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Overview

0. Lévy processes and LDPs
|. Motivation: Cramer’s and Schilder’s theorems
ll. Fine density estimates for a CPP with Weibull increments o > 1
lll. A negative LDP result for rescaled Weibull CPP on short time scales

V. A LDP for the bridges of the a class of rescaled Lévy processes on short time scales



o. What is a Lévy process?



From Random walks to Brownian Motion

Binomial distributions: For Xj,...,X, ani.i.d. random variables with X; ~ 15, + 24,

we know that i,
n\ 1.k, 1 nx
S Xim By Byl = (1)) ()

Replacing
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Central limit theorem (de Moivre/Laplace):
For an i.i.d. sequence (X;)icy With X; ~ 15_; +15; and

1 n
Sn e — Xi
Vi 2y

we have

lim P(S, € |a, b))

n—00 \/ﬂ/ € R dX_NOl([a b])



Donsker’s theorem: Central limit theorem for random walks
Define a sequence of continuous time random walks B,, : [0,00) — R

Lot (nt — [nt|)

1
Bn<t> = E Z X; + \/ﬁ XLntJ—I—l
i=1

Then for any Borel set of paths C C Cy(|0, c0), R) we have the limit
lim P(B, € C) =W(C),

n—oo

defining a measure on )V on Cy([0, o), R), the Wiener measure.
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Donsker’s theorem: Central limit theorem for random walks
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Brownian Motion

A Brownian Motion (B(t));¢ is a random vector in Cy([0, o), RY) which obeys the
Wiener measure ;.

Or:

A Brownian Motion (B(t));>o is a stochastic process with values in in R4
«B(0) =0
 independent increments
B(tn) — B(tn-1), ..., B(t2) — B(t1), B(t1)
« stationary increments
B(t) — B(s) ~ B(t —s) ~ N(0, (t —s)Iq) = N(0,I4)*¢)

 Continuous paths t — B(t)



Poisson Process

A Poisson Process (P(t));>o is given by i.i.d. memoryless waiting times (7;,)ncn;,
and

Pt)=max{neN|m+ -+ 1 < t}

A
3 ] P(t,w)
0 ——I § >
- >l > > > t
T1(w) T2(w) T3(w) Ta(w)
 Memorylessness of T: Py >t+h|m >t)=P(r; > h)

that is =, ~ £, for an “intensity” \ > 0, P(ry >t) =e "\,



Properties:
1.P(0)=0

2. P(ty) — P(tu_1),..., Plts) — P(t1), P(ty)

independent increments

3. P(t) — P(s) ~ P(t —8) ~ Py_q = Pyt stationary increments




Extension:
« Compound Poisson process (C(t));>g in R4,

P(t)
Ct):=> W;
i=1

— Poisson process P = (P(t));-, with intensity \ > 0
- Sequence of i.i.d. random increment vectors W = (W;);cy in R?

-P1W
A
C(t) T4
Rd
T2 W,

W, W

71 W2 S
0 >
t

T3




Compound Poisson Marginals C(t) in general not in closed form!

C(t) Ta

Rd
T2 W, L

T1 W2 W3

73

Characteristic function:
u— E {e““’c(t»] = exp (t/ <ei<“’y> — 1) V(dy)).
Rd

v = A\, for W, ~ u and Poisson intensity A\ > 0.

where



Properties:
1.C(0)=0

2. C(tn) — C(tn-1),..., C(t2) — C(t1), C(t1)

independent increments

3. C(t) — C(s) ~ C(t —s) ~ L(C(1))*t=3) stationary increments

W) Ta(w)
RY
To(w) W(w)
3(w
0




Lévy process (L(t));>o in RY

1. L(0) = 0.
2. t — X, is almost surely right continuous with left limits (cadlag)

3. L(ty) — L(ty_1),..., L(ty) — L(ty), L(ty)
independent increments

4. L(t) — L(s) ~ L(t —s) ~ L(L(1))*ts) stationary increments



Lévy-Chinchine representation of the law

Theorem:

Every Lévy process (L(t));~o has a unique characteristic triplet (a, A, v)

« vector a € RY,
« covariance matrix A € Rdxd
« “Lévy measure” v : B(RY) — [0, co] measure

s({lyl = 11) + / yPrdy) <oco,  u({0}) =0,

ly|<1

which determines the (and hence the law)

_ t
=K [e““’L(l»} = exp (t ), uc R?

+/y>1 () = 1)u(dy) +/ (™Y — 1 —i(u,y)) v(dy).



Lévy-Ito representation of the paths

Theorem:

For any Lévy process (L(t)):~o with characteristic triplet (a, A, v)

L(t) = at + AY?B(t) + J>=(t) + J°(t) a.s. forallt > 0,

where
* B is a standard Brownian motion in R4

« J* is a compound Poisson Process in R¢

— with intensity \ = v(B{(0))
— and jump measure

« JV is a pure jump process
— of possibly infinite intensity
— with jumps bounded by 1.



A pure jump Lévy process in R? is
a Lévy process (L(t));>o in R? with

L(t) = J®(t) + J°(t),

with Lévy measure v

s({yl > 1)) + / yPu(dy) < oo, w({0}) =0,

ly|<1
h
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Comparison: Brownian motion vs. pure jump Lévy process

Brownian motion

Representation | Gaussian densities, very wellknown
Paths continuous, but rough “local variation™
Moments all moments including exponential ones

Kl w’j\w




a pure-jump Lévy process with Gaussian increments

Representation | no densities in closed form,
characteristic function with the Lévy measure
instead distribution of jumps via Lévy measure

Paths discontinuous, jJumps occur
(only right continuous with left limits)
Moments exponential moments
A
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Definition:

(i) A function S : (0,00) — (0,00) is called a speed function, if lim. .o, S(¢) =0 and
there exists a continuous invertible function S, : (0, 00) — (0, 00), such that

lim Sol€)

=1
e—0+ S({:‘)

(ii) Let (X, T) be a topological space equipped with its Borel-o-algebra B, and (X¢)..( be
a family of random elements with values in X. Law(X°®).., is said to satisfy a large
deviations principle (LDP) on (X, 7) with respect to a speed function S and a
good rate function I, if for every open subset A C X

liminf S(e)InP(X® € A) > — inf I(z)

e—0 r€A

is valid and for every closed subset A C X
limsup S(e) InP(X® € A) < — inf I(z).

e—0 T€EA



|. The question: LDPs for rescaled Lévy processes
The setup:

Centered Levy process (Li)¢>0
with exponential moments

Ee)“L1| < 00

scaling ¢ — r- > 0 such that lim._,gr: € [0, 0] exists

X" = (Xi>t€[0,T]7 Xi =L,



Motivation: Crameér’s theorem

L centered Lévy process with Eje*1]] < oo and r. = 71

€ .__

rewritten as a telescopic sum is a random walk

Xt—EZ it — Li—1)t)
i.i.d.

Cramér’s theorem yields a LDP in RY, where the rate function is given
as

IE) = nfI(z), 1) =A"z)  AQ)=EXD

where A* is the Fenchel-Legendre transform of the Log-Laplace A of L.

— LDP for the marginals Ly for and t in R% v/
—— LDP functional limit theorems in D[0 T| Rd v



Schilder’s theorem:

B = (Bt)¢jo, 1) @ Brownian motion, r. = 1/and X; = ¢Bjy.

Then P* = Law(X®) satisfies a LDP with good rate function

I[(w) =

T

1 2 1

= d I H;(0, T
2({ sifds itw e Ho(0.T) L ¢ co(f0. T, RY)

else

— LDP on path spacer. =1 < ¢ 1



Schilder’s theorem:

B = (Bt)¢jo, 1) @ Brownian motion, r. = 1/and X; = ¢Bjy.

Then P* = Law(X®) satisfies a LDP with good rate function

T
2 [|w(s)|?ds if w € H{(0,T)
0

I[(w) = : w € Cy([0,T], R")

else
— LDP on path spacer. =1 < ¢ 1

Q: Is there an similar LDP for certain Lévy processes?
— What about a CPP with Gaussian increments?



Centered Levy process (Li)¢>0
with exponential moments

Ee)“L1| < 00

scaling ¢ — r. > 0 with r, < ¢~1

X = (X@tE[O,T]v Xt = € Li.r.
Main question:

Is there a LDP for P = Law(X*<) on path space (D, B(D))?

— inf I(z) < liminf S(e)InP°(F) < limsup S(¢) nP*(F) < — inf I(z)
zelk° e—=0+ e—0+ z€FE



Il. Fine density estimates for CPP with Weibull increments o > 1

L a centered compound Poisson process with jump measure v

v(dz)
dz

= exp(—f(|z]))

where f : (0,00) — R is a smoothly regularly varying function of index o > 1

Example:
f(r) =r", a > 1.
For a = 2 think of () ;
r\az 4 2
= o exp(—5 )

a CPP with Gaussian jumps.



Definition 2.1. (i) Let z € R. A function f : (z,00) — R is called regular varying
with index o € R, if sup{A > z | f(A) < 0} < 00 and limj o L33 = A* holds for
every \ > (. We denote by R,, the class of regular varying functions with index .

(ii) Let z € R. A function f : (z,00) — R is called smoothly regularly varying with
index o € R, if f is infinitely often differentiable, z, := max{1,sup{A > z | f(A) <
0}} < oo, and h: (Inz,,00) = R, h(:) := In f(exp(-)) satisfies limy_,~ h'(A) = o and
limp_,o0 K™ (A) = 0 for any m = 2,3, .... We denote by SR,, the class of smoothly
regularly varying functions with index c.

It is known that f(A) = A“/(A) (see Bingham, Goldie, Teugels).
Think of f(A) = A“. Then
d afexp(A)*Y)

Alglgo dA n(flexp(A)) = Algnoo (exp(A))®

exp(A) = «



Lemma 2.2 (Properties of smoothly regularly varying functions). Leta, 8 € R, f € SR,
and g € SRz. Then the following statements are valid:

i) f € R, i) im0 % — «

( (

(iii) If « > 3 then f + g € SR,,. (iv) Ifa > S then f — g € SR,,.

(v) f-9g€ SRayp (vi) If imp o, g(A) = oo then fog € SR.3.

(vii) 1/f € SR_, (viti) If « # 0 then |f'| € SRa—1.

(iz) If « > —1, then z can be chosen sufficiently large, such that A f; f(y)dy exists.
This function belongs to SR, 1.

(z) If « > 0, then z can be chosen sufficiently large, such that f is invertible on [z, ),
and its inverse function f~! belongs to SR% :



Theorem: Asymptotic exponential density estimates

Let L given a CPP under the given hypotheses.
Set 11, t > 0, the density of the marginal law L;.

Thenforany) >0and p <y <1dk>0s.t. forall |x| >kandt € [|x|’, |x|"]:

x| x| x|

el (P50 — (1~ B ) < < —pel (P50 — (1-+ D))

where g : [Ay,c0) — R is the unique solution of the nonlinear functional equation

n—1

(@=1)"TA)

(=}

g(A)F(8(A)) — £(g(A)) + Ing(A) — S Inf"(g(A)) =In((2m)"



Example: % = cq exp(—|z[?)

ForallneN,a>1,)>0andp<y<1
3 k > 0 s.th. for all y € R" with |y| > kand t € [|y|”, |y|'] we have

¥ <Oé (g(bi_'>)al —- 5>g(|{_‘)1> = ily) = =y (O‘ (g(%)m —(1+ 5>g<|z_‘)l>

where for some A, > 0 the function g : (A,,0) — R is given as the unique point-
wise solution of the nonlinear functional equation

(g(A))" +CiIn(g(A)) = Cz + Csln (A), A > Ay,

2—(a—2)n
2 —1)

C ~ In(a — 1) +nln(a) — nln(27) C. — 1
2 2(a — 1) T -1

where C; =

The function g is slowly varying and A — g(e®) is a smoothly regularly varying
function of order o 1.



Lemma: [Key properties of ¢]
Leta>1andf € SR,. Letb < v and k € SR;..

(<) Existence, uniqueness and regularity:
There is some r, > 0 such that for every A > r,, the equation

g(A)f'(g(A)) —f(g(A)) +k(g(A)) =nA (1)
has a unique solution g € SR,

(¢2) Fine regularity: Leth : (Inr,,00) — R given by h(A) = g(exp(A)). Then h € SR.:.

(22¢) The asymptotic cancellation relation: Foreach~y > 0,6 > 0 thereis z > r, such
that for every A >z andy € [(InA)~7, (In A)?] the following estimate is valid

g(A)[f'(g(yA)) — f'(g(A))] —Iny| < §|lny].

(tv) Asymptotic behavior: The function g satisfies the following limits:
. g(AAInA 1
lim = —

A—o0 g(A) «
lim F(g(A))(InA)" =

1
a—1




By the CPP density representation

v (dz)

it is clear that estimates on In y(z) boil down to estimates on —



Proposition: The tails of the density of the m-th jump

Let L given a CPP under the given hypotheses and assume v(R?) = 1.
For m € N we denote the m-fold convolution of v with itself by »*".

Then for all y > 0 there is a k > 0 such that for all m € N and |x| > km it follows

*m X o — (n_l)ém_l) X n(m-—1
vidx) ez ) (2 (Xl )-exp<—m(f(u)+5))



Proof:

 m = 1 the estimates are valid trivially.

* m > 2, by rotational invariance it is enough to study x = |x|e;.
The convolution density reads

il ((f]") m—1 m !
A i’ :/ / exp(— Z f(lvil) —f(\:rr — Yi ))dyl e dYm—1
dx R"\{0} R™\{0} i—1 i=1
m—1 T m—1
— / IR / exp ( Z f(| — + Y; ) (‘ Z Yi D) dyl - dym—l
R™\{Z} R™\{;-} i=1 m L

xr
= exp (= mf(1=))
m
m—1 m—1
: / Tt / exXp ( Z f.r m U.ﬂ, f;r:._m, ( - Z yt))dyl - dym,—l:
Iﬁn'\{ﬁ} ]Rn'\{ﬁ}

i=1

for the auxiliary function fr.m : R"\{—31 — R:

|z

ﬁﬁ,*rrt(z):f(‘,i_{_z‘)_( (rr .

) + 2/ ()

where the seemingly missing summands 7" (—;) f/(| & L) —(— Z’,”’ Yy Z|) add up

=1 1=1

to zero.



For an estimate on the integral we need and estimate on f, ,,:

fa:,‘rn( ) f(‘_ +ZD

m, m
|

= (P02 42D = £0Z 4 zea) + 0 42— 2 oz 2y

m

Hypothesis I on f yields that forany 6 > 0, c € (1 — 5, 1) there is % sufficiently large
such that for |z| < (| |) it follows

b 1 T 1., |z
rd ey~ apddy < Lpddigs <avalrd@z o
m m al<(Lzlye m 2 m
For % sufficiently large and 2| < (%)C we have
T T x T x
f(l—+2]) = f(l—+ze1]) < sup —f(u+f1)(|f+z‘_‘,—+21€1|)
m m 2| m m
lal<(55 )¢
.1 m 1 1 |
O Vo b LA TR L O ) Ly 0 D
m’ 2 |x| a—12 m

1=2



The corresponding lower bound of f, , can be estimated similarly.

Hence for any 6 > 0, c € (1 — ,1) there
1sk:>[)suchthatforany| | > kand |z| < ( ||) wehave

Fon(2) = 217D (2 4 Lo 57 22) < a2 ),

1T=



Upper bound of (2.10):

; m—1
v (dax) x :
d— < exp(—mf(\ o |)) / T / exp ( - E f:t:,:rrb(yi)) dyl - dy:rn,—l
v e JR{E IR i=1

m

m—1
—exp(-ms (|2 ( [ i P (1))

We estimate the value of the integral for y € [—(%)C: (%)f—']”

For |$| large enough,

andJ(—;[ 2lye (121)e], we estimate f, ,(y) > (1 — 8)L 7 (ED) (2 + L5 L 42)

Gaussian renormalization /2ma = f]R exp( 5 )ds a >0,

/[(;)c,(;) ] (= fom(u)dy - < / eXp(_ (1-9)5 f” M)( I+ ail Zyz))dy

T

:((x—l) —z (gﬂ((l_(s)f”di\ 12

m



|)-_

It remains to estimate the integral for y € R™ \ [— (L&), (Ll |) ™ for |y| > (&

d> d?

.o L .o L . £
5 Frm(sy) = = (F(1= + syl) = F(1=]) - sylf’u—n)
as C "3 m m

d? x €T d T
— (S ) 7 OZ + sul + (1 4 syl) 171 + sul)
m m

ds2'm ds'm

for any y € R" \ {0}, s > 0, such that £ + sy # 0

In case of f being convex and nondecreasing hence the preceding RHS is eventually
nonnegative.

Hence together with f, ,,,(0) = 0 we have

f:f:,urn(sz) > Sf:r:;rn(z) for any z < R™ and s > 1.

This condition can be removed in two steps at the cost of an asymptotic error, which
tends to 0 fast enough, not to change the result.



Lower bound of (2.10):

Recall:

| V*m(daz)

exp(m

m—1

)
— /exp fom Yi) fx,m(— yz‘))dy

Very rough outline:

1. Pass from the m — 1 fold R" integration (y1, ..., ym_1)
to m — 1-fold R integration with variables (3, ..., 9.,_1) t0o the power n.

2. Carry out an appropriate substitution over an m — 2 dimensional subspace. Ele-
mentary, nontrival estimates

3. Finally, conclude with the help of an auxiliary function 6,, ;.

m—1 m—1

Oy : R — — [0, 00), Om—1( Z 27 + ( Z zb)

=1



Sketch of the lower bound of the density estimate In

Consider the CPP case with v(R") = 1.

Consider g, the solution of the auxiliary nonlinear functional equation

ng,(A)f"(go(A))
2f"(go(A))

In(aw — 1) =InA.

Bo(AJE/(8o(A)) — £(go(A)) + Ingo(A) — 5 In £"(go(A) +

n—1

+g In(27) +

Claim 1 (lower bound):
ForanyJ > 0andp < v < 1, thereis k > 0, such thatfor all |x| > kand t € [|x|*, |x|"]:

x|

x| (F g0l

)+ (5= 1) = 1+0)go() ") < Inpuelfxl)



Forn e N,x c R*and t € ||x|’, |x|"] define the “maximum likelihood index”

X\, _ ~
e = ) 1

Since p < v < 1 we have by the definition of m, ; that

: : X . t
lim inf ,‘, | = 00 and lim  sup —
|x|—00 te[|x|7,[x|7] My ¢ x| =00 pe|x|r,|x|7] Mx,t

= 0.

y*rhx>t (dx)
dx

The first limit allows to apply the lower bound of the convolution density
The second limit is used below.

Recall the density

pi(z) = Y P(Ny = m) V*IZ<:Z>7 z# 0

and that IN; has a Poisson distribution with expectation :.
Note: for large values of |x| and t € [|x|*, |x|"]

x| x|

r’hx,t N gO<T)




Then for § € (0,1), |x| can be chosen sufficiently large such that for all t € [|x|”, |x]|"]:

In g (x)
_ Ux(dx
Z In (P(Nt :" mx,t) d)i ))
My ¢ -
= —t+In <ﬁlx,t!y X7t(dx))
> —m (1 Mt 1+f( \x\)+n1 f”( ‘X‘> n_ll(a 1) n2 +5>
—INx¢| In — — —Inf"(——) — na—1)——=In —
= U T me ) | 2 M ¢ 2 2 T
x _1( x| x| x|\ oo, X
= x|go (T In = — Ingy () + flgo () 4+ — In £ (g (1
|X|g<1t) = — Ingo(T) +(go(—-)) + 5 Inf(go(—7))
_n; 1n(oz—1)——ln27r—1+—)
x|\ g x|
x| o X X n8e(F)E(8a(F)) 0
= —[xlgo() ™ (8ol T (8ol ) + 5 ~1+3). )
t tET T2 gy 2
NFE for A = B
n—1 n

InA — Ingo(A) + f(go(A)) + gln f'(go(A)) —




lll. No LDP for reparametrized Lévy processes on short time scale

1. For a parametrized Lévy process /- such that Z; satisfies a LDP with some speed
function S(¢) and some good rate function /,.

2. By the exponential density estimates, it is clear, that in case of X; = <L, this is
Li(x) = [x]

since by the asymptotic density estimates we have

Pl =y) " 6" unlY) = e (Do)
and y| y| y|
y y / y y -1
e (0 ~ ~ 2 (g2 ()1 )
n it 5(8> ; (g(t5r€>> ; g(tr€> )
smallé?order
such that

S(e) In prer. (Z) = —[y]

when S(e) = ¢ - (f’(g((erg)_l))>1.



3. Then by a result in Dembo-Zeitouni [Theorem 4.2.1] we have for (Z,,...,Z;,) the
LDP

4. By Feng Kurtz (Theorem 4.28) we have on the Skorokhod space with J;-topology

I(p) = Sup I(t1 ..... tm)<90(t1)7 o 0(tm)), VoS D[O,oo),Rn
0§t?2§N<tm

ocont. in¢...t,



5. Assume that I defined that way is S(c)-exponentially tight in D ) gn.
Then we may take some x € R™ with |x| = 1 and
p(t) =x- ]-[T,oo)<t>
Clearly I(¢) = 1.

6. By construction ¢ is discontinuous in T = 1. Since the uniform norm topology is
strictly finer than the J;-topology on D there is a modulus of continuity, that is, there
Is a ball radius «; > 0 such that for

A = {79 cD | dJ1<19, gD) < /431}
we have

Ko = 52}; SUp [Y(t) — J(t—)| > 0.

/. But
lim lim S(e) n P (d(yp, X%) < k)

k—0 e—0

< lim S(e) n P (d(p, X°) < k1)
e—0

< lim S(e) lnP( sup e|Lg — L | > /-4;2)

e—=0 t<2r.T

= —o00 # —1=—I(yp)



IV. A LDP for respective Lévy bridges on path space

» L a centered compound Poisson process with jump measure v

v(dz)
dz

= exp(—f(|z]))

where f : (0,00) — R is a smoothly regularly varying function of index o > 1

* r. smoothly regularly varying scaling with index p > —1

€ .__
Xt . (C.::]:Jt]:-6

 Define the bridge Y<* of X° conditioned to end at a given point x £ 0 for given
time T > 0 (w.l.o.g. set T = 1).



 Denote the densitiy of Y by 1if(y)

—5( ): 5_1/Ltrg<y€_1> 5_1:u(1—t)rg<(>_( — Y)€_1>
ILLt y 8_1/’Lrg(}_<€_1>

_ 5_1,utrg<y5_1):u(1—t)r5<x - Y>
pr(Xe™H)

* Note: It is given in terms of the densities ;;, SO we can use the previous upper
and lower bounds.

i ply) ~ ~ Iy 1F(g(2)

 Hence
In 15 (y)

- (eIl +

—1

+0 (g(grg )|x — y\e_l).

|)_<_Y‘5_1 = -1 /
e L e e




On the segment | |0, x|

Fory € [[0,%]] we have x| = |x — y| + |y]

N T T S ME
))) & —yle ™t + O(g(gr_l) % — y\e—l).

3

% —yle™? %l

#(re ) - e

By the asymptotic cancellation relation of g we have for any v > 0
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uniformly for |u| € [In(A)"7,In(A)"], as A — oo.
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That is
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Consequently, with speed function S(¢) = cg((er.)"') we obtain the limit
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The right-hand side has rudimentary Riemann sum structure
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which reads for a m-dimensional distributionon (0 <¢; < ... ¢, =1
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and which can be made rigorously satisfy an m-dimensional LDP with speed func-
tion S(¢) == - g((er.) ') ! and good rate function
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which tends (whenever the limit exists) to
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Off the segment [[0, ||
Fory ¢ [[0,x]] then |X| = |x —y[ + |y| + (%] = |x — y| — [y|) with || — |x — y| — [y] <O.

Only an incomplete asymptotic cancellation, it remains a term proportional to
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However, when we renormalize it with S(¢) as before and obtain
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While the second factor converges to —|y| as before, the first factor diverges
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Therefore instead of /; we obtain
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The complete LDP for Weibull-type CPP

e — r. to be a regular varying function with its index in (—1, co).

Hypotheses (H) on the Léevy measure:
The generating triplet (o2, v, T") of L satisfies:
The Lévy measure v can be written as v = v, + 1.

1. Weibull CPP component o > 1: The Lévy measure v, is finite, v, (R") < oo, and
has a density on R" \ {0} of the form

v,(dz)/dz = exp(—£(|z])),
where f € SR, for some a > 1.

2. Let ¢ denote a Lévy process with generating triplet (o2, v¢, T'¢) with

e=T+ / yv,(dy).
{lyl<1}

There is a s € R, such that & has a density pc on R™ \ [—St, St|" for every t > 0.

3. Lighter-than-Weibull-tailed perturbations: Thereis X > 1 — % s.th. forall v < 1

]
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Notation:

Givenx € R"\ {0} and T > 0.

X¢ with X¢ = eLy,_, L with characteristics (o2, v, T") satisfying the Hypotheses (H).
(X4)tejo.r) conditioned on the event { X5 = x} called (Y ©)icjo)-

Dip 1 re the space of cadlag functions [0, T] — R™ with the uniform norm || - ||.

10,x]] = {sx | s € |0,1]} segment
Mg = {¢ € Djorn | |¢(-)| is continuous and nondecreasing with ¢([0, T]) = [[0,X]}

Theorem: [LDP with speed function S and rate function I for Y*<]

The family (P*#)..o, P** = Law(Y*?) satisfies a LDP on (Djo 1y gn, || - ||)
with speed function S(¢) := ¢ - g(¢ 'r_ '), where g is defined by the NFE before
and the good rate function

([T X
/ o] In || dt — |%|In if o € Mxr,
0

T 3)
00, otherwise.

Iz(p) = <

\

2Here we denote by |¢|(t) = ()], |o|' () = % |(t)] the total derivative, whenever it exists and set it equal to 0 otherwise. We set r Inr = 0, whenever r = 0.




Sufficient conditions on the perturbation ¢:

There exists A > 0, such that v:({y € R* | |y| > A}) =0.
Furthermore, one of the following conditions is satisfied:

1. deto? > 0.

2. There is a parameter g € (0, 2) such that v, satisfies the following Orey condition

lim r_ﬂ/ (vi,y)2v(dy) > 0.
lyl<r

r—0+

where (vq,...,vy) is an ONB of R”



More comments:

 Corollary: Schilder’s theorem for CPP with Weibull increments o > 1
» Most probable paths

« Asymptotic normality

e LDP for the growth of the jumps

* Infinite energy parametrizations of the segment [[0, x||

» Degeneration of the rate function

« Symmetry break of exit locations (in comparison to Freidlin-Wentzell)
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