section A of the Appendix provides useful defi-
nitions, while Section B provides a description of the scenario
reduction algorithm used in this paper.

II. DECISION FRAMEWORK

This section describes in detail the proposed methodology to
derive bidding stacks for the day-ahead market.

A. Scenario Tree

Prices in the day-ahead market, prices in the AGC market, and
price slopes and intercepts in the balancing market are charac-
terized using seasonal ARIMA models. These ARIMA models
are provided in Table I. Once those stochastic models have been
identified, and their parameters properly fitted using time se-
ries data, they can be used to generate price scenarios using a
tree format (see Fig. 2). The tree constitutes a discrete and finite
approximation of the probability distribution of the stochastic
process. The probability associated to a given scenario is the
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Fig. 2. Scenario tree.

product of the probabilities of occurrence of the prices that con-
stitute the scenario. Note also that those stochastic models cap-
ture the dependency of prices across hours.

Therefore, the uncertainty framework is modeled through a
symmetric scenario tree [8]. That is, different realizations of
prices for the day-ahead market are considered. Then, for each
realization of day-ahead market prices, different realizations of
the AGC market prices are simulated. Finally, for each realiza-
tion of the AGC market, different realizations of the two param-
eters describing the price-production variation of the balancing
market are considered.

The number of scenarios for the day ahead market is
(typically 100) and for the AGC and balancing markets,
(typically 100) and (typically 100), respectively. The total
number of scenarios is therefore (typically

). The scenario tree considered is shown in Fig. 2.

The scenario tree represented in Fig. 2 can be interpreted as a
multistage stochastic process , whose prob-
ability distribution is approximated through a finite number of
scenarios , with probability

, . A scenario reduction technique intended to
reduce drastically the number of scenarios while maintaining
the statistic properties of the considered stochastic process is
carried out [18]. Through this reduction, a subset of scenarios

denoted by is selected,
such that their corresponding probability distribution is the
closest to the original distribution in terms of a certain proba-
bility distance between and .

The technique used to reduce the number of scenarios deter-
mines a scenario subset of prescribed cardinality and assigns

new probabilities to the preserved scenarios, such that their cor-
responding probability distribution is the closest to the original
distribution in terms of the following probability distance

(1)

where and represents a norm in . Note
that the method proposed in this paper uses the scenario-based
approximation, which means discrete probability distributions,
and considers scenario probabilities as elements of a linear
space. Section B of the Appendix provides a heuristic algorithm
that approaches the optimal selection of the subset and
assigns new probabilities to the preserved scenarios. Further
details can be found in [18]–[20].

For the problem considered in this paper, the scenario reduc-
tion technique is first applied to each stage, resulting in ,

, and scenarios, respectively, and then to the resulting
tree comprising scenarios. This second reduc-
tion results in a small number (around 25) of scenarios. For com-
puting expression (1), the quadratic norm 2 is used.

B. Optimization Framework

The mathematical programming models to be solved to de-
termine the optimal bidding strategies for the power producer
in the different spot markets are stated below.

The day-ahead bidding strategy is determined through the fol-
lowing stochastic programming model:

Maximize

(2)

subject to

(3)

(4)

(5)

(6)

The objective function (2) includes revenues obtained from
the day-ahead market plus expected revenues from AGC and
balancing markets. These expected revenues are computed
through the problem (7)–(12) below. The expectation operator
is taken over AGC and balancing random variables.

Equation (3) defines energies as average values of powers
for every scenario. Equation (4) determines total hourly produc-
tions for each scenario. Equation (5) is explained below. Equa-
tion (6) is an nonanticipativity constraints.

The purpose of the technique proposed in this paper is not
to compute the optimal quantities (in a stochastic programming
sense) to be sold in the day-ahead market (e.g., 40 MWh in hour
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1, 25 MWh in hour 2, etc.) but rather to derive optimal bid-
ding curves for every hour of the day-ahead market (see Figs. 6
and 7 in Section IV). Therefore, to obtain such curves, variables

are made dependent on scenarios [9] and (5)
are introduced to ensure higher productions at higher prices.
These conditions make bidding curves nondecreasing, which is
a bidding requirement in most markets. In order to obtain the
optimal quantity to be sold in the day-ahead market in a stan-
dard stochastic programming framework, (6) should be replaced
by the nonanticipativity constraint . It
should be noted that this last constraint is more restrictive than
constraint (6) because it enforces nonanticipativity for all mar-
kets, while (6) only enforces nonanticipativity for the AGC and
balancing markets.

The AGC market strategy is determined through the problem
below.

Maximize

(7)

subject to

(8)

(9)

(10)

(11)

(12)

The objective function (7) includes revenues obtained from
the AGC market plus expected revenues from the balancing
market. These expected revenues are computed through the
problem (13)–(22) below. The expectation operator is taken
over the random variables of the balancing market.

Equation (8) expresses energy values as the average of the
powers at the beginning and the end of any considered hour
and scenario. Equation (9) limits the amount of power devoted
to AGC during any hour and scenario by any generating unit.
Equation (10) expresses the total energy associated to AGC ac-
tivity for every hour and scenario. Equation (11) is an nonantic-
ipativity constraint. Equation (12) declares binary variables that
define which units are in AGC operation.

Note that using a binary variable per unit is necessary to dif-
ferentiate whether the unit is contributing to AGC or ramping.
These binary variables complicate the solution of the problem,
but they are needed to reflect the actual functioning of gener-
ating units. It should be noted that a machine providing AGC
cannot ramp up or down as its control is transferred to the ISO.
This is common practice in the electricity market of mainland
Spain, as stated in the corresponding operating policy enforced
by the ISO and reported in [21]. Moreover, the gaps between
the power output of a machine providing AGC and its upper

and lower bounds, respectively, must allow both up and down
control.

Similarly to the day-ahead market, it should be noted that
variables are made dependent on scenarios,
which is not the case in a standard stochastic programming
framework. This is consistent with using a two-stage model
(AGC and balancing markets) similar to the one presented
in this paper to generate AGC bidding curves. Equation (11)
enforces nonanticipativity only with respect to the balancing
market. In a conventional stochastic programming approach,
nonanticipativity constraints would enforce nonanticipativity
with respect to both the AGC and balancing markets.

The balancing market strategy is determined through the
problem below.

Maximize

(13)

subject to

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

The objective function (13) is the revenue obtained from the
balancing market.

Equation (14)–(17) sets the maximum (capacity) and min-
imum power output of any generating unit at any hour and
scenario, including AGC activity (if any). Equation (18)–(19)
enforces, respectively, up and down ramping limits for gener-
ating units not engaged in AGC for every scenario. Equation
(20) expresses energy values as an average of the powers at
the beginning and the end of any considered hour for every
scenario. Equation (21) expresses the total energy associated
to the balancing market in every hour and scenario. Equation
(22) expresses the balancing market revenue for each hour
and scenario as a quadratic concave function. This function is
linearized below.

It should be noted that variables are made
dependent on scenarios to achieve bidding curves, which is not
the case in a standard stochastic programming framework. No
nonanticipativity constraint is required in this last stage.
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Note also that the variables can be eliminated from the
models above using (3), (8), and (20), thus reducing the number
of variables required in the formulation.

C. Equivalent Formulation as a Mathematical
Program With Recourse

The above stochastic programming problem is equivalent to
the deterministic one stated below (mathematical program with
recourse). This version is readily solvable using an appropriate
mixed-integer linear programming solver.

maximize

(23)

Conditions that ensure a monotonously increasing bidding
stack for the day-ahead market are

(24)
Nonanticipativity constraints for the day-ahead market are

(25)

Nonanticipativity constraints for the AGC market are

(26)

Energy balance in the spot (day-ahead, AGC, and balancing)
markets are

(27)

(28)

Generating unit functioning constraints are

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Fig. 3. Illustration of the linearization provided by (37)–(40).

The piece-wise linear (concave) representation of revenues
in the balancing market is achieved through the following
constraints:

(37)

(38)

(39)

(40)

It should be noted that (37)–(40) constitute a straightforward
linearization of (22). Fig. 3 illustrates the piece-wise concave
linearization carried out through (37)–(40).

It should also be noted that we have experienced better nu-
merical performance using a linear model than a quadratic one.

D. Solution Procedure

The problem formulated in the previous section is mixed-in-
teger and linear and can be solved using an appropriate mixed-
integer linear programming solver, such as CPLEX [22]. This
procedure is used in the case study below.

III. CHARACTERIZATION OF THE STOCHASTIC PROCESSES

Market-clearing prices for the day-ahead and the AGC
markets, respectively, are characterized through stochastic
processes. Only weekdays are considered. The treatment for
weekends is similar and is not reported below.

Analogously, the intercept and slope that describe the partici-
pation of the power producer in the balancing market are charac-
terized using stochastic processes. To enhance numerical perfor-
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TABLE II
CHARACTERISTICS OF THE THERMAL UNITS

mance, instead of characterizing the hourly intercept, the differ-
ence between this intercept and the day-ahead market clearing
price is characterized.

It should be noted that the above stochastic processes should
generate an adequate number of scenarios, which properly
covers the spectrum of possible prices.

All stochastic processes are modeled using seasonal ARIMA
models [23]–[25]. The fitted ARIMA models for the week con-
sidered in the case study are provided in Table I. Model fitting
is ensured using the autocorrelation and partial autocorrelation
functions of the error.

Historical data comprising 30 working days are used to fit the
models in Table I.

IV. CASE STUDY

Results from a case study based on the electricity market of
mainland Spain [26] are reported in this section. The consid-
ered market framework includes the day-ahead market, the AGC
market, and the first balancing market [26]. The week under
study is June 7–11, 2004 (just working days) in the electricity
market of mainland Spain.

It should be noted that in the electricity market of mainland
Spain, no virtual bidding is allowed. Settled transactions consti-
tute firm obligations.

The considered producer includes six thermal units whose
characteristics are provided in Table II.

Table II includes fixed costs . In order to compute daily
profit, the constant should be subtracted from the
revenue of the producer.

The numbers of scenarios for the day-ahead, AGC, and bal-
ancing markets are, respectively, 100, 100, and 100. The total
number of scenarios is therefore . The scenario reduction
technique is first applied to each stage, resulting in 25, 10, and
10 scenarios, respectively, and then to the resulting tree com-
prising 2500 scenarios. This second reduction results in just 25
scenarios. Fig. 4 provides a measure of the relative distance be-
tween the tree comprising 2500 scenarios and trees containing
a reduced number of scenarios for the case of June 7, 2004. The
relative distance is defined as the distance measured between the
reduced tree and the original tree, divided by the distance mea-
sured between a reduced tree that considers just one scenario
and the original tree. For this case study, a tree with 25 sce-
narios provides a reasonable approximation as can be deduced
from Fig. 5, which shows how the optimal objective function
value changes as the number of scenarios increases.

Fig. 4. Relative distance of the original tree to reduced scenario trees.

Fig. 5. Objective function value as a function of the number of scenarios
considered.

TABLE III
SOLUTION TIME AND QUALITY

We have also analyzed in detail the best use of Benders de-
composition to address the problem of interest, but our imple-
mentations have only produced frustrating results due to the size
of the master problem. We decided not to try Lagrangian tech-
niques because of their lack of robustness associated with their
required tune-up of parameters.

The number of constraints, real variables, and binary vari-
ables in the resulting problem are, respectively, 44 833, 22 201,
and 3600. It has been solved using CPLEX under GAMS [22].
The computational characteristics of the solution attained are il-
lustrated in Table III. The CPU time needed to attain the solution
using a Dell PowerEdge 6600 with two processors at 1.60 GHz
and 2 Gb of RAM memory is 100 s.

The optimal profit values attained (for the three markets)
using alternative approaches are reported in Table IV.

To obtain a measure of quality for the results attained if
the technique proposed would have been applied to the actual
electricity market situation of mainland Spain on June 7, 2004,
and to compare these results with those obtained using other
methods, the solutions below are considered.

Stochastic solution: Once day-ahead market bidding curves
are obtained using the proposed model, energies for the day-
ahead market are fixed considering actual price values (June 7,
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TABLE IV
PROFIT (EURO THOUSAND)

2004) for that market. Then, the proposed model is run consid-
ering the fixed energy values for the day-ahead market and only
one scenario for the AGC and balancing markets comprising the
actual price values (June 7, 2004). The result obtained consti-
tutes a measure of the maximum benefit that the company can
achieve in all markets if bidding is carried out according with
the proposed model.

Deterministic solution: Using the expected values of all sto-
chastic variables, the resulting deterministic model is run and
optimal values for energy in the day-ahead market are deter-
mined. Then, energy for the day-ahead market is fixed consid-
ering the solution provided by the deterministic model and the
proposed (stochastic) model is executed considering only one
scenario comprising the actual price values (June 7, 2004) for
the AGC and balancing markets. The result obtained consti-
tutes a measure of the maximum benefit that the company can
achieve in all markets if bidding is carried out using a determin-
istic model.

Classic solution: Using the expected values of the stochastic
variables, a one-stage deterministic model comprising the day-
ahead market is run and optimal values for energy in the day-
ahead market are determined. Then, energy for the day-ahead
market is fixed considering the solution provided by the classic
model and the proposed (stochastic) model is executed consid-
ering only one scenario comprising the actual price values (June
7, 2004) for the AGC and balancing markets. The result obtained
constitutes a measure of the maximum benefit that the com-
pany can achieve in all markets if bidding is carried out using a
one-stage deterministic model.

Note that the difference between the deterministic and classic
models is that the first model considers three stages to provide a
solution for the day-ahead market while the second model only
considers the day-ahead (one-stage) market.

Observe the profit advantage obtained by using a stochastic
approach. The above comparison provides an appropriate mea-
sure of how the stochastic model used reflects the real world.

Several stochastic programming indicators are reported in
Table V (as formulated in [3]). Once an optimal deterministic
solution is obtained for the deterministic problem resulting from
substituting all random variables for their corresponding ex-
pected values (EV solution), the expected result of using the
EV solution (EEV indicator) is computed as the average value
over scenarios of the objective function values corresponding
to the optimal deterministic solution of the day-ahead market
and all scenarios. Indicator RP is computed as the average value
over scenarios of the objective function values corresponding to
the optimal stochastic solution of the day-ahead market and all
scenarios. Indicator VSS is computed as RP minus EEV. Note
that VSS is a measure of the advantage obtained if a stochastic
model is used rather than a naïve deterministic one. This indi-
cator shows that the solution obtained is of a high quality from

TABLE V
STOCHASTIC PROGRAMMING INDICATORS (EURO THOUSAND)

Fig. 6. Bidding stack at period 10 (9 A.M. to 10 A.M.) for the day-ahead market.

Fig. 7. Bidding stack at period 5 (4 A.M. to 5 A.M.) for the day-ahead market.

a stochastic programming viewpoint, and its value shows that it
would be possible to attain additional savings of Euro 4000 by
taking into account a stochastic solution to the problem.

Fig. 5 shows how the objective function optimal value [(23)]
changes as the number or scenarios increases. Note that this
value coincides with indicator RP. Observe that a robust solu-
tion is attained for 25 or more scenarios and that the scenario
reduction illustrated in Fig. 4 is appropriate. It should be noted
that a critical issue when using a stochastic programming ap-
proach based on scenarios is the actual number of scenarios to
consider. A low number of scenarios might result in inaccura-
cies while a large number implies high computational burden.
An appropriate manner to resolve this tradeoff is to increase the
number of scenarios until the objective function value stabilizes.
This is the criterion used in this case study.

Figs. 6 and 7 provide the optimal bidding stacks for the day-
ahead market at period 10 (from 9 am to 10 am) and 5 (4 am
to 5 am), respectively. Bidding stacks for other hours are sim-
ilar. It should be noted that for a market requiring step-wise bid-
ding stacks (the case of the market in mainland Spain) the linear
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TABLE VI
CHARACTERISTICS OF THE SOLUTION. JUNE 7–11, 2004

(FIGURES IN EURO THOUSAND)

blocks of the stacks in Figs. 6 and 7 should be approximated by
step-wise functions.

For instance, the solution obtained for period 5 (see Fig. 7) re-
sults in 85 MWh bought in the balancing market (average value
for the solution obtained over the considered 25 scenarios). This
value becomes 356 MWh if the same model is run without con-
sidering market power in the balancing market. Using the ac-
tual price quantity function for period 5, the actual payment is
Euro 7798, while not considering market power would result in
a payment of Euro 6657. Note the significant differences in en-
ergy traded and payments.

Only bidding stacks for the day-ahead market are reported in
the paper, as the paper concentrates on the decisions pertaining
to that market. Note that in multistage sequential markets, deci-
sions in subsequent markets are made once the actual values of
the previous-stage stochastic variables are known.

The solution obtained using the deterministic model for
period 5 results in the three cheapest units plus one oil
unit working close to their respective upper limits (Coal_1,
CCGT_1, CCGT_2, and Oil_1). This solution implies buying
back energy in the balancing market since the expected price
for this market is comparatively low. However, the actual prices
for period 5 in both the day-ahead and balancing markets are
lower than the variable cost of most of the units, but buying
back in the balancing market the whole surplus of energy is
unprofitable due to the influence that this energy would have
on the resulting price in the balancing market. On the other
hand, considering the bidding curves provided by the stochastic
model, the energy sold for the actual day-ahead price in period
5 of 20.4 Euro/MWh is smaller than the energy sold using
the deterministic model. Consequently, one concludes that the
stochastic solution is a better solution in this particular case.

The whole procedure is repeated for June 7–June 11, 2004
(Monday to Friday). Results (for the three markets) are reported
in Table VI, where the advantage of using a multistage stochastic
programming approach as the one presented in this paper should
be readily apparent. For the working days of the week under
study, 0.91% profit advantage (Euro 11.8 thousand) is obtained
with respect to the deterministic approach and 0.54% (Euro
7.0 thousand) with respect to the classic one. Indicators EEV,
RP, and VSS clearly show the advantage of using a multistage
stochastic programming approach. Indicator VSS is Euro 18.4
thousand, a significant amount of money.

It can be concluded from Table VI that a stochastic approach
clearly outperforms the deterministic and classic ones. Only on
June 9 and 10, when forecast price values are close to actual

Fig. 8. True and forecast prices and price scenario envelope. June 7–11, 2004.

prices (periods 49 to 96 in Fig. 8), is a deterministic approach
more advantageous.

V. CONCLUSIONS

This paper provides a procedure to derive optimal bidding
stacks for a power producer that participates in the spot elec-
tricity markets, including day-ahead, AGC, and balancing. The
objective of the producer is to maximize the expected profit from
its involvement in the spot markets. The proposed procedure tar-
gets a producer with no market power in the day-ahead and AGC
markets but with the capability of influencing market-clearing
prices in the volatile balancing market. The proposed technique
is built within the versatile decision framework provided by the
stochastic programming methodology. A robust yet efficient so-
lution technique is used. A real-world case study based on the
electricity market of mainland Spain is used to illustrate the ap-
propriate functioning of the procedure developed.

APPENDIX

This Appendix provides definitions for acronyms and some
specific stochastic programming expressions and a mathemat-
ical description of the scenario reduction algorithm used [18].

A. Acronyms and Other Definitions

1) ARIMA: Stochastic model to characterize price behavior.
2) RP: Indicator RP is computed as the average value over

scenarios of the objective function values corresponding
to the optimal stochastic solution of the day-ahead market
and all scenarios.

3) EEV: Indicator EEV is computed as the average value
over scenarios of the objective function values corre-
sponding to the optimal deterministic solution of the
day-ahead market and all scenarios.

4) VSS: Indicator VSS is computed as RP minus EEV.
5) Nonanticipativity: Nonanticipativity conditions enforce

that decisions depend only on temporal information up to
the time at which decisions are made.

6) Relative distance: The distance measured between the re-
duced tree and the original tree, divided by the distance
measured between a reduced tree that considers just one
scenario and the original tree.
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B. Scenario Reduction Algorithm

The optimal choice of an index set for scenario reduc-
tion problem with fixed cardinality is given by the solu-
tion of the problem

Minimize

Since this problem is difficult to solve, a heuristic algo-
rithm that approaches the optimal selection of the subset
and assigns new probabilities to the preserved scenarios has
been developed in [19]. This algorithm is reproduced below
for the reader’s convenience. Further details can be found in
[18]–[20]. Note that the expression denotes the
value computed by the algorithm at step .

The algorithm proceeds as follows.

Step 1)
Compute

and

Set

and

Step )
Compute

and

Set

and

Step )
Compute

and

Set

and

The subset constitutes
an approximation to the optimal selection
of the set for a scenario reduction
problem with fixed cardinality .
Step )
For every scenario , compute

closestto

Set the resulting probability of the sce-
narios included in as
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