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Overview

o. Lévy processes and LDPs

I. Motivation: Crámer’s and Schilder’s theorems

II. Fine density estimates for a CPP with Weibull increments α > 1

III. A negative LDP result for rescaled Weibull CPP on short time scales

IV. A LDP for the bridges of the a class of rescaled Lévy processes on short time scales



o. What is a Lévy process?



From Random walks to Brownian Motion

Binomial distributions: For X1, . . . ,Xn an i.i.d. random variables with Xi ∼ 1
2δ0 +

1
2δ1

we know that
n∑

i=1

Xi ∼ Bn,12
, Bn,12

({k}) =
(
n

k

)(1
2

)k(1
2

)n−k

Replacing
1

2
δ0 +

1

2
δ1 by

1

2
δ−1 +

1

2
δ1

we obtain that
1√
n

n∑
i=1

Xi

has a centered Binomial distribution with values{
−
√
n =

n√
n
, −n− 1√

n
, . . . , − 1√

n
, 0,

1√
n
, . . . − n− 1√

n
,
√
n
}





Central limit theorem (de Moivre/Laplace):
For an i.i.d. sequence (Xi)i∈N with Xi ∼ 1

2δ−1 +
1
2δ1 and

Sn :=
1√
n

n∑
i=1

Xi

we have

lim
n→∞

P(Sn ∈ [a,b]) =
1√
2π

∫ b

a

e−
1
2x

2
dx = N0,1([a,b])



Donsker’s theorem: Central limit theorem for random walks
Define a sequence of continuous time random walks Bn : [0,∞) → R

Bn(t) :=
1√
n

⌊nt⌋∑
i=1

Xi +
(nt− ⌊nt⌋)√

n
X⌊nt⌋+1

Then for any Borel set of paths C ⊂ C0([0,∞),R) we have the limit

lim
n→∞

P(Bn ∈ C) = W(C),

defining a measure on W on C0([0,∞),R), the Wiener measure.



Donsker’s theorem: Central limit theorem for random walks
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Brownian Motion

A Brownian Motion (B(t))t⩾0 is a random vector in C0([0,∞),Rd) which obeys the
Wiener measure Wd.

Or:

A Brownian Motion (B(t))t⩾0 is a stochastic process with values in in Rd

• B(0) = 0

• independent increments

B(tn)−B(tn−1), . . . , B(t2)−B(t1),B(t1)

• stationary increments

B(t)−B(s) ∼ B(t− s) ∼ N(0, (t− s)Id) = N(0, Id)
∗(t−s)

• Continuous paths t 7→ B(t)



Poisson Process

A Poisson Process (P(t))t⩾0 is given by i.i.d. memoryless waiting times (τn)n∈N,
and

P(t) = max{n ∈ N | τ1 + · · · + τn ⩽ t}

• Memorylessness of τ1: P(τ1 > t + h | τ1 > t) = P(τ1 > h)

that is τ1 ∼ Eλ for an “intensity” λ > 0, P(τ1 > t) = e−λt.



Properties:

1. P(0) = 0

2. P(tn)−P(tn−1), . . . , P(t2)−P(t1),P(t1)

independent increments

3. P(t)−P(s) ∼ P(t− s) ∼ Pλ(t−s) = Pλ
∗(t−s) stationary increments



Extension:

• Compound Poisson process (C(t))t≥0 in Rd.

C(t) :=

P(t)∑
i=1

Wi

– Poisson process P = (P(t))t⩾0 with intensity λ > 0

– Sequence of i.i.d. random increment vectors W = (Wi)i∈N in Rd

– P ⊥ W



Compound Poisson Marginals C(t) in general not in closed form!

Characteristic function:

u 7→ E
[
ei⟨u,C(t)⟩

]
= exp

(
t

∫
Rd

(
ei⟨u,y⟩ − 1

)
ν(dy)

)
.

where
ν = λµ, for W1 ∼ µ and Poisson intensity λ > 0.



Properties:

1. C(0) = 0

2. C(tn)−C(tn−1), . . . , C(t2)−C(t1),C(t1)

independent increments

3. C(t)−C(s) ∼ C(t− s) ∼ L(C(1))∗(t−s) stationary increments



Lévy process (L(t))t⩾0 in Rd

1. L(0) = 0.

2. t 7→ Xt is almost surely right continuous with left limits (càdlàg)

3. L(tn)− L(tn−1), . . . , L(t2)− L(t1),L(t1)

independent increments

4. L(t)− L(s) ∼ L(t− s) ∼ L(L(1))∗(t−s) stationary increments



Lévy-Chinchine representation of the law

Theorem:

Every Lévy process (L(t))t⩾0 has a unique characteristic triplet (a,A, ν)

• vector a ∈ Rd,

• covariance matrix A ∈ Rd×d

• “Lévy measure” ν : B(Rd) → [0,∞] measure

ν({|y| ⩾ 1}) +
∫
|y|<1

|y|2ν(dy) < ∞, ν({0}) = 0,

which determines the characteristic function (and hence the law)

E
[
ei⟨u,L(t)⟩

]
= E

[
ei⟨u,L(1)⟩

]t
= exp (tΨ(u)) , u ∈ Rd

Ψ(u) = i⟨a,u⟩−1

2
⟨u,Au⟩

+

∫
|y|⩾1

(
ei⟨u,y⟩ − 1

)
ν(dy) +

∫
|y|<1

(
ei⟨u,y⟩ − 1− i⟨u,y⟩

)
ν(dy).



Lévy-Itô representation of the paths

Theorem:

For any Lévy process (L(t))t⩾0 with characteristic triplet (a,A, ν)

L(t) = at +A1/2B(t) + J∞(t) + J0(t) a.s. for all t ⩾ 0,

where

• B is a standard Brownian motion in Rd

• J∞ is a compound Poisson Process in Rd

– with intensity λ = ν(Bc
1(0))

– and jump measure

µ =
ν(Bc

1(0) ∩ ·)
λ

• J0 is a pure jump process

– of possibly infinite intensity
– with jumps bounded by 1.



A pure jump Lévy process in Rd is
a Lévy process (L(t))t⩾0 in Rd with

L(t) = J∞(t) + J0(t),

with Lévy measure ν

ν({|y| ⩾ 1}) +
∫
|y|<1

|y|2ν(dy) < ∞, ν({0}) = 0,



Comparison: Brownian motion vs. pure jump Lévy process

Brownian motion
Representation Gaussian densities, very wellknown
Paths continuous, but rough “local variation”
Moments all moments including exponential ones



a pure-jump Lévy process with Gaussian increments
Representation no densities in closed form,

characteristic function with the Lévy measure
instead distribution of jumps via Lévy measure

Paths discontinuous, jumps occur
(only right continuous with left limits)

Moments exponential moments



Definition:

(i) A function S : (0,∞) → (0,∞) is called a speed function, if limε→0+ S(ε) = 0 and
there exists a continuous invertible function So : (0,∞) → (0,∞), such that

lim
ε→0+

So(ε)

S(ε)
= 1

(ii) Let (X, T ) be a topological space equipped with its Borel-σ-algebra B, and (Xε)ε>0 be
a family of random elements with values in X. Law(Xε)ε>0 is said to satisfy a large
deviations principle (LDP) on (X, T ) with respect to a speed function S and a
good rate function I, if for every open subset A ⊂ X

lim inf
ε→0

S(ε) lnP(Xε ∈ A) ≥ − inf
x∈A

I(x)

is valid and for every closed subset A ⊂ X

lim sup
ε→0

S(ε) lnP(Xε ∈ A) ≤ − inf
x∈A

I(x).



I. The question: LDPs for rescaled Lévy processes

The setup:

Centered Lévy process (Lt)t⩾0
with exponential moments

Eeλ|L1| < ∞

scaling ε → rε > 0 such that limε→0 rε ∈ [0,∞] exists

Xε = (Xε
t)t∈[0,T], Xε

t := εLt·rε



Motivation: Cramér’s theorem

L centered Lévy process with E[eλ|L1|] < ∞ and rε = ε−1

Xε
t := εLt·ε−1

rewritten as a telescopic sum is a random walk

Xε
t = ε

ε−1∑
i=1

(Lit − L(i−1)t)︸ ︷︷ ︸
i.i.d.

Cramér’s theorem yields a LDP in Rd, where the rate function is given
as

I(E) = inf
z∈E

I(z), I(z) = Λ∗(z) Λ(λ) = Eei⟨λ,X1⟩

where Λ∗ is the Fenchel-Legendre transform of the Log-Laplace Λ of L1.

−→ LDP for the marginals Lt for and t in Rd ✓
−→ LDP functional limit theorems in D[0,T],Rd ✓



Schilder’s theorem:

B = (Bt)t∈[0,T] a Brownian motion, rε ≡ 1 and Xε
t = εBt.

Then Pε = Law(Xε) satisfies a LDP with good rate function

I(w) =


1
2

T∫
0
|ẇ(s)|2ds if w ∈ H1

0(0,T)

∞ else
, w ∈ C0([0,T],Rn)

−→ LDP on path space rε = 1 ≪ ε−1



Schilder’s theorem:

B = (Bt)t∈[0,T] a Brownian motion, rε ≡ 1 and Xε
t = εBt.

Then Pε = Law(Xε) satisfies a LDP with good rate function

I(w) =


1
2

T∫
0
|ẇ(s)|2ds if w ∈ H1

0(0,T)

∞ else
, w ∈ C0([0,T],Rn)

−→ LDP on path space rε = 1 ≪ ε−1

Q: Is there an similar LDP for certain Lévy processes?
−→ What about a CPP with Gaussian increments?



Centered Lévy process (Lt)t⩾0
with exponential moments

Eeλ|L1| < ∞

scaling ε → rε > 0 with rε ≪ ε−1

Xε = (Xε
t)t∈[0,T], Xε

t := εLt·rε

Main question:

Is there a LDP for Pε = Law(Xε) on path space (D,B(D))?



II. Fine density estimates for CPP with Weibull increments α > 1

L a centered compound Poisson process with jump measure ν

ν(dz)

dz
= exp(−f(|z|))

where f : (0,∞) → R is a smoothly regularly varying function of index α > 1

Example:
f(r) = rα, α > 1.

For α = 2 think of
ν(dz)

dz
∝ exp(−1

2
|z|2)

a CPP with Gaussian jumps.



It is known that f(Λ) = Λαℓ(Λ) (see Bingham, Goldie, Teugels).
Think of f(Λ) = Λα. Then

lim
Λ→∞

d

dΛ
ln(f(exp(Λ)) = lim

Λ→∞

α(exp(Λ)α−1)

(exp(Λ))α
exp(Λ) = α





Theorem: Asymptotic exponential density estimates

Let L given a CPP under the given hypotheses.
Set µt, t > 0, the density of the marginal law Lt.

Then for any δ > 0 and ρ < γ < 1 ∃ k > 0 s.t. for all |x| > k and t ∈ [|x|ρ, |x|γ]:

−|x|
(
f ′(g(

|x|
t
))− (1− δ)g(

|x|
t
)−1

)
≤ lnµt(x)≤ −|x|

(
f ′(g(

|x|
t
))− (1 + δ)g(

|x|
t
)−1

)
where g : [Λ0,∞) → R is the unique solution of the nonlinear functional equation

g(Λ)f ′(g(Λ))− f(g(Λ)) + lng(Λ)− n

2
ln f ′′(g(Λ)) = ln((2π)−

n
2(α− 1)−

n−1
2 Λ)



Example: ν(dz)
dz = cα exp(−|z|α)

For all n ∈ N, α > 1, δ > 0 and ρ < γ < 1
∃ k > 0 s.th. for all y ∈ Rn with |y| > k and t ∈ [|y|ρ, |y|γ] we have

−|y|
(
α
(
g
(|y|
t

))α−1

− (1− δ)g
(|y|
t

)−1
)

≤ lnµt(y) ≤ −|y|
(
α
(
g
(|y|
t

))α−1

− (1 + δ)g
(|y|
t

)−1
)
,

where for some Λo > 0 the function g : (Λo,∞) → R is given as the unique point-
wise solution of the nonlinear functional equation

(
g(Λ)

)α
+C1 ln

(
g(Λ)

)
= C2 +C3 ln

(
Λ
)
, Λ > Λ0,

where C1 =
2− (α− 2)n

2(α− 1)
, C2 =

ln(α− 1) + n ln(α)− n ln(2π)

2(α− 1)
, C3 =

1

α− 1
.

The function g is slowly varying and Λ → g(eΛ) is a smoothly regularly varying
function of order α−1.



Lemma: [Key properties of g]
Let α > 1 and f ∈ SRα. Let b < α and k ∈ SRb.

(i) Existence, uniqueness and regularity:
There is some ro > 0 such that for every Λ > ro the equation

g(Λ)f ′(g(Λ))− f(g(Λ)) + k(g(Λ)) = lnΛ (1)

has a unique solution g ∈ SRo.

(ii) Fine regularity: Let h : (ln ro,∞) → R given by h(Λ) = g(exp(Λ)). Then h ∈ SR1
α
.

(iii) The asymptotic cancellation relation: For each γ > 0, δ > 0 there is z > ro such
that for every Λ > z and y ∈ [(lnΛ)−γ, (lnΛ)γ] the following estimate is valid∣∣∣g(Λ)[f ′(g(yΛ))− f ′(g(Λ))]− lny

∣∣∣ ≤ δ| lny|.

(iv) Asymptotic behavior: The function g satisfies the following limits:

lim
Λ→∞

g′(Λ)Λ lnΛ

g(Λ)
=

1

α

lim
Λ→∞

f(g(Λ))(lnΛ)−1 =
1

α− 1



By the CPP density representation

µt(z) =
∞∑

m=1

P(Nt = m)
ν∗m(dz)

dz
, z ̸= 0

it is clear that estimates on lnµt(z) boil down to estimates on ν∗m(dz)
dz



Proposition: The tails of the density of the m-th jump

Let L given a CPP under the given hypotheses and assume ν(Rd) = 1.
For m ∈ N we denote the m-fold convolution of ν with itself by ν∗m.

Then for all δ > 0 there is a k > 0 such that for all m ∈ N and |x| > km it follows

ν∗m(dx)

dx
≤ (α− 1)

(n−1)(m−1)
2 (2πf ′′(

|x|
m

)−1)
n(m−1)

2 · exp
(
−m(f(

|x|
m

)− δ)
)
,

ν∗m(dx)

dx
≥ (α− 1)

(n−1)(m−1)
2

m
n
2

(2πf ′′(
|x|
m

)−1)
n(m−1)

2 · exp
(
−m(f(

|x|
m

) + δ)
)
.



Proof:

• m = 1 the estimates are valid trivially.

• m ≥ 2, by rotational invariance it is enough to study x = |x|e1.
The convolution density reads

for the auxiliary function



For an estimate on the integral we need and estimate on fx,m:







In case of f being convex and nondecreasing hence the preceding RHS is eventually
nonnegative.

This condition can be removed in two steps at the cost of an asymptotic error, which
tends to 0 fast enough, not to change the result.



Recall:

exp(mf (| x
m
|)) · ν

∗m(dx)

dx

=

∫
Rn

· · ·
∫
Rn

exp
(
−

m−1∑
i=1

fx,m(yi)− fx,m

(
−

m−1∑
i=1

yi

))
dy

Very rough outline:

1. Pass from the m− 1 fold Rn integration (y1, . . . , ym−1)
to m− 1-fold R integration with variables (ỹ1, . . . , ỹm−1) to the power n.

2. Carry out an appropriate substitution over an m − 2 dimensional subspace. Ele-
mentary, nontrival estimates

3. Finally, conclude with the help of an auxiliary function θm−1.



Sketch of the lower bound of the density estimate lnµt

Consider the CPP case with ν(Rn) = 1.
Consider go the solution of the auxiliary nonlinear functional equation

go(Λ)f ′(go(Λ))− f(go(Λ)) + lngo(Λ)− n

2
ln f ′′(go(Λ)) +

ngo(Λ)f ′′′(go(Λ))

2f ′′(go(Λ))

+
n

2
ln(2π) +

n− 1

2
ln(α− 1) = lnΛ.

Claim 1 (lower bound):
For any δ > 0 and ρ < γ < 1, there is k > 0, such that for all |x| > k and t ∈ [|x|ρ, |x|γ]:

−|x|
(
f ′(go(

|x|
t
)) + (n(

α

2
− 1)− 1 + δ)go(

|x|
t
)−1

)
≤ lnµt(|x|)



For n ∈ N, x ∈ Rn and t ∈ [|x|ρ, |x|γ] define the “maximum likelihood index”

mx,t := |x|go(
|x|
t
)−1 m̃x,t := ⌊mx,t⌋ + 1.

Since ρ < γ < 1 we have by the definition of mx,t that

lim
|x|→∞

inf
t∈[|x|ρ,|x|γ]

|x|
m̃x,t

= ∞ and lim
|x|→∞

sup
t∈[|x|ρ,|x|γ]

t

m̃x,t
= 0.

The first limit allows to apply the lower bound of the convolution density ν
∗m̃x,t(dx)

dx

The second limit is used below.

Recall the density

µt(z) =
∞∑

m=1

P(Nt = m)
ν∗m(dz)

dz
, z ̸= 0

and that Nt has a Poisson distribution with expectation t.
Note: for large values of |x| and t ∈ [|x|ρ, |x|γ]

|x|
m̃x,t

= go(
|x|
t
)



Then for δ ∈ (0,1), |x| can be chosen sufficiently large such that for all t ∈ [|x|ρ, |x|γ]:

lnµt(x)

≥ ln
(
P(Nt = m̃x,t)

ν∗m̃x,t(dx)

dx

)
= −t + ln

( tm̃x,t

m̃x,t!
ν∗m̃x,t(dx)

)
≥ −mx,t

(
ln
mx,t

t
− 1 + f

( |x|
mx,t

)
+
n

2
ln f ′′

( |x|
mx,t

)
− n− 1

2
ln(α− 1)− n

2
ln2π +

δ

2

)
= −|x|go(

|x|
t
)−1

(
ln
|x|
t

− lngo(
|x|
t
) + f(go(

|x|
t
)) +

n

2
ln f ′′(go(

|x|
t
))

−n− 1

2
ln(α− 1)− n

2
ln2π − 1 +

δ

2

)
= −|x|go(

|x|
t
)−1

(
go(

|x|
t
)f ′(go(

|x|
t
)) +

n

2

go(
|x|
t )f

′′′(go(
|x|
t ))

f ′′(go(
|x|
t ))

− 1 +
δ

2

)
. (2)

NFE for Λ = |x|
t

lnΛ− lngo(Λ) + f(go(Λ)) +
n

2
ln f ′′(go(Λ))− n− 1

2
ln(α− 1)− n

2
ln(2π)

= go(Λ)f ′(go(Λ)) +
n

2

go(Λ)f ′′′(go(Λ))

f ′′(go(Λ))



III. No LDP for reparametrized Lévy processes on short time scale
1. For a parametrized Lévy process Zε such that Zε

t satisfies a LDP with some speed
function S(ε) and some good rate function It.

2. By the exponential density estimates, it is clear, that in case of Xε
t = εLtrε this is

It(x) = |x|

since by the asymptotic density estimates we have

P(εLtrε = y) ′′ ⇔′′ µtrε(
y

ε
) = µtrε(

|y|
ε
e1)

and
lnµtrε(

y

ε
) ≈ −|y|

ε

(
f ′(g(

|y|
tεrε

)) −g(
|y|
trε

)−1︸ ︷︷ ︸
smaller order

)
such that

S(ε) lnµtrε(
y

ε
) = −|y|

when S(ε) = ε ·
(
f ′
(
g
(
(εrε)

−1
)))−1

.



3. Then by a result in Dembo-Zeitouni [Theorem 4.2.1] we have for (Zt1, . . . , Ztm) the
LDP

I(t1,...,tm)(x1, . . . ,xm) = It1(x1) +

m∑
i=1

Iti−ti−1
(xi − xi−1)

4. By Feng Kurtz (Theorem 4.28) we have on the Skorokhod space with J1-topology

I(φ) := sup
m∈N

0≤t1<···<tm
ϕ cont. in t1,...,tm

I(t1,...,tm)(φ(t1), . . . , φ(tm)), φ ∈ D[0,∞),Rn



5. Assume that I defined that way is S(ε)-exponentially tight in D[0,T],Rn.
Then we may take some x ∈ Rn with |x| = 1 and

φ(t) := x · 1[T,∞)(t)

Clearly I(φ) = 1.

6. By construction φ is discontinuous in T = 1. Since the uniform norm topology is
strictly finer than the J1-topology on D there is a modulus of continuity, that is, there
is a ball radius κ1 > 0 such that for

A := {ϑ ∈ D | dJ1(ϑ, φ) < κ1}
we have

κ2 := inf
ϑ∈A

sup
t

|ϑ(t)− ϑ(t−)| > 0.

7. But

lim
κ→0

lim
ε→0

S(ε) lnP
(
d(φ,Xε) < κ

)
≤ lim

ε→0
S(ε) lnP

(
d(φ,Xε

)
< κ1)

≤ lim
ε→0

S(ε) lnP
(

sup
t≤2rεT

ε|Lt − Lt−| > κ2

)
= −∞ ≠ −1 = −I(φ)



IV. A LDP for respective Lévy bridges on path space

• L a centered compound Poisson process with jump measure ν

ν(dz)

dz
= exp(−f(|z|))

where f : (0,∞) → R is a smoothly regularly varying function of index α > 1

• rε smoothly regularly varying scaling with index ρ > −1

Xε
t := εLtrε

• Define the bridge Yε,x̄ of Xε conditioned to end at a given point x̄ ̸= 0 for given
time T > 0 (w.l.o.g. set T = 1).



• Denote the densitiy of Yε,x̄ by µ̄ε
t(y)

µ̄ε
t(y)=

ε−1µtrε(yε
−1) ε−1µ(1−t)rε((x̄− y)ε−1)

ε−1µrε(x̄ε
−1)

=
ε−1µtrε(yε

−1)µ(1−t)rε(x̄− y)

µrε(x̄ε
−1)

• Note: It is given in terms of the densities µt, so we can use the previous upper
and lower bounds.

lnµt(y) ≈ −|y|f ′(g(|x|
t
))

• Hence

ln µ̄ε
t(y)

= f ′(g(
|y|ε−1

trε
))|y|ε−1 + f ′(g(

|x̄− y|ε−1

(1− t)rε
))|x̄− y|ε−1 − f ′(g(

|x̄|ε−1

rε
))|x̄|ε−1

+o
(
g
(ε−1

rε

)
|x̄− y|ε−1

)
.



On the segment [[0, x̄]]

For y ∈ [[0, x̄]] we have |x̄| = |x̄− y| + |y|

ln µ̄ε
t(y)=

(
f ′(g(

|y|ε−1

trε
))− f ′(g(

|x̄|ε−1

rε
))

)
|y|ε−1

+

(
f ′(g(

|x̄− y|ε−1

(1− t)rε
))− f ′(g(

|x̄|ε−1

rε
))

)
|x̄− y|ε−1 + o

(
g
(ε−1

rε

)
|x̄− y|ε−1

)
.

By the asymptotic cancellation relation of g we have for any γ > 0

f ′(g(|u|Λ))− f ′(g(Λ)) =
ln |u|
g(Λ)

+ o(
| ln |u||
g(Λ)

)

uniformly for |u| ∈ [ln(Λ)−γ, ln(Λ)γ], as Λ → ∞.

For Λ = (εrε)
−1, u1 =

y
t , u2 = x̄, u3 =

x̄−y
1−t and u4 = x̄, and |y| ∈ [| ln ε|−γ, |x̄| − | ln ε|−γ]

− ln µ̄ε
t(y)≈ε

(
ln

|y|
t|x̄|

)
g((εrε)

−1)−1|y|ε−1 +

(
ln

|x̄− y|
(1− t)|x̄|

)
g((εrε)

−1)−1|x̄− y|ε−1

=

(
|y| ln |y|

t
+ |x̄− y| ln |x̄− y|

1− t
− (|y| + |x̄− y|) ln |x̄|

)
g((εrε)

−1)−1ε−1

=

(
|y| ln |y|

t
+ |x̄− y| ln |x̄− y|

1− t
− |x̄| ln |x̄|

)
g((εrε)

−1)−1ε−1.



That is

− ln µ̄ε
t(y)=

(
|y| ln |y|

t
+ |x̄− y| ln |x̄− y|

1− t
− |x̄| ln |x̄|

)
g((εrε)

−1)−1ε−1.

Consequently, with speed function S(ε) = εg((εrε)
−1) we obtain the limit

lim
ε→0

−S(ε) ln µ̄ε
t(y) = |y| ln |y|

t
+ |x̄− y| ln |x̄− y|

1− t
− |x̄| ln |x̄|.



The right-hand side has rudimentary Riemann sum structure

lim
ε→0

−S(ε) ln µ̄ε
t(y) =

|y|
t− 0

ln
( |y|
t− 0

)
(t− 0) +

|x̄− y|
1− t

ln
(|x̄− y|

1− t

)
(1− t)− |x̄| ln |x̄|.

which reads for a m-dimensional distribution on 0 < t1 < . . . tm = 1

|y1|
t1

ln
(|y1|

t1

)
t1 +

m∑
i=2

|yi − yi−1|
ti − ti−1

ln
(|yi − yi−1|

ti − ti−1

)
(ti − ti−1)− |x̄| ln |x̄|.

and which can be made rigorously satisfy an m-dimensional LDP with speed func-
tion S(ε) = ε · g((εrε)−1))−1 and good rate function

I(t1,...,tm)(φ) =

|φ(t1)|
t1

ln
(|φ(t1)|

t1

)
t1 +

m∑
i=2

|φ(ti)− φ(ti−1)|
ti − ti−1

ln
(|φ(ti)− φ(ti−1)|

ti − ti−1

)
(ti − ti−1)− |x̄| ln |x̄|

which tends (whenever the limit exists) to

Ix(φ) =

∫ 1

0

|φ′(t)| ln(|φ′(t)|)dt− |x̄| ln |x̄|.



Off the segment [[0,x]]

For y /∈ [[0, x̄]] then |x̄| = |x̄− y| + |y| + (|x̄| − |x̄− y| − |y|) with |x̄| − |x̄− y| − |y| < 0.

Only an incomplete asymptotic cancellation, it remains a term proportional to

(|x̄| − |x̄− y| − |y|)f ′(g(|x̄|ε
−1

t
)).

However, when we renormalize it with S(ε) as before and obtain

S(ε)

S̃(ε)
· S̃(ε)(|x̄| − |x̄− y| − |y|)f ′(g(|x̄|ε

−1

t
)).

While the second factor converges to −|y| as before, the first factor diverges

S(ε)

S̃(ε)
≈ ε ln((εrε)

−1)
1
α

ε(ln((εrε)−1)−
α−1
α

= ln((εrε)
−1) → ∞.

Therefore instead of It we obtain

lim
ε→0

−S(ε) ln µ̄ε
t(y) = ∞.



The complete LDP for Weibull-type CPP

ε 7→ rε to be a regular varying function with its index in (−1,∞).

Hypotheses (H) on the Lévy measure:
The generating triplet (σ2, ν,Γ) of L satisfies:
The Lévy measure ν can be written as ν = νη + νξ.
1. Weibull CPP component α > 1: The Lévy measure νη is finite, νη(Rn) < ∞, and

has a density on Rn \ {0} of the form
νη(dz)/dz = exp(−f(|z|)),

where f ∈ SRα for some α > 1.

2. Let ξ denote a Lévy process with generating triplet (σ2, νξ,Γξ) with

Γξ = Γ +

∫
{|y|≤1}

yνη(dy).

There is a s̃ ∈ R, such that ξt has a density µξ,t on Rn \ [−s̃t, s̃t]n for every t > 0.

3. Lighter-than-Weibull-tailed perturbations: There is ℵ > 1− 1
α, s.th. for all γ < 1

lim
Λ→∞

sup
t<Λγ

|y|=Λ

lnµξ,t(y)

Λ(lnΛ)ℵ
= −∞.



Notation:

Given x̄ ∈ Rn \ {0} and T > 0.

Xε with Xε
t = εLtrε, L with characteristics (σ2, ν,Γ) satisfying the Hypotheses (H).

(Xε)t∈[0,T] conditioned on the event {Xε
T = x̄} called (Yx̄,ε

t )t∈[0,T].

D[0,T],Rn the space of càdlàg functions [0,T] → Rn with the uniform norm || · ||∞.

[[0, x̄]] = {sx̄ | s ∈ [0,1]} segment

Mx̄,T := {φ ∈ D[0,T],Rn | |φ(·)| is continuous and nondecreasing with φ([0,T]) = [[0, x̄]]}

Theorem: [LDP with speed function S and rate function Ix̄ for Yx̄,ε]

The family (Px̄,ε)ε>0, Px̄,ε = Law(Yx̄,ε) satisfies a LDP on (D[0,T],Rn, || · ||∞)
with speed function S(ε) := ε · g(ε−1r−1

ε ), where g is defined by the NFE before
and the good rate function

Ix̄(φ) =


∫ T

0

|φ|′ ln |φ|′ dt− |x̄| ln |x̄|
T
, if φ ∈ Mx̄,T ,

∞, otherwise.

(3)

2

2Here we denote by |φ|(t) = |φ(t)|, |φ|′(t) = d
dt |φ(t)| the total derivative, whenever it exists and set it equal to 0 otherwise. We set r ln r = 0, whenever r = 0.



Sufficient conditions on the perturbation ξ:

There exists Λ > 0, such that νξ({y ∈ Rn | |y| > Λ}) = 0.
Furthermore, one of the following conditions is satisfied:

1. detσ2 > 0.

2. There is a parameter β ∈ (0,2) such that νξ satisfies the following Orey condition

lim
r→0+

r−β

∫
|y|<r

⟨vi,y⟩2ν(dy) > 0.

where (v1, . . . ,vn) is an ONB of Rn



More comments:

• Corollary: Schilder’s theorem for CPP with Weibull increments α > 1

• Most probable paths

• Asymptotic normality

• LDP for the growth of the jumps

• Infinite energy parametrizations of the segment [[0,x]]

• Degeneration of the rate function

• Symmetry break of exit locations (in comparison to Freidlin-Wentzell)
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